
14.1 Clifford groups, Spin groups, and Pin groups

In this section, we define Clifford groups of a vector space V with a quadratic
form over a field K, denoted ΓV (K). They are central extensions of orthogonal
groups that fit into an exact sequence

1 → K× → ΓV (K) → OV (K) → 1.

Definition 195 We define α to be the automorphism of CV (K) induced by −1
on V (in other words the automorphism which acts by −1 on odd elements and
1 on even elements)). The Clifford group ΓV (K) is the group of homogeneous
invertible elements x ∈ CV (K) such that xV α(x)−1 ⊆ V (recall that V ⊆
CV (K)). This also gives an action of ΓV (K) on V .

Many authors leave out the α, which is a mistake, though not a serious one,
and use xV x−1 instead of xV α(x)−1. Our definition (introduced by Atiyah,
Bott, and Schapiro) is better for the following reasons:

1. It is the correct superalgebra sign. The superalgebra convention says that
whenever you exchange two elements of odd degree, you pick up a minus
sign, and V is odd.

2. Putting α in makes the theory much cleaner in odd dimensions. For ex-
ample, we will see that the described action gives a map ΓV (K) → OV (K)
which is onto if we use α, but not if we do not. (You get SOV (K) rather
than OV (K) in odd dimensions without the α, which is not a disaster, but
is annoying.)

Lemma 196 The elements of ΓV (K) that act trivially on V are the elements
of K× ⊆ ΓV (K) ⊆ CV (K).

Proof Suppose a0 + a1 ∈ ΓV (K) acts trivially on V , with a0 even and a1 odd.
Then (a0 + a1)v = vα(a0 + a1) = v(a0 − a1). Matching up even and odd parts,
we get a0v = va0 and a1v = −va1. Choose an orthogonal basis γ1, . . . , γn for
V . (All these results are true in characteristic 2, but you have to work harder:
you cannot go around choosing orthogonal bases because they may not exist.)
We may write

a0 = x+ γ1y

where x ∈ C0
V (K) and y ∈ C1

V (K) and neither x nor y contain a factor of γ1,
so γ1x = xγ1 and γ1y = yγ1. Applying the relation a0v = va0 with v = γ1, we
see that y = 0, so a0 contains no monomials with a factor γ1.

Repeat this procedure with v equal to the other basis elements to show that
a0 ∈ K× (since it cannot have any γ’s in it). Similarly, write a1 = y+γ1x, with
x and y not containing a factor of γ1. Then the relation a1γ1 = −γ1a1 implies
that x = 0. Repeating with the other basis vectors, we conclude that a1 = 0.

So a0 + a1 = a0 ∈ K ∩ ΓV (K) = K×. � Now we define −T to

be the identity on V , and extend it to an anti-automorphism of CV (K) (“anti”
means that (ab)T = bTaT ). Do not confuse a 7→ α(a) (automorphism), a 7→ aT

(anti-automorphism), and a 7→ α(aT ) (anti-automorphism).
Now we define the spinor norm of a ∈ CV (K) by N(a) = aaT . We also

define a twisted version: Nα(a) = aα(a)T .
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Proposition 197

1. The restriction of N to ΓV (K) is a homomorphism whose image lies in
K×. (N is a mess on the rest of CV (K).)

2. The action of ΓV (K) on V is orthogonal. That is, we have a homomor-
phism ΓV (K) → OV (K).

Proof First we show that if a ∈ ΓV (K), then Nα(a) acts trivially on V .

Nα(a) v α
(
Nα(a)

)−1
= aα(a)T v

(

α(a)α
(
α(a)T

)

︸ ︷︷ ︸

=aT

)−1

(5)

= aα(a)T v(a−1)T
︸ ︷︷ ︸

=(a−1vTα(a))T

α(a)−1 (6)

= aa−1vα(a)α(a)−1 (7)

= v (8)

So by Lemma ???, Nα(a) ∈ K×. This implies that Nα is a homomorphism
on ΓV (K) because

Nα(a)Nα(b) = aα(a)TNα(b) (9)

= aNα(b)α(a)T (Nα(b) is central) (10)

= abα(b)Tα(a)T (11)

= (ab)α(ab)T = Nα(ab). (12)

After all this work with Nα, what we’re really interested is N . On the even
elements of ΓV (K), N agrees with Nα, and on the odd elements, N = −Nα.
Since ΓV (K) consists of homogeneous elements, N is also a homomorphism from
ΓV (K) to K×. This proves the first statement of the proposition.

Finally, since N is a homomorphism on ΓV (K), the action on V preserves
the quadratic form N of V . Thus, we have a homomorphism ΓV (K) → OV (K).

�

On V , N coincides with the quadratic form N . Some authors seem not to
have noticed this, and use different letters for the norm N and the spinor norm
N on V . Sometimes they use a porrly chosen sign convention which makes them
different.

Now we analyze the homomorphism ΓV (K) → OV (K). Lemma ??? says
exactly that the kernel is K×. Next we will show that the image is all of OV (K).
Say r ∈ V and N(r) 6= 0.

rvα(r)−1 = −rv
r

N(r)
= v −

vr2 + rvr

N(r)

= v −
(v, r)

N(r)
r (13)

=

{

−r if v = r

v if (v, r) = 0
(14)
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Thus, r is in ΓV (K), and it acts on V by reflection through the hyperplane
r⊥. One might deduce that the homomorphism ΓV (K) → OV (K) is surjective
because OV (K) is generated by reflections. This is wrong; OV (K) is not always
generated by reflections!

Exercise 198 Let H = F2
2, with the quadratic form x2 + y2 + xy, and let

V = H ⊕H. Prove that OV (F2) is not generated by reflections.

Solution 199 In H, the norm of any non-zero vector is 1. It is immediate to
check that the reflection of a non-zero vector v through another non-zero vector
u is

ru(v) =

{

u if u = v

v + u if u 6= v

so reflection through a non-zero vector fixes that vector and swaps the two other
non-zero vectors. Thus, the reflection in H generate the symmetric group on
three elements S3, acting on the three non-zero vectors.

If u and v are non-zero vectors, then (u, v) ∈ H ⊕H has norm 1 + 1 = 0,
so one cannot reflect through it. Thus, every reflection in V is “in one of the
H’s,” so the group generated by reflections is S3 × S3. However, swapping the
two H’s is clearly an orthogonal transformation, so reflections do not generate
OV (F2).

Remark 200 This is the only counterexample. For any other vector space and
any other non-degenerate quadratic form on this space, OV (K) is generated by
reflections. The map ΓV (K) → OV (K) is surjective even in the example above.
Also, in every case except the example above, ΓV (K) is generated as a group
by non-zero elements of V (i.e. every element of ΓV (K) is a monomial).

Remark 201 Equation ??? is the definition of the reflection of v through r. It
is only possible to reflect through vectors of non-zero norm. Reflections in char-
acteristic 2 are strange; strange enough that people don’t call them reflections,
they call them transvections.

Definition 202

PinV (K) = {x ∈ ΓV (K)|N(x) = 1}

, and
SpinV (K) = Pin0V (K)

, the even elements of PinV (K).

On K×, the spinor norm is given by x 7→ x2, so the elements of spinor norm 1
are = ±1.









1 → ±1 → PinV (k) → ΩV → 1
↓ ↓ ↓

1 → k∗ → ΓV (k) → OV (k) → 1
↓ ↓ ↓

1 → k∗2 → k∗ → k∗/k∗2 → 1
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where the rows are exact, K× is in the center of ΓV (K) (this is obvious,
since K× is in the center of CV (K)), and N : OV (K) → K×/(K×)2 is the
unique homomorphism sending reflection through r⊥ to N(r) modulo (K×)2.

To see exactness of the top sequence, note that the kernel of φ is K× ∩
PinV (K) = ±1, and that the image of PinV (K) in OV (K) is exactly the el-
ements of norm 1. The bottom sequence is similar, except that the image of
SpinV (K) is not all of OV (K), it is only SOV (K); by Remark ??, every ele-
ment of ΓV (K) is a product of elements of V , so every element of SpinV (K) is
a product of an even number of elements of V . Thus, its image is a product of
an even number of reflections, so it is in SOV (K).

These maps are NOT always onto, but there are many important cases when
they are, such as when V has a positive definite quadratic form. The image is
the set of elements of OV (K) or SOV (K) that have spinor norm 1 inK×/(K×)2.

What is N : OV (K) → K×/(K×)2? It is the UNIQUE homomorphism such
that N(a) = N(r) if a is reflection in r⊥, and r is a vector of norm N(r).

Example 203 Take V to be a positive definite vector space over R. Then N
maps to 1 in R×/(R×)2 = ±1 (because N is positive definite). So the spinor
norm on OV (R) is trivial.

So if V is positive definite, we get double covers

1 → ±1 → PinV (R) → OV (R) → 1

1 → ±1 → SpinV (R) → SOV (R) → 1

This will account for the weird double covers we saw before.
What if V is negative definite? Every reflection now has image −1 in

R×/(R×)2, so the spinor norm N is the same as the determinant map OV (R) →
±1.

So in order to find interesting examples of the spinor norm, you have to look
at cases that are neither positive definite nor negative definite.

Let’s look at Lorentz space: R1,3.
Reflection through a vector of norm < 0 (spacelike vector, P : parity rever-

sal) has spinor norm −1, det −1 and reflection through a vector of norm > 0
(timelike vector, T : time reversal) has spinor norm +1, det −1. So O1,3(R)
has 4 components (it is not hard to check that these are all the components),
usually called 1, P , T , and PT .

Example 204 The Weyl group of F4 is generated by reflections of vectors of
norms 1 and 2. It is a subgroup of O4(Q) so the spinor norm is a homomor-
phism to Q∗/Q∗2. So by combinign this with the determinant map, we get a
homomorphism of this Weyl group onto the Klein 4-group (Z/2Z)2, mapping
reflections of norm 1 or norm 2 vectors onto two different non-trivial elements.
Similarly we see immediately that the Weyl group of Bn has a homomorphism
onto the Klein 4-group.

Example 205 The groups PSOn(R) are simple for n ≥ 5, so one might guess
by analogy that the groups PSOn(Q) are also simple, but the spinor norm shows
immediately that they are not. In fact the spinor norm maps On(Q) onto the
infinite index 2 subgroup of Q∗/Q∗2 represented by positive elements, so the
abelianization of PSOn(Q) is infinite.
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