
18 Root systems and reflection groups

We have seen that simple complex Lie algebras have a root system associated
to them: this means a finite set of non-zero vectors in Euclidean space, called
roots, such that r and s are roots then (r, s) is an integer multiple of (r, r)/2
and the reflection s − 2r(r, s)/(r, r) of s in r⊥ is also a root. In particular
for every root system we have a Weyl group generated by reflections. The
correspondence between semisimple complex Lie algebras and root systems is
not quite 1:1 because the root system of a semisimple complex Lie algebra is
also reduced: this means that it r is a root then 2r is not a root. An example of
a non-reduced root system is BCn, consisting of the vectors ±xi, ±xi ±xj , and
±2xi. In fact these are the only irreducible non-reduced root systems. They are
in fact roots sytems of finite dimensional simple superalgebras. Most but not
all reflection groups in Euclidean space turn up as Weyl groups of Lie groups:
the exceptions are most dihedral groups, the symmetries of an icoshedron, and
a group in 4-dimensions.

The classification of root systems and reflection groups is similar. We will
do the case of root systems all of whose roots have the same length; the general
case uses no essentially new ideas.

The first step is to consider the Coxeter diagram of a reflection group, or
the Dynkin diagram of a root system. These are defined as follows. Chop up
space by cutting along the reflection hyperplanes. The closed regions bounded
by these hyperplanes are called Weyl chambers. Any Weyl chamber is conjugate
to its neighbors by a reflection, so all Weyl chambers are conjugate by elements
of the reflection group. We pick one Weyl chamber. The Coxeter diagram has a
point for each face of the Weyl chamber, and lines between the points according
to the angle between faces. If the faces are orthgonal there are no lines, if the
faces have an angle of π/3 there is 1 line, if the faces have an angle of π/4 there
are two lines, and for other angles conventions vary. A Dynkin diagram of a
root system is like a Coxeter diagram, with some extra information to indicate
the lengths of the roots (which is not defined for arbitrary reflection groups).
Usually one draws an inequality sign on the lines to indicate the longest of
each pair of roots. (For finite root systems this gives enough information to
reconstruct the root system, though for infinite root systems one sometimes
needs more information.)

We will work out the Dynkin diagrams of the most of the root systems we
have seen.

• An: simple roots αi − αi+1

• Bn: simple roots αi − αi+1, αn

• Cn: simple roots αi − αi+1, 2αn

• Dn: simple roots αi − αi+1, αn−1 + αn

• E8 αi − αi+1, (α1 + α2 + α3 + α4 + α5 − α6 − α7 − α8)/2

Exercise 236 what happens if there are 4, 6, 7, or 8 minus signs in this
last simple root? Why do theese not give Dynkin diagrams for the E8 root
system?
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• F4: α1 − α2, α2 − α3, α3, −(α1 + α2 + α3 + α4)/2.

• G2:

An, Bn, Cn, Dn, G2

These Dynkin diagrams explain the numerous local isomorphisms between
small simple Lie groups.

• The Dynkin diagrams of A1, B1, and C1 are all points, corresponding to
the fact that SL2, O2,1, and Sp2 are locally isomorphic.

• The Dynkin diagrams of B2 and C2 are isomorphic, corresponding to the
local isomorphism of SP4 and O3,2.

• The Dynkin diagrams of Bn and Cn are almost the same, explaining why
the Lie groups of Sp2n and O2n+1 have the same dimension and the same
Weyl group.

• The Dynkin diagram of D2 is two points, corresponding to the fact that
O2,2 locally splits as SL2 × SL2.

• The Dynkin diagram of D3 is isomorhi9c to A3, corresponding to the local
isomorphism of SL4 and O3,3.

• The Dynkin diagram of D4 has an extra automor0phism of order 3, cor-
responding to triality of Spin8.

• The Dynkin diagrams of An and Dn have automorphisms of order 2, cor-
responding to outer automorphisms of SLn+1 and O2n given by matrices
of determinant −1. (Similarly E6 has an outer automorphism.)

Coxeter diagrams also make sense for reflection groups not associated to Lie
groups, and for infinite reflection groups in Euclidean or hyperbolic space,

Example 237 The Coxeter diagram of the rotations of an icosahedron is

Example 238 The group GL2(Z) is a reflection group acting on the upper half
plane (considered as a quotient of the non-real complex numbers by complex
conjugation) and is therefore a hyperbolic reflection group. A Weyl chamber
consists of the complex numbers with 0 ≤ ℜ(z) ≤ 1/2, |z| ≥ 1, so the Coxeter
diagram is (Notice that two of the sides only meet at infinity, so the angle
between them is zero.)

Example 239 Conway found the following stunning example of a Dynkin di-
agram. The 26 dimensional even Lorentzian lattice II1,25 is acted on by a
hyperbolic reflection group generated by the reflectins of its norm −2 vectors.
The Dynkin diagram of this reflection group is the affine Leech lattice. The re-
action of many mathematicians to this statement is to regard it as nonsense, on
groups that a Dynkin digram is a graph, not a lattice in Euclidean space. How-
ever the Dynkin diagram is really the set of simple roots of a root system, and
in particular is a metric space. (The graph is just a convenient way of describing
this metric space). The Leech lattice is also a metric space, and Conway showed
these two metric spaces are isometric. The isometry can be described explicitly
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