
What does a general Lie group look like? In general, a Lie group G can be
broken up into a number of pieces as follows.

As we mentioned earlier,the connected component of the identity, Gconn ⊆ G,
is a normal subgroup, and G/Gconn is a discrete group.

1 −→ Gconn −→ G −→ Gdiscrete −→ 1

so this breaks up a Lie group into a connected subgroup and a discrete quotient.
The maximal connected normal solvable subgroup of Gconn is called the

solvable redical Gsol. Recall that a group is solvable if there is a chain of
subgroups Gsol ⊇ · · · ⊇ 1, where consecutive Lie’s theorem tells us that some
cover of Gsol is isomorphic to a subgroup of the group of upper triangular
matrices.

Since Gsol is solvable, Gnil := [Gsol, Gsol] is nilpotent, i.e. there is a chain
of subgroups Gnil ⊇ G1 ⊇ · · · ⊇ Gk = 1 such that Gi/Gi+1 is in the center of
Gnil/Gi+1. In fact, Gnil must be isomorphic to a subgroup of the group of upper
triangular matrices with ones on the diagonal. Such a group is called unipotent.

Every normal solvable subgroup of Gconn/Gsol is discrete, and therefore in
the center (which is itself discrete). We call the pre-image of the center G∗.
Then G/G∗ is a product of simple groups (groups with no normal subgroups).

So a general Lie group has a chain of normal subgroups that are triv-
ial,nilptent, solvable, connected, or the whole group, such that the quoteints
are nilpotent, abelian, almost a product of simple groups, and discrete.

Example 11 Let G be the group of all shape-preserving transformations of
R

4 (i.e. translations, reflections, rotations, and scaling). It is sometimes called
R

4 ·GO4(R). The R
4 stands for translations, the G means that you can multiply

by scalars, and the O means that you can reflect and rotate. The R4 is a normal
subgroup. In this case, we have

Gconn/Gsol

= SO4(R)



















R
4 ·GO4(R) = G

R
4 ·GO+

4 (R) = Gconn

R
4 · R× = G∗

R
4 · R+ = Gsol

R
4 = Gnil

G/Gconn = Z/2Z

Gconn/G∗ = PSO4(R)
(

≃ SO3(R)× SO3(R)
)

G∗/Gsol = Z/2Z

Gsol/Gnil = R
+

where GO+
4 (R) is the connected component of the identity (those transforma-

tions that preserve orientation), R× is scaling by something other than zero, and
R

+ is scaling by something positive. Note that SO3(R) = PSO3(R) is simple.
SO4(R) is “almost” the product SO3(R) × SO3(R). To see this, consider

the associative (but not commutative) algebra of quaternions, H. Since qq̄ =
a2 + b2 + c2 + d2 > 0 whenever q 6= 0, any non-zero quaternion has an inverse
(namely, q̄/qq̄). Thus, H is a division algebra. Think of H as R4 and let S3 be
the unit sphere, consisting of the quaternions such that ‖q‖ = qq̄ = 1. It is easy
to check that ‖pq‖ = ‖p‖ ·‖q‖, from which we get that left (right) multiplication
by an element of S3 is a norm-preserving transformation of R4. So we have
a map S3 × S3 → O4(R). Since S3 × S3 is connected, the image must lie
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in SO4(R). It is not hard to check that SO4(R) is the image. The kernel is
{(1, 1), (−1,−1)}. So we have S3 × S3/{(1, 1), (−1,−1)} ≃ SO4(R).

Conjugating a purely imaginary quaternion by some q ∈ S3 yields a purely
imaginary quaternion of the same norm as the original, so we have a homomor-
phism S3 → O3(R). Again, it is easy to check that the image is SO3(R) and
that the kernel is ±1, so S3/{±1} ≃ SO3(R).

So the universal cover of SO4(R) (a double cover) is the Cartesian square
of the universal cover of SO3(R) (also a double cover). Orthogonal groups in
dimension 4 have a strong tendency to split up like this. Orthogonal groups
tend to have these double covers.

Exercise 12 Let G be the (parabolic) subgroup of GL4(R) of matrices whose
lower left 2 by 2 block of elements are all zero. Decompose G in an analogous
way to the example above.

So to classify all connected Lie groups we need to find the simple ones, the
unipotent ones, and find how the simple ones can act on the unipotent ones.
One might guess that the easiest part of this will be to find the unipotent ones,
as these are just built from abelian ones by taking central extensions. However
this turns out to be the hardest part, and there seems to be no good solution.
The simple ones can be classified with some effort: we will more or less do this
in the course. Over the complex numbers the complete list is given by An etc.
(Draw diagrams). These Dynkin diagrams are pictures of the Lie groups with
the following meaning. Each dot is a copy of SL2. Two dots are disconnected if
the corresponding SL2s commute, and are joined by a single line if they “overlap
by one matrix element”. Double and triple lines describe more complicated ways
they can interact. For each complex simple Lie group there are a finite number
of simple real Lie groups whose complexification is the complex Lie group, and
we will later use this to find the simple Lie groups.

For example, sl2(R) 6≃ su2(R), but sl2(R) ⊗ C ≃ su2(R) ⊗ C ≃ sl2(C).
By the way, sl2(C) is simple as a real Lie algebra, but its complexification is
sl2(C)⊕ sl2(C), which is not simple.

Dynkin diagrams also classify lots of other things: 3-dimensional rotation
groups, finite crystallographic reflection groups, du Val singularities, Macdon-
ald polynomials, singular fibers of elliptic surfaces or elliptic curves over the
integers,...

Exercise 13 Find out what all the things mentioned above are, and find some
more examples of mathematical objects classified by these Dynkin diagrams.
(Hint:wikipedia.)

We also need to know the actions of simple Lie groups on unipotent ones. We
can at least describe the actions on abelian ones: this is called representation
theory.

1.1 Infinite dimensional Lie groups

Examples of infinite dimensional Lie groups are diffeomorphisms of manifolds,
or gauge groups, or infinite dimensional classical groups. There is not much
general theory of infinite dimensional Lie groups:they are just too complicated.
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1.2 Lie groups and finite groups

1. The classification of finite simple groups resembles the classification of
connected simple Lie groups.

For example, PSLn(R) is a simple Lie group, and PSLn(Fq) is a finite
simple group except when n = q = 2 or n = 2, q = 3. Simple finite groups
form about 18 series similar to Lie groups, and 26 or 27 exceptions, called
sporadic groups, which don’t seem to have any analogues for Lie groups.

Exercise 14 Show that the groups projective special linear groups PSL2(F4)
and PSL2(F5) are isomorphic (or if this is too hard, show they have the
same order).

2. Finite groups and Lie groups are both built up from simple and abelian
groups. However, the way that finite groups are built is much more com-
plicated than the way Lie groups are built. Finite groups can contain
simple subgroups in very complicated ways; not just as direct factors.

For example, there are wreath products. Let G and H be finite simple
groups with an action of H on a set of n points. Then H acts on Gn

by permuting the factors. We can form the semi-direct product Gn
⋉H,

sometimes denoted G≀H. There is no analogue for (finite dimensional) Lie
groups. There is an analogue for infinite dimensional Lie groups, which is
one reason why the theory becomes hard in infinite dimensions.

3. The commutator subgroup of a connected solvable Lie group is nilpotent,
but the commutator subgroup of a solvable finite group need not be a
nilpotent group.

Exercise 15 Show that the symmetric group S4 is solvable but its derived
subgroup is not nilpotent. Show that it cannot be represented as a group
of upper triangular matrices over any field.

4 Non-trivial nilpotent finite groups are never subgroups of real upper tri-
angular matrices (with ones on the diagonal).

1.3 Lie groups and algebraic groups

By algebraic group, we mean an algebraic variety which is also a group, such
as GLn(R). Any real algebraic group is a Lie group. Most of the connected Lie
groups we have seen so far are real algebraic groups. Since they are so similar,
we’ll list some differences.

1. Unipotent and semisimple abelian algebraic groups are totally different,
but for Lie groups they are nearly the same. For example R ≃ {( 1 ∗

0 1 )}
is unipotent and R

× ≃
{(

a 0

0 a−1

)}

is semisimple. As Lie groups, they
are closely related (nearly the same), but the Lie group homomorphism
exp : R → R

× is not algebraic (polynomial), so they look quite different
as algebraic groups.
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2. Abelian varieties are different from affine algebraic groups. For example,
consider the (projective) elliptic curve y2 = x3 + x with its usual group
operation and the group of matrices of the form

(

a b
−b a

)

with a2 + b2 = 1.
Both are isomorphic to S1 as Lie groups, but they are completely different
as algebraic groups; one is projective and the other is affine.
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