
Remark 206 In terms of Galois cohomology, there an exact sequence of alge-
braic groups (over an algebrically closed field)

1 → GL1 → ΓV → OV → 1

We do not necessarily get an exact sequence when taking values in some subfield.
If

1 → A → B → C → 1

is exact,
1 → A(K) → B(K) → C(K)

is exact, but the map on the right need not be surjective. Instead what we get
is

1 → H0(Gal(K̄/K), A) → H0(Gal(K̄/K), B) → H0(Gal(K̄/K), C) →

→ H1(Gal(K̄/K), A) → · · ·

It turns out that H1(Gal(K̄/K), GL1) = 1. However, H1(Gal(K̄/K),±1) =
K×/(K×)2.

So from
1 → GL1 → ΓV → OV → 1

we get

1 → K× → ΓV (K) → OV (K) → 1 = H1(Gal(K̄/K), GL1)

However, taking
1 → µ2 → SpinV → SOV → 1

we get

1 → ±1 → SpinV (K) → SOV (K)
N
−→ K×/(K×)2 = H1(K̄/K, µ2)

so the non-surjectivity of N is some kind of higher Galois cohomology.

Warning 207 SpinV → SOV is onto as a map of ALGEBRAIC GROUPS, but
SpinV (K) → SOV (K) need NOT be onto.

Example 208 TakeO3(R) ∼= SO3(R)×{±1} as 3 is odd (in generalO2n+1(R) ∼=
SO2n+1(R)× {±1}). So we have a sequence

1 → ±1 → Spin3(R) → SO3(R) → 1.

Notice that Spin3(R) ⊆ C0
3 (R)

∼= H, so Spin3(R) ⊆ H
×, and in fact we saw that

it is S3.

14.2 Covers of symmetric and alternating groups

The symmetric group on n letter can be embedded in the obvious way in On(R)
as permutations of coordinates. Lifting this to the pin group gives a double
cover of the symmetric group, which restricts to a perfect double cover of the
alternating group if n is at least 5.
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Example 209 The alternating group A5 is isomorphic to the group PSL2(F5)
which has a double cover SL2(F5). Thealternating group A6 is isomorphic to
the group PSL2(F9), which has a double cover SL2(F9). (This is one way to
see the extra outer automorphisms of A6 since the group PSL2(F9) has an
outer automorphism group of order 4: we can either conjugate by elements of
determinant not a square, or apply a field automorphism of F9.)

Exercise 210 Here is another way to see the extra outer automorhisms of
S6. Show that there are 6 ways to divide the 10 edges of the complete graph
on 5 points into two disjoint 5-cycles, and deduce from this that there is a
homomorphism from S5 to S6 not conjugate to the “obvious” embedding. Then
use the fact that an index n subgroup of a group gives a homomorphism to Sn

to construct an outer automorphism of S6, taking a “standard” S5 subgroup to
one of these “exceptional” ones.

In most cases this is the universal central extension of the alternating group,
but there are two exceptions for n = 6 or 7, when the alternating group also
has a perfect triple cover.

The triple cover of the alternating group A6 was found by Valentiner and is
called the Valentiner group. He found an action of A6 on the complex projective
plane, in other words a homomorphism from A6 to PGL3(C), whose inverse
image in the triple cover GL3(C) is a perfect triple cover of A6. Here is a
variation of his construction:

Exercise 211 Show that the group PGL3(F4) acts transitively on the ovals in
the projective plane over F4, where an oval is a set of 6 points such that no 3 are
on a line. Show that the subgroup fixing an oval is isomorphic to A6, acting on
the 6 points of the oval. Show that the inverse image of this group in GL3(F4)
is a perfect triple cover of A6.

15 Spin groups

15.1 Spin representations of Spin and Pin groups

Notice that PinV (K) ⊆ CV (K)×, so any module over CV (K) gives a repre-
sentation of PinV (K). We already figured out that CV (K) are direct sums of
matrix algebras over R,C, and H.

What are the representations (modules) of complex Clifford algebras? Recall
that C2n(C) ∼= M2n(C), which has a representations of dimension 2n, which is
called the spin representation of PinV (K) and C2n+1(C) ∼= M2n(C) ×M2n(C),
which has 2 representations, called the spin representations of Pin2n+1(K).

What happens if we restrict these to SpinV (C) ⊆ PinV (C)? To do that, we
have to recall that C0

2n(C)
∼= M2n−1(C) ×M2n−1(C) and C0

2n+1(C)
∼= M2n(C).

So in EVEN dimensions Pin2n(C) has 1 spin representation of dimension 2n

splitting into 2 HALF SPIN representations of dimension 2n−1 and in ODD di-
mensions, Pin2n+1(C) has 2 spin representations of dimension 2n which become
the same on restriction to SpinV (C).

Now we give a second description of spin representations. We will just do the
even dimensional case (the odd dimensional case is similar). Suppose dimV =
2n, and work over C. Choose an orthonormal basis γ1, . . . , γ2n for V , so that
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γ2
i = 1 and γiγj = −γjγi. Now look at the group G generated by γ1, . . . , γ2n,

which is finite, with order 21+2n. The representations of CV (C) correspond to
representations of G, with −1 acting as −1 (as opposed to acting as 1). So
another way to look at representations of the Clifford algebra, is to look at
representations of G.

We look at the structure of G:

(1) The center is ±1. This uses the fact that we are in even dimensions,
otherwise γ1 · · · γ2n is also central.

(2) The conjugacy classes: 2 of size 1 (1 and−1), 22n−1 of size 2 (±γi1 · · · γin),
so we have a total of 22n + 1 conjugacy classes, so we should have that
many representations. G/center is abelian, isomorphic to (Z/2Z)2n, which
gives us 22n representations of dimension 1, so there is only one more left
to find. We can figure out its dimension by recalling that the sum of the
squares of the dimensions of irreducible representations gives us the order
of G, which is 22n+1. So 22n×11+1×d2 = 22n+1, where d is the dimension
of the mystery representation. Thus, d = ±2n, so d = 2n. Thus, G, and
therefore CV (C), has an irreducible representation of dimension 2n (as
we found earlier by showing that the Clifford algebra is isomorphic to
M2n(C)).

Example 212 Consider O2,1(R). As before, O2,1(R) ∼= SO2,1(R) × (±1), and
SO2,1(R) is not connected: it has two components, separated by the spinor
norm N . We have maps

1 → ±1 → Spin2,1(R) → SO2,1(R)
N
−→ ±1.

Spin2,1(R) ⊆ C∗

2,1(R)
∼= M2(R), so Spin2,1(R) has one 2 dimensional spin rep-

resentation. So there is a map Spin2,1(R) → SL2(R); by counting dimensions
and such, we can show it is an isomorphism. So Spin2,1(R)

∼= SL2(R).

Now let’s look at some 4 dimensional orthogonal groups

Example 213 Look at SO4(R), which is compact. It has a complex spin repre-
sentation of dimension 24/2 = 4, which splits into two half spin representations
of dimension 2. We have the sequence

1 → ±1 → Spin4(R) → SO4(R) → 1 (N = 1)

Spin4(R) is also compact, so the image in any complex representation is con-
tained in some unitary group. So we get two maps Spin4(R) → SU(2)×SU(2),
and both sides have dimension 6 and centers of order 4. Thus, we find that
Spin4(R)

∼= SU(2)× SU(2) ∼= S3 × S3, which give you the two half spin repre-
sentations.

So now we have done the positive definite case.

Example 214 Look at SO3,1(R). Notice that O3,1(R) has four components
distinguished by the maps det, N → ±1. So we get

1 → ±1 → Spin3,1(R) → SO3,1(R)
N
−→ ±1 → 1
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We expect 2 half spin representations, which give us two homomorphisms
Spin3,1(R) → SL2(C). This time, each of these homomorphisms is an isomor-
phism (I can’t think of why right now). The SL2(C)s are double covers of simple
groups. Here, we do not get the splitting into a product as in the positive def-
inite case. This isomorphism is heavily used in quantum field theory because
Spin3,1(R) is a double cover of the connected component of the Lorentz group
(and SL2(C) is easy to work with). Note also that the center of Spin3,1(R)
has order 2, not 4, as for Spin4,0(R). Also note that the group PSL2(C) acts

on the compactified C ∪ {∞} by
(

a b
c d

)

(τ) = aτ+b
cτ+d . Subgroups of this group

are called Kleinian groups. On the other hand, the group SO3,1(R)
+ (identity

component) acts on H
3 (three dimensional hyperbolic space). To see this, look

at the 2-sheeted hyperboloid.
One sheet of norm −1 hyperboloid is isomorphic to H

3 under the induced
metric. In fact, we’ll define hyperbolic space that way. Topologists are very in-
terested in hyperbolic 3-manifolds, which areH3/(discrete subgroup of SO3,1(R)).
If you use the fact that SO3,1(R) ∼= PSL2(R), then you see that these discrete
subgroups are in fact Kleinian groups.

There are lots of exceptional isomorphisms in small dimension, all of which
are very interesting, and almost all of them can be explained by spin groups.

Example 215 O2,2(R) has 4 components (given by det, N); C0
2,2(R)

∼= M2(R)×
M2(R), which induces an isomorphism Spin2,2(R) → SL2(R) × SL2(R), which
gives the two half spin representations. Both sides have dimension 6 with centers
of order 4. So this time we get two non-compact groups. Let us look at the fun-
damental group of SL2(R), which is Z, so the fundamental group of Spin2,2(R)
is Z⊕ Z. As we recall, Spin4,0(R) and Spin3,1(R) were both simply connected.
This shows that SPIN GROUPS NEED NOT BE SIMPLY CONNECTED. So
we can take covers of it. What do the corresponding covers (e.g. the universal
cover) of Spin2,2(R) look like? This is hard to describe because for finite di-
mensional complex representations, we get finite dimensional representations of
the Lie algebra L, which correspond to the finite dimensional representations of
L⊗C, which correspond to the finite dimensional representations of L′ = Lie al-
gebra of Spin4,0(R), which correspond to the finite dimensional representations
of Spin4,0(R), which has no covers because it is simply connected. This means
that any finite dimensional representation of a cover of Spin2,2(R) actually fac-
tors through Spin2,2(R). So there is no way to describe these things with finite
matrices, and infinite dimensional representations are hard.

To summarize, the ALGEBRAIC GROUP Spin2,2 is simply connected (as
an algebraic group) (think of an algebraic group as a functor from rings to
groups), which means that it has no algebraic central extensions. However, the
LIE GROUP Spin2,2(R) is NOT simply connected; it has fundamental group
Z⊕ Z. This problem does not happen for COMPACT Lie groups (where every
finite cover is algebraic).

We have done O4,0, O3,1, and O2,2, from which we can obviously get O1,3

and O0,4. Note that O4,0(R) ∼= O0,4(R), SO4,0(R) ∼= SO0,4(R), Spin4,0(R)
∼=

Spin0,4(R). However, Pin4,0(R) 6∼= Pin0,4(R). These two are hard to distinguish.
We have
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Take a reflection (of order 2) in O4,0(R), and lift it to the Pin groups. What
is the order of the lift? The reflection vector v, with v2 = ±1 lifts to the element
v ∈ ΓV (R) ⊆ C∗

V (R). Notice that v2 = 1 in the case of R4,0 and v2 = −1 in the
case of R0,4, so in Pin4,0(R), the reflection lifts to something of order 2, but in
Pin0,4(R), you get an element of order 4!. So these two groups are different.

Two groups are isoclinic if they are confusingly similar. A similar phe-
nomenon is common for groups of the form 2 ·G · 2, which means it has a center
of order 2, then some group G, and the abelianization has order 2. Watch out.

Exercise 216 Spin3,3(R)
∼= SL4(R).

15.2 Triality

This is a special property of 8 dimensional orthogonal groups. Recall that O8(C)
has the root system D4, which has an extra symmetry of order three.

But O8(C) and SO8(C) do NOT have corresponding symmetries of order
three. The thing that does have the symmetry of order three is the spin group.
The group Spin8(R) DOES have “extra” order three symmetry. We can see
it as follows. Look at the half spin representations of Spin8(R). Since this
is a spin group in even dimension, there are two. C8,0(R) ∼= M28/2−1(R) ×
M28/2−1(R) ∼= M8(R)×M8(R). So Spin8(R) has two 8 dimensional real half spin
representations. But the spin group is compact, so it preserves some quadratic
form, so you get 2 homomorphisms Spin8(R) → SO8(R). So Spin8(R) has
THREE 8 dimensional representations: the half spins, and the one from the map
to SO8(R). These maps Spin8(R) → SO8(R) lift to Triality automorphisms
Spin8(R) → Spin8(R). The center of Spin8(R) is (Z/2) + (Z/2) because the
center of the Clifford group is ±1,±γ1 · · · γ8. There are 3 non-trivial elements
of the center, and quotienting by any of these gives you something isomorphic
to SO8(R). This is special to 8 dimensions.
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