
If {v1, . . . , vn} is a basis for V , then {vi1 · · · vik |i1 < · · · < ik, k ≤ n} spans
CV (K), so the dimension of CV (K) is less than or equal to 2dimV . As usual
with objects given by generators and relations, the harder problem is showing
that it cannot be smaller.

Now let’s try to analyze larger Clifford algebras more systematically. What
is CU⊕V in terms of CU and CV ? One might guess CU⊕V

∼= CU ⊗CV . For the
usual definition of tensor product, this is false (e.g. C1,1(R) 6= C1,0(R)⊗C0,1(R)).
However, for the superalgebra definition of tensor product, this is correct. The
superalgebra tensor product is the regular tensor product of vector spaces, with
the product given by (a ⊗ b)(c ⊗ d) = (−1)deg b·deg cac ⊗ bd for homogeneous
elements a, b, c, and d. For the moment we will forget about superalgebras, and
naively calculate with the ordinary tensor product.

Let’s specialize to the case K = R and try to compute CU⊕V (K). Assume
for the moment that dimU = m is even. Take α1, . . . , αm to be an orthogonal
basis for U and let β1, . . . , βn to be an orthogonal basis for V . Then set γi =
α1α2 · · ·αmβi. What are the relations between the αi and the γj? We have

αiγj = αiα1α2 · · ·αmβj = α1α2 · · ·αmβiαi = γjαi

since dimU is even, and αi anti-commutes with everything except itself.

γiγj = γiα1 · · ·αmβj

= α1 · · ·αmγiβj

= α1 · · ·αmα1 · · ·αm βiβj
︸︷︷︸

−βjβi

= −γjγi

γ2
i = α1 · · ·αmα1 · · ·αmβiβi

= (−1)
m(m−1)

2 α2
1 · · ·α

2
mβ2

i

= (−1)m/2α2
1 · · ·α

2
mβ2

i (m even)

So the γi’s commute with the αi and satisfy the relations of some Clifford
algebra. Thus, we’ve shown that CU⊕V (K) ∼= CU (K)⊗CW (K), where W is V
with the quadratic form multiplied by

(−1)
1
2 dimUα2

1 · · ·α
2
m = (−1)

1
2 dimU · discriminant(U),

and this is the usual tensor product of algebras over R.
Taking dimU = 2, we find that

Cm+2,n(R) ∼= M2(R)⊗ Cn,m(R)

Cm+1,n+1(R) ∼= M2(R)⊗ Cm,n(R)

Cm,n+2(R) ∼= H⊗ Cn,m(R)

where the indices switch whenever the discriminant is positive. Using these
formulas, we can reduce any Clifford algebra to tensor products of things like
R, C, H, and M2(R).

Recall the rules for taking tensor products of matrix algebras (all tensor
products are over R).
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• R⊗X ∼= X.

• C⊗H ∼= M2(C).

This follows from the isomorphism C⊗ Cm,n(R) ∼= Cm+n(C).

• C⊗ C ∼= C⊕ C.

• H⊗H ∼= M4(R).

This follows by thinking of the action on H ∼= R
4 given by (x⊗y)·z = xzy.

• Mm

(
Mn(X)

)
∼= Mmn(X).

• Mm(X)⊗Mn(Y ) ∼= Mmn(X ⊗ Y ).

Filling in the middle of the table is easy because you can move diagonally
by tensoring with M2(R). It is easy to see that C8+m,n(R) ∼= Cm,n+8(R) ∼=
Cm,n ⊗ M16(R), which gives the table a kind of mod 8 periodicity. There is
a more precise way to state this: Cm,n(R) and Cm′,n′(R) are super Morita

equivalent if and only if m− n ≡ m′ − n′ mod 8.
We found that the structure of a Clifford algebra depends heavily on m− n

mod 8. The explanation of this was not all that satisfactory as it seemed to be
a fluke coming at the end of a long calculation. There is a hidden cyclic group
of order 8 controlling this, given by the super Brauer group of the reals. The
usual Brauer group of a field consists of the finite dimensional central division
rings, with the group product given by taking tensor products (modulo taking
matrix rings). For example, the Brauer group of the reals has order 2, with
elements the reals and the quaternions, and the Brauer group of the complex
numbers has order 1. The super Brauer group is defined similarly except we use
super divison algebras: this means every nonzero HOMOGENEOUS element is
invertible. The 8 elements are represented by the reals, the quaternions, and
the algebras R[ǫ], C[ǫ], H[ǫ], where ǫ is odd, ǫ2 = ±1 and xǫ = ǫx for x in the
even part.

Exercise 192 Work out how the super division algebras over R correspond to
elements of a cyclic group of order 8 up to super Morita equivalence, under the
super tensor product. Find the 8 algebras underlying them if one forgets the
grading and compare these with Clifford algebras.

This mod 8 periodicity turns up in several other places:

1. Real Clifford algebras Cm,n(R) and Cm′,n′(R) are super Morita equivalent
if and only if m− n ≡ m′ − n′ mod 8.

2. Bott periodicity, which says that stable homotopy groups of orthogonal
groups are periodic mod 8.

3. Real K-theory is periodic with a period of 8.

4. Even unimodular lattices (such as the E8 lattice) exist in R
m,n if and only

if m− n ≡ 0 mod 8. More generally even integral lattices tend to have a
strong period 8 behavior: for example

∑

λ∈L′/L eπiλ
2

= e2πisignature/8
√

|discriminant|.
For 1-dimensional lattices this is more or less Gauss’s law of quadratic reci-
procity in terms of Gauss sums.
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5. The Super Brauer group of R is Z/8Z.

Recall that CV (R) = C0
V (R) ⊕ C1

V (R), where C1
V (R) is the odd part and

C0
V (R) is the even part. We will need to know the structure of C0

m,n(R), which
controls special orthogonal groups in the same way that Clifford algebras control
orthogonal groups. Fortunately, this is easy to compute in terms of smaller
Clifford algebras. Let dimU = 1, with γ a basis for U and let γ1, . . . , γn an
orthogonal basis for V . Then C0

U⊕V (K) is generated by γγ1, . . . , γγn. We
compute the relations

γγi · γγj = −γγj · γγi

for i 6= j, and
(γγi)

2 = (−γ2)γ2
i

So C0
U⊕V (K) is itself the Clifford algebra CW (K), where W is V with the

quadratic form multiplied by −γ2 = −disc(U). Over R, this tells us that

C0
m+1,n(R)

∼= Cn,m(R) (mind the indices)

C0
m,n+1(R)

∼= Cm,n(R).

Remark 193 For complex Clifford algebras, the situation is similar, but easier.
One finds that C2m(C) ∼= M2m(C) and C2m+1(C) ∼= M2m(C) ⊕ M2m(C), with
C0

n(C)
∼= Cn−1(C). You could figure these out by tensoring the real algebras

with C if you wanted. We see a mod 2 periodicity now. Bott periodicity for the
unitary group is mod 2.

Exercise 194 Find the non-trivial finite dimensional super division algebra
with center C.

Clifford algebras are analogous to the algebra of differential operators, which
are given by generators xi and Di with relations tht the xi commute with each
other, the Di commute with each other, and Dixj − xjDi = 1. If we put a
skew symmetric form on the vector space spanned by the xi and Di so that
〈xi, xj〉 = 0, 〈Di, Dj〉 = 0, 〈Di, xj〉 = 1 if i = j and 0 otherwise, then the
algebra of differential operators is generated by this space with the relations
ab− ba = 〈a, b〉. This is similar to Clifford algebras which (in characteristic not
2) have relations ab+ ba = (a, b) for a symmetric form. If you work with super
vector spaces, then these two constructions become special cases of the same
construction.

Clifford algebras can also be obtained as a quotient of a Heisenberg superal-
gebra, in the same way that the algebra of differential operators is a qotient of a
Heisenberg algebra. So the study of Clifford algebras and their representations
is essentially the study of the Heisenberg superalgebra. This again demonstrates
that it is really more natural to work with super vector spaces rather than vec-
tor spaces when studying Clifford algebras, but we will mostly just use vector
spaces and just point out the changes needed for using superspaces.
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