
Now we will work out the roots of orthogonal groups. We first find a Cartan
subgroup of On(R). For example, we can take the group generated by rotations
in n/2 or (n − 1)/2 orthogonal planes. The problem is that this is rather
a mess as it is not diagonal (“split”). So let’s start again, this time using
the quadratic form x1x2 + x3x4 + · · · + x2m−1 + x2m. This time a Cartan
subalgebra is easier to describe: one consists of the diagaonal matrices with
entries a1, 1/a1, a2, 1/a2, . . .. The corresponding Cartan subalgebra consists of
diagonal matrices with entries α1,−α1, α2,−α2, . . .. Now let’s find the roots,
in other words the eigenvalues of the adjoint representation. The Lie algebra
consists of matricesA with AJ = −JAt, or in other wordsAJ is skew symmetric,
where J is the matrix of the quadratic form, which in this case has blocks of
( 0 1
1 0 ) down the diagonal. For m = 2 the elements of the Lie algebra are
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





α1 0 a b
0 −α1 c d
−d −b α2 0
−c −a 0 −α2









so the roots corresponding to the entries a, b, c, d are α1 − α2, α1 + α2,
−α1−α2,−α1+α2, so are just ±α1±α2. (Notice that in this case the roots split
into two orthogonal pairs, correspoinding to the fact that so4(C) is a product
of two copies of sl2(C).) Similarly for arbitrary m the roots are ±αi ±αj . This
roots system is called Dm.

Now we find the Weyl group. This consists of reflections in the roots. Such
a reflection exchanges two coodinates, and possible changes the sign of both
coodinates. So the Weyl group consist of linear transformations that permute
the coordinates and then flip the signs of an even number of them, so has order
2m−1.m!

We will now use the root systems of orthogonal groups to explain most of
the local isomorphisms and splittings we observed in low dimensions.

We first the root system to explain why orthogonal groups in 4 dimensions
tend to split. Obviously the root system of a product of 2 Lie algebras is the
orthogonal direct sum of their root systems. The root system of O4(C) happens
to be a union of 2 orthogonal pairs ±(α1+α2) and ±(α1−α2), each of which is
essentially the roots system of SL2(C), so we expect its Lie algebra to split. We
should also explain why some orthogonal Lie algebras in 4 dimensions such as
o3,1(R) do not split. For this, we look at the action of the Galois group of C/R,
in other words complex conjugation, on the roots. For a complex Lie algebra the
roots lie in its dual. For a real lie algebra the roots need not lie in its dual: in
general they are in the complexification of its dual, and in particular are acted on
by complex conjugation. (For algebraic groups over more general fields such as
the rationals we also get actions of the Galois group on the roots.) For the split
case o2,2 this action is trivial, for the compact group o4,0 the action takes each
root to its negative, while for o3,1 the Galois group flips the two orthogonal pairs
of roots. If the Lie algebra splits as a product then the roots system is a union
of orthogonal subsystems invariant under complex conjugation, so the reason
o3,1(R) does not split is that the decomposition of the root system into two
orthogonal pairs cannot be done in a way invariant under complex conjugation.

Exercise 179 For orthogonal groups of odd dimensional spaces, use the quadratic
form x2

0 + x1x2 + x3x4 + · · ·+ x2m−1 + x2m. Show that the roots are ±αi ± αj
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and ±αi. This root system is called Bm. Show that the Weyl group generated
by the reflections of roots has order 2m.m!, and is generated by permutatons
and sign changes of the coordinates.

This explains why SL2(C) and SO3(C) are locally isomorphic: they have
essentially the same root system consisting of two roots of sum 0.

Exercise 180 Check directly that the root systems A3 of SL4(C) and D3 of
O6(C) are isomorphic (in other words find an isometry between the vector spaces
they generate mapping the first roots system onto the second).

We will later see that SL5(C) and Sp4(C) also have the same root system,
explaining why they are locally isomorphic.

Now we find the automorphism groups of these root systems Bn and Dn.
For Bm this is easy: the roots fall intom orthogonal pairs, so we can permute

the m pairs and swap the elements of each pair. this gives an automorphism
group 2m.m!, which is the same as the Weyl group.

For Dm the Weyl group is not the full automorphism group, becauase the
Weyl group 2m−1.m! can only change the sign of an even number of coordinates,
but we can also swap the signs of an odd number of coordinates to get a group
2m.m!. In particular the root system has an automorphism of order 2 not in the
Weyl group. This corresponds to an outer automorphism of the group SO2m(C),
given by any determinant −1 automorphism of O2m(C).

Exercise 181 Why does this only apply for orthogonal groups in even dimen-
sions; in other words why do the determinant −1 elements of O2m+1(C) not
give outer automorphisms of SO2m+1(C)?

Are there any more automorphisms? The lattice Dm (meaning the lattice gen-
erated by the roots) is a lattice of determinat 4 contained in the lattice Bm of
determinant 1. If we can show that Bm is unique in some way then this will show
that the automorphism group of Dm acts on Bm, so is the automorphism group
of Bm. So let’s look at the possible integral lattices containing D4. Any such
lattices must be contained in the dual of D4, which consists of 4 cosets of D4:
all vecots have integral coordinates, or they all have half-integral coordinates.
The Bm lattice is formed by taking Dm and adding the coset with integral cood-
inates whose sum is odd. So we look at the other two cosets, whose minimal
norm vectors are (±1/2,±1/2, ..., ) with sum either even or odd. The minimal
norm is m/4, while the minimal norm of the coset used for Bm is 1. So there are
no extra automorphisms unless possibly m/4 = 1, in other words m = 4. In this
case there are indeed extra automorphisms: we need to find an automorphisms
acting nontrivially on these cosets, and we can find such automorphisms given
by reflections in the vectors (±1/2,±1/2,±1/2,±1/2) which ave norm 1 and
inner product with each element of D4 a half integer, so reflection is indeed an
automorphism of D4.
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