
13 Orthogonal groups

Orthogonal groups are the groups preserving a non-degenerate quadratic form
on a vector space. Over the complex numbers there is essentially only one such
form on a finite dimensional vector space, so we get the complex orthogonal
groups On(C) of complex dimension n(n− 1)/2, whose Lie algebra is the skew
symmetric matrices. Over the real numbers there are several different forms. By
Sylvester’s law of inertia the real nondegenerate quadratic forms are determined
by their dimension and signature, so we get groups Om,n(R) preserving the
form x2

1 + · · ·x2
m

− x2
m+1 − · · · − x + m+ n2. If the form is postive definite

the corresponding group is compact. We have the usual variations: special
orthogonal groups SO of elements of determinant 1, and projective orthogonal
groups where we quotient out by the center±1. There are also orthogonal groups
over other fields and rings corresponding to quadratic forms, whose classification
over the rationals or number fields or the integers is a central part of number
theory. For example, the Leech lattice Λ is a 24-dimensional quadratic form
over the integers, and the corresponding orthogonal group OΛ(Z) is a double
cover of the largest Conway sporadic simple group.

We first look at a few small cases.
Dimension 0 and 1 there is not much to say: theo orthogonal groups have

orders 1 and 2. They are counterexamples to a surprisingly large number of
published theorems whose authors forgot to exclude these cases.

Dimension 2: The special orthogonal group SO2(R) is the circle group S1

and is isomorphic to the complex numbers of absolute value 1. To make things
more interesting we will look at it over the rationals, in other words looks at the
group SO2(Q). The elements of this group can be identified with Pythagorean
triangles: integer solutions of x2 + y2 = z2 with no common factor and z > 0
(corresponding to the point x/z, y/z) ∈ SO2(Q)).

Exercise 169 Show that the points can be parametrized by t ∈ Q sup∞ by
drawing the line through (−1, 0) and (x/z, y/z) and taking the intersection
(1, t) of this with the line (1, ∗). What is the rational number t corresponding
to 32 + 42 = 52? Find the Pythagorean triangle corresponding to the square of
the group element corresponding to the (3, 4, 5) triangle.

Exercise 170 Show that under the action of SO2(C), the space C
2 splits as the

sum of two 1-dimensional representations. What well-known group is SO2(C)
isomorphic to, and what are the two corresponding 1-dimensional representa-
tions of this group?

Dimension 3: We have a compact group O3(R), a complex group O3(C),
and another group O2,1(R) to investigate. We say earlier that O2,1(R) is locally
isomorphic to SL2(R).

Exercise 171 Show that O3(C) is locally isomorphic to SL2(C). (Hint: over
C the forms x2 + y2 + z2 and x2 + y2 − z2 are equivalent!)

The quaternions are a useful way to describe the compact group SO3(R) in
detail. Recall that the quaternions are a 4-dimensional division algebra over
the reals with a basis 1, i, j, k and products i2 = j2 = k2 = −1, ij = −ji = k,
jk = −kj = i, ki = −ik = j. The conjugation is defined by a+ bi+ cj + dk =
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a−bi−cj−dk and the norm is defined byN(q) = qq = a2+b2+c2+d2. Since this
is real, any non-zero quaternion has an inverse q/N(q). The unit quaternions
q = a + bi + cj + dk with N(q) = qq = a2 + b2 + c2 + d2 = 1 form a group
homeomorphic to the sphere S3. This is almost the same as the orthogonal
group SO3(R. To see this consider the adjoint action γ(v) = γvγ−1 of the
unit quaternions S3 on R3, identified with the space of imaginary quaternions.
This preserves norms and is therefore a rotation, so we get a homomorphism
S3 7→ SO3(R).

Exercise 172 Show that this homomorphism is onto, and has kernel of order
2 given by {1,−1}.

This gives a fast way to multiply two rotations, since multiplying two quater-
nions takes fewer operations that multiplying two 3 by 3 matrices.

Exercise 173 The quaternions contain a copy of the complex numbers a + bi
so can be thought of as a 2-dimensional right vector space over the complex
numbers. Show that under this identification, the group S3 of unit quaternions,
acting by left multiplication on H = C2, is identified with the group SU2.

Dimension 4. Here there are 3 real orthogonal groups O4(R), O3,1(R), and
O2,2(R) to look at. We saw earlier that O3,1(R) is locally isomorphic to SL2(C),
so we will mostly ignore it.

We can also use quaternions to do the next case SO4(R). To do this, be
observe that both left multiplication x 7→ γx and right multiplication x 7→
xγ by unit quaternions γ preserve the norm and therefore give rotations of 4-
dimensional space (identified with the quaternions). So we get a homomorphism
S3 × S3 7→ SO4(R), taking (γ, δ) ∈ S3 × S3 to the rotation x 7→ γxδ−1.

Exercise 174 Check that this is a homomorphism onto SO4(R) with kernel
(−1,−1).

The group SO2,2(R), or rather a double cover of it, has a similar splitting.
To see this we think of R4 as the 2 by 2 matrices, with the determinant as a
quadratic form of signature (2,2). Then left and right multiplication by elements
of SL2(R) preserve this form, so we get a homomorphism from SL2(R)×SL2(R)
to O2,2(R) with kernel of order 2. We get a similar splitting of the double cover
of O4(C).

Notice that the Lie algebras of O4(R), O3,1(R), and O2,2(R) are all real forms
of O4(C), but the first and third split as a product of 2 smaller Lie algebras,
while the middle one is a simple Lie algebra.

Dimension 5: Orthogonal groups in dimension 5 are sometimes locally iso-
morphic to symplectic group; we will discuss this later when we cover symplectic
groups.

Dimension 6. The orthogonal group O6(C) is locally isomorphic to SL4(C).
To see this take the alternating square Λ2(C4). This is acted on by SL4(C) with
kernel ±1, and there is a symmetric bilinear form from Λ2(C4) × Λ2(C4) 7→
Λ4(C4). But Λ4(C4) can be identified with C in a way that is preserved by
SL4(C), as this identification is essentially a determinant. So we get a homo-
morphism from SL4(C) to SO6(C) with kernel ±1.
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Exercise 175 Similarly the group SL4(R) is locally isomorphic to one of the
groups SO6(R), SO5,1, SO4,2(R), or SO3,3(R); which?

Now we will look at some of the symmetric spaces associated to orthogonal
groups, which can be thought of as the most natural things they act on. A max-
imal compact subgroup of Om,n(R) is Om(R) × On(R). The symmetric space
is easy to identify explicitly: the orthogonal group Om,n(R) acts on Rm+n, and
the maximal compact subgroup Om(R)×On(R) is just the subgroup fixing the
positive definite subspace Rm. So the symmetric space is just the Grassmannian
of maximal positive definite subspaces of Rm+n (an open subset of the Grasss-
mannian of all m-dimensional subspaces). For small values of m or n this can
be described in other ways as follows.

Example 176 The orthogonal group On+1(R) is the group of isometries of
the n sphere, so the projective orthogonal group POn+1(R) is the group of
isometries of elliptic geometry (real projective space) which can be obtained
from a sphere by identifying antipodal points. (Recall that P means quotient
out by the center, of order 2 in this case.) We will show that the group of
isometries of hyperbolic geometry can be described in a similar way.

We construct a model of hyperbolic geometry. Take the indefinite space
R1,n(R) with quadratic form x2

1 − x2
2 − x2

3 − · · · . Then the norm 1 vectors
form a 2-sheeted hyperboloid, and on this hyperboloid the pseudo-Riemannian
metric of R1,n(R) restricts to a Riemannian metric. Then one of these sheets
forms a model of hyperbolic space. So just as in the elliptic case, the group
of isometries is PO1,n(R). In the indefinite case the orthogonal group O1,n(R)
splits as a product of the center {1,−1} of order 2 and its index 2 subgroup
group O1,n(R)

+ of elements that fix the two components of the hyperboloid
(these are the elements of spinor norm equal to the determinant).

Exercise 177 In R1,n there are two sorts of reflection, because we can reflect
in the hyperplanes orthogonal to either positive or negative norm vectors. What
two sorts of isometries of hyperbolic space do these correspond to?

The symmetric spaces of Om,n(R) for m (or n) equal to 2 also have a special
property. In this case the maximal compact subgroup has a factor of O2(R)
which is almost the circle group S1, which strongly suggests that this symmetric
space should be Hermitian. To see this we identify the symmetric space with an
open subset of a complex quadric as follows. The quatric is the set of points ω of
the projective space PC2,n such that (ω, ω) = 0. The open subset is the points
with (ω, ω) > 0. If ω is represented by x + iy then x2 = y2 > 0 and (x, y) = 0
so x and y form an orthogonal base for a positive definite subspace of R2,n.
Changing ω by a complex scalar does not change this 2-dimensional subspace
(though it changes the basis of course). So this identifies the symmetric space
with an open subset of a complex variety in a natural way. These symmetric
spaces turn up quite often in moduli space problems: as a typical example, the
moduli space of marked Enriques surfaces is the symmetric space of O2,10(R)
with a codimension 1 complex submanifold removed.

Exercise 178 Show that this symmetric space can also be identifies with the
points of C1,n−1 whose imaginary part lies in the interior of one of the two
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cones of R1,n−1. This gives a representation of the symmetric space as a “tube
domain”, generalizing the upper half plane.
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