
For a semisimple Lie group one can ask what are its “natural” actions on
mathematical objects; of course this is a rather vague question. We have seen
one answer above: the general linear group acts nauturally on projective spaces,
Grasmannians, and flag manifolds. These are quotients by parabolic subgroups.
Another class of objects acted on by semisimple Lie groups are the symmet-
ric spaces. Symmetric spaces are generalizations of spherical and hyperbolic
geometry. Their definition looks a little strange at first: they are connected
Riemannian manifolds such that at each point there is an automorphism acting
as −1 on the tangent space. Obvious examples are Euclidean space (curvature
0), spheres (positive curvature) and hyperbolic space (negative curvature), and
in general symmetric spaces should be thought of as generalizations of these
three fundamental geometries. (They account for many of the “natural” geome-
tries but not for all of them: for example, 5 or the 8 Thurston geometries in
3 dimensions are symmetric spaces, but 3 of them are not.) We may as well
assume that they are simply connected (by taking a universal cover) and irre-
ducible (not the products of things of smaller dimension). These were classified
by Cartan. The first major division is intor those of positive, zero, or negative
curvature. The only example of zero curvature is the real line. Cartan showed
that irreducible simply connected symmetric spaces of negative curvature cor-
respond to the non-compact simple Lie groups: the symmetric space is just the
Lie group modulo its maximal compact subgroup. He also showed that the ones
of positive curvature correspond to the ones of negative curvature by a duality
extending the duality between spherical and hyperbolic geometry. We will look
at some examples of symmetric spaces related to general linear groups.

We first examine the symmetric space of the general linear group GLn(R)
(which is neither semisimple nor simply connected, but never mind). We saw
above that the maximal compact subgroup is the orthogonal group. The sym-
metric space GLn(R)/On(R) is the space of all positive definite symmetric bilin-
ear forms on Rn. This is an open convex cone in Rn(n+1)/2, and is an example
of a homogeneous cone. (In dimensions 3 and above it is quite rare for open
convex cones to be homogeneous). A minor variation is to replace the general
linear group by the special linear group, when the symmetric space becomes
positive definite symmetric bilinear forms of discriminant 1.

Exercise 158 Find a similar description of the symmetric space of GLn(C).

Let us look at the case n = 2 in more detail. In this case the space SL2(R)/SO2(R)
can be identified with the upper half plane, as SL2(R) acts on this by z 7→

(az + b)/(cz + d) and SO2(R) is the subgroup fixing i. This symmetric space
has a complex structure preserved by the group, so is called a Hermitian sym-
metric space. This means that we can construct lots of Riemann surfaces by
taking the quotient of the upper half plane by a Fuchsian group (a discrete
subgroup of SL2(R), such as SL2Z)). In fact any Rieman surface of negative
Euler characteristic can be constructed like this: this gives all of them except
for the Riemann sphere with at most 2 points removed or an elliptic curve. The
symmetric spaces of other real general linear or special linear groups do not
have complex structures; one reason SL2(R) does is that SL2(R) happens to
be Sp2(R), and we will see later that Sp2n(R) has a Hermitian symmetic space.
We can spot plausible candidates for Hermitian symmetric spaces as follows: for
a Hermitean symmetric space, we can fix some point x and act on its tangent
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space by multiplying by complex numbers of absolute value 1. This gives a sub-
group in the center of the subgroup K fixing x isomorphic to the circle group.
This shows that we should look out for Hermitian symmetric space structures
whenever the maximal compact subgroup has an S1 factor.

The upper half plane is also a model of the hyperbolic plane. This does not
generalize to SLn(R) either: the group PSL2(R) happens to be isomorphic to
PSO+(1,2(R), and it is the groups O1,n rather than SLn that correspond to
hyperbolic spaces, as we will see when we discuss orthogonal group later on.

Exercise 159 Polar coordinates for symmetric spaces: Show that GLn(R) =
KAK where K = On(R) is the maximal compact subgroup and A is the group
of positive diagonal matrices. Show that the element of A in this decomposition
need not be uniquely determined, but is uniquely determined up to conjugation
by an element of the Weyl group. Find a geometric interpretation of the entries
of A in terms of the image of the unit ball under an element of GLn(R).

The Cartan decomposition of the Lie algebra g = sln(R) is g = k+ p, where
k is the subalgebra of orthogonal matrices, and p is the orthogonal complement
of k under the Killing form, so is the subspace of symmetric matrices of trace
0. Warning:p is not a subalgebra! There are the +1 and −1 eigenspaces of the
Cartan involution θ.

Exercise 160 Show that the exponential map is an isomorphism from p to
its image P in G, and can be identified with the symmetric space of G. In
particular this shows that the symmetric space is contractible. For the special
linear group this is easy to see directly by identifying the symmetric space with
positive definite symmetric forms of determinant1, but the argument using the
exponential map works for all semisimple Lie groups.

Now we look at the symmetric space of SL2(C). This turns out slightly
surprisingly to be 3-dimensional hyperbolic space. This means that one can
construct lots of hyperbolic 3-manifolds and orbifolds by taking a Kleinian group
(a discrete subgroup of SL2(C), such as SL2(Z[i]), and taking the quotient
of hyperbolic space by this subgroup. To see that its symmetric space is 3-
dimensional hyperbolic space we first construct a homomorphism from SL2(C)
to O1,3(R) as follows. The group SL2(C) acts on the space of hermitian matrices
x by g(x) = gxgt and preserves the determinant of x. However the determinant
on 2 by 2 hermitian matrices is a quadratic form of signature (1, 3) so we get
a homomorphism from SL2(C) to O1,3(R). Now the group O1,3(R) acts on
the norm 1 vectors of R1,3, which form two components, each isometric to
3-dimensional hyperbolic space. The subgroup of O1,3(R) fixing a point of
hyperbolic space is a maximal compact subgroup O1(R)×O3(R).

The group O1,3(R) is the Lorentz group of special relativity, and the local
isomorphism with SL2(C) is used a lot: for example the 2-dimensional rep-
resentation of SL2(C) and its complex conjugate are essentially the half-spin
representations of a double cover of SO1,3(R). In special relativity the symmet-
ric space appears as the possible values of the momentum of a massive particle.

(Notice by the way that whether a symmetric space has a complex structure
has little to do with whether its group has one: the symmetric space of SL2(R)
has a complex strcuture, but that of SL2(C) does not.)
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There are several other symmetric spaces related to the general linear group.
Recall that the group GLn(R) is not the only rela form of GLn(C); the group
Un(R) of elements preserving the Hermitian form z1z1+ · · · . is also a real form.
There is no particular reason why we sould restrict to positive definite Hermitian
forms: we can also form the group Um,n(R) fixing a Hermitian form on C

m+n of
signature (m,n). A maximal compact subgroup of this is U(m) × U(n). Even
if we restict to elements of determinant 1 this still has an S1 factor, at least at
the Lie algebra level, so we expect the corresponding symmetric spaces to have
complex structures.

Exercise 161 Show directly that the symmetric space of Um,n(R) is hermitian,
by identifying it with the open subspace of the Grassmannian Gm,n(C) consist-
ing of the m-dimensional subspaces on which the Hermitian form is positive
definite.

Exercise 162 Show that the symmetric space of U1,n(R) can be identified with
the unit ball in C

n as follows: an element of the Grassmannian represented by
the point z0, z1, . . . , zn is mapped to the point (z1/z0, . . . , zn/z0) of the open
unit ball in Cn. Show that for n = 1 this is essentially the group of Moebius
transformations acting on the unit disk of the complex plane.

In particular the open unit ball in C
n is a bounded homogeneous domain: a

bounded open subset of complex affine space such that its group of automor-
phisms acts transitively. (It is not quite trivial to see that there are any exam-
ples of these: the group of affine transformations of Cn does not act transitively
on points of a bounded homogeneous domain!) In 1-dimension the Riemann
mapping theorem implies that any simply connected bounded open subset of
the complex plane is homogeneous, but in higher dimensions homogeneous do-
mains are quite rare. The non-compact Hermitian symmetric spaces give exam-
ples, and for several decades it was an open problem to find any others. This
was finally solved by Piatetski-Shapiro in 1959, who found an example of a 4-
dimensional homogeneous bounded domain that was not a Hermitian symmetric
space.

So far we have seen lots of examples of noncompact symettric spaces, con-
structed as G/K where K is a maximal compact subgroup of G. This construc-
tion just gives the trivial 1-point space for G compact, so we need a different
way of constructing compact symmetric spaces, such as spheres. Cartan discov-
ered a duality between compact and non-compact irreducible symmetric spaces:
roughly speaking, for each non-compact symmetric space there is a correspond-
ing compact on (ignoring minor problems about abelian factors and connected-
ness). A well known special case of this is the duality between spherical and
hyperbolic geometry (or even the duality between trigonometric functions nad
hyperbolic ones). This duality works as folllows. Pick a non-compact symmet-
ric space and look at the Cartan decomposition k + p of its Lie algebra. Now
change this to the Lie algebra k+ ip ⊂ g⊗C. Cartan showed that this is the Lie
algebra of a compact group, and the quotient of this group by the subgroup K
is the dual compact symmetric space. Let us find the dual comapct symmetric
spaces of some of the symmetric spaces above.

Example 163 The symmetric space of GLn(R) is GLn(R)/On(R). To find the
compact dual, we first look at the Cartan decomposition gln(R) = k+ p, where
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k is the Lie algebra of skew symmetric matrices, and p is the space of symmetric
matrices. Then we form the Lie algebra k + ip. This is the Lie algebra of skew
Hermitian martices, so its Lie group is the unitary group. So the symmetric
space should be U(n)/On(R). This is the set of real forms on Cn that are
compatible with the Hermitian metric (in other words complex conjugation is
an isometry).

Example 164 The symmetric space of Um,n(R) is Um,n(R)/U(m) × U(n).
Changing Um,n(R) to its compact form gives U(m+n). So the compact form of
the symmetric space is U(m+n)/U(m)×U(n), in other words the Grassmannian
Gm,n(C).

Exercise 165 Show that the compact symmetric space dual to the symmetric
space of GLn(C) (the positive definite Hermitian forms) is the unitary group
Un. (Similarly all simply connected compact groups are symmetric spaces, and
are the duals of the symmetric spaces of complex Lie groups.)
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