
15.3 More about Orthogonal groups

Is OV (K) a simple group? NO, for the following reasons:

(1) There is a determinant map OV (K) → ±1, which is usually onto. (In
characteristic 2 there is a similar Dickson invariant map).

(2) There is a spinor norm map OV (K) → K×/(K×)2

(3) −1 ∈ center of OV (K).

(4) SOV (K) tends to split if dimV = 4, is abelian if dimV = 2, and trivial if
dimV = 1.

(5) There are a few cases over small finite fields where the orthogonal group
is solvable, such as O3(F3).

It turns out that they are simple apart from these reasons why they are not.
Take the kernel of the determinant, to get to SO, then take the elements of
spinor norm 1, then quotient by the center, and assume that dimV ≥ 5. Then
this is usually simple, except for a few small cases over small finite fields. If K
is a finite field, then this gives many finite simple groups.

Note that SOV (K) is NOT the subgroup of OV (K) of elements of deter-
minant 1 in general; it is the image of Γ0

V (K) ⊆ ΓV (K) → OV (K), which is
the correct definition. Let’s look at why this is right and the definition you
know is wrong. There is a homomorphism ΓV (K) → Z/2Z, which takes Γ0

V (K)
to 0 and Γ1

V (K) to 1 (called the Dickson invariant). It is easy to check that
det(v) = (−1)Dickson invariant(v). So if the characteristic of K is not 2, det = 1
is equivalent to Dickson = 0, but in characteristic 2, determinant is a useless
invariant (because it is always 1) and the right invariant is the Dickson invariant.

Special properties of O1,n(R) and O2,n(R). O1,n(R) acts on hyperbolic space
H

n, which is a component of norm −1 vectors in R
n,1. O2,n(R) acts on the

“Hermitian symmetric space” (Hermitian means it has a complex structure, and
symmetric means really nice). There are three ways to construct this space:

(1) It is the set of positive definite 2 dimensional subspaces of R2,n

(2) It is the norm 0 vectors ω of PC2,n with (ω, ω̄) = 0.

(3) It is the vectors x + iy ∈ R
1,n−1 with y ∈ C, where the cone C is the

interior of the norm 0 cone.

Exercise 217 Show that these are the same.

15.4 Spin groups in small dimensions

Here we summarize the special properties of orthogonal and spin group is di-
mensions up to 8.

1. In 1 dimension the groups are discrete.

2. Here the special orthogonal and spin groups are abelian

3. The spin group Spin3(R) is isomorphic to the special unitary group SU2.
This is because the half-spin representation has dimension 2.
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4. Spin groups have a tendency to split. The two half-spin representations
have dimension 2, so we get two homomorphisms to SL2. (Spin groups in
this dimension do not always split: for example the spin group Spin1,3(R)
of special relativity is locally isomorphic to SL2(C) which is simple modulo
its center.)

5. The spin group is isomorphic to a symplectic group Sp4. This is because
the spin representation has dimension 4 and has a skew symmetric form.

6. The spin group is isomorphic to SU4(R). This is because the half-spin
representation has dimension 4.

7. The spin group Spin7(R) acts transitively on the sphere S7 in the spin
representation (of dimension 8) and the subgroup fixing a point is the
exceptional group G2.

8. The two half-spin representations of dimension 8 have the same dimension
as the vector representation, and have symmetric invariant bilinear forms.
The spin group has a triality outer automorphism of order 3, permuting
the two half-spin representations and the vector representation.

15.5 String groups

If we start with the orthogonal group (of a finite dimensional positive definite
real vector space), it has nontrivial zeroth homotopy group, and we can kill
this by taking its connected component, the special orthogonal group. This has
non-trivial first homotopy group of order 2, and we can kill this by taking its
spin double cover. This process of killing the lowest homotopy group can be
continued further as

1 · · · → String(n) → Spin(n) → SO(n) → O(n)

The first nonvanishing homotopy group of the spin group is the third homotopy
group, which is Z. The result of killing the third homotopy group of a spin
group is called a string group. At first sight this seems impossible to construct:
one problem is that any nonabelian compact Lie group has non-trivial third
homotopy group. However it is possible to kill the third homotopy group if one
allows non-compact infinite dimensional groups.

Stolz gave the following construction of the string group of a spin group G.
Take the PU bundle P over G corresponding to a generator of π3(G), where PU
is the projective unitary group of an infinite dimensional separable Hilbert space
and is an Eilenberg-Maclane space K(Z, 2). This follows because the infinite
dimensional unitary group U is contractible, and we have a fibration

1 → Circle group → U → PU → 1

so by the long exact sequence of homotopy groups we see that πn(S
1) =

πn+1(PU). Then the string group is the group of bundle automorphisms that
act on the space G as left translations by elements of G. So we have an exact
sequence

1 → Gauge group → String group → Spin group → 1
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A similar construction works if the spin group is replaced by any simply
connected simple compact Lie group, since all such groups are 2-connected and
have infinite cyclic 3rd homotopy groups.

The construction of the string group from the spin group is similar to the
construction of the spin group from the special orthogonal group. In the latter
case one takes the Z/2Z bundle over SOn(R), and the spin group is the group
of bundle automorphisms lifting translations of the special orthogonal group.

In high dimensions the 4th, 5th, and 6th homotopy groups of the spin group
and string group also vanish. One can continue this process further; killing the
7th homotopy group of the string group produces a group called the fivebrane
group.

16 Symplectic groups

Symplectic groups are similar to orthogonal groups, but somewhat easier to
handle. Over a field there are usually many different non-singular quadratic
forms of given dimension, but only 1 alternating form in even dimensions, and
none in odd dimensions.

Symplectic groups in dimension 2n are easily confused with orthogonal groups
in dimension 2n+ 1. They have the same dimension n(2n+ 1), the same Weyl
group, and almost the same root system, and they are locally isomorphic for
n ≤ 2. In the early days of Lie group Killing thought at first that they were the
same. Over fields of characteristic 2 they do become essentially the same: to see
this, consider a quadratic form q in a vector space V of dimension 2n + 1. Its
associated symmetric bilinear form is alternating since the characteristic is 2, so
has a vector z in its kernel. So any rotation of V induces an linear transforma-
tion of the 2n-dimensional vector space V/z preserving its induced symplectic
form. So in characteristic 2 we get a homomorphism from an orthogonal group
in dimension 2n+ 1 to the symplectic group in dimension 2n.

We can work out the root system in much the same way that we found the
root system of an orthogonal group in even dimensions. We take the symplectic
form to be the one with bolcks of

(

0 1
−1 0

)

down the diagonal. The Cartan
subalgebra is then the diagonal matrices with (α1,−α1, α2,−α2, . . .) down the
diagonal, just as for orthogonal groups in even dimensions. We get elements
±αi±αj as roots just as for even orthogonal groups, but we also get extra roots
±2αi. This root system is called Cn. It is just like Bn except that the roots
±αi are doubled to ±2αi. In particular the Weyl group is the same in both
cases and is just the group (Z/2Z)nSn of order 2nn!.

Exercise 218 Show that if n is 1 or 2 then the root system Bn is isomorphic
to Cn (up to rescaling) but if n ≥ 3 they are different.

We recall that SP4(C) is locally isomorphic to SO5(C). Form the point of
view of SO5(C) we saw that this is related to the spin double cover of SO5(C),
which is Sp4(C) as it has a 4-dimensional spin representation with an alternating
form. We can see this more easily if we start from Sp4(C). This has a 4-
dimensional representation C

4 with an alternating form. Its alternating square
has dimension 6, and has a symmetric bilinear form as the alternating 4th power
is C. However the alternating square splits as the sum of 1 and 5 dimensional
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pieces, as the alternating form gives an invariant 1-dimensional piece. So Sp4(C)
has a 5-dimensional representation with a symmetric bilinear form, and therefore
has a map to the orthogonal group O5(C).

Exercise 219 Which of the three groups SO5(R), SO4,1(R), SO3,2(R) is Sp4(R)
locally isomorphic to?

There are several ways to distinguish symplectic groups in higher dimensions
from orthogonal (or rather spin) groups:

• If we know that Cartan subalgebras are all conjugate, then we can dis-
tinguish orthogonal and symplectic groups by the number of long roots
in their roots system: the orthogonal groups of dimension 2n + 1 have
2n(n − 1) long roots, while symplectic groups in dimension 2n have 2n
long roots, so if n > 2 the groups are different.

• Another way to distinguish them is to look at the dimension of the non-
trivial minuscule representation (the smallest representation on which the
center of the simply connected group acts non-trivially). For orthogonal
groups in dimension 2n + 1 this is the spin representation of dimension
2n = 2, 4, 8, 16, · · · , while for symplectic groups in dimension 2n it is the
representation of dimension 2n = 2, 4, 6, 8, · · · . Again these are different
if n > 2.

The symmetric spaces of symplectic groups are generalizations of the upper
half plane called Siegel upper half planes. The Siegel upper half plane consists
of matrices in Mn(C) whose imagianry part is positive definite (so for n = 1 this
is the usual upper half plane). We take the symplectic form given by

(

0 I
−I 0

)

where I is the n by n identity matrix. Then the action of a symplectic matrix
(A B
C D ) on an element τ of the Siegel upper half plane is given by

(A B
C D ) (τ) =

Aτ +B

Cτ +D

Exercise 220 Check that this is indeed a well defined action of the symplectic
group on the Siegel upper half plane. (One way is to use the fact that the
symplectic group is generated by matrices of the form ( I B

0 I ) and
(

0 I
−I 0

)

).

We have already seen two special cases of this before: if n = 1 then the symplec-
tic group Sp2n is just SL2(R), acting on the usual upper half plane. If n = 2
then Sp2n(R) is locally isomorphic to SO3,2(R), and we have seen that groups
SOm,2(R) have Hermitian symmetric spaces.

The theory of modular forms on the upper half plane generalizes to Siegel
modular forms on the Siegel upper half planes: for example, points of the upper
half plane modulo SL2(Z) = Sp2(Z) correspond to complex elliptic curves, while
points of the Siegel upper half plane modulo Sp2n(Z) correspond to principally
polarized complex abelian varieties. This is of course all a special case of the
Langlands program.
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