
10 Killing form and Cartan’s criterion

At first sight one might guess that solvable groups are easier to classify than
simple ones, and 0-dimensional compact simple groups are easier to classify
than ones of higher dimension. This turns out to be completely wrong: the
0dimensional compact simple groups are far harder to classify than the ones of
positive dimension, and the solvable ones seem hopelessly complicated. What
is the key reason why the positive dimensional simple Lie groups are so much
easier to handle? One answer is Cartan’s criterion, which implies that the Killing
form on a simple complex Lie algebra (a symmetric invariant bilinear form) is
non-degenerate.

We first figure out what it means for a bilinear form (,) on a representation
V of a Lie algebra to be invariant. For a group G acting on V , invariance
obviously means that (gu, gv) = (u, v). For a Lie algebra, we formally replace g
by 1+ǫa for some a in the Lie algebra (with ǫ2 = 0), to find that invaraince means
(u, v)+ǫ([a, u], v)+(u, [a, v]) = (u, v), or in other words ([a, u], v)+(u, [a, v]) = 0.

If the Lie algebra G acts on a finite dimensional vector space V , we can
define a bilinear form on G by (a, b)V = TraceV (ab).

Exercise 108 Show that this form is invariant, which means ([a, b], c)V +(b, [a, c])V =
0.

A particularly important special case is where we take V to be the adjoint
representation of G. In this case the invariant bilinear form on G is called the
Killing form (a, b) = Trace(Ad(a)Ad(b)).

Example 109 The Killing form on any abelian Lie algebra is obviously just
zero. More generally, the Killing form on any nilpotent Lie algebra is identically
zero, as we can put the matrices representing it into strictly upper triangular
form, and the product of any two such matrices has trace 0. This does not mean
that these algebras cannot have non-zero invariant bilinear forms; for example,
any bilinear form on an abelian Lie algebra is invariant.

Exercise 110 Show that the kernel of an invariant symmetric bilinear form
on a Lie algebra is an ideal. In particular if the Lie algebra is simple then
the bilinear form is either zero or non-degenerate. Show that the orthogonal
complement of an ideal is an ideal.

Exercise 111 Find the Killing form on the 2-dimensional non-abelian Lie al-
gebra, and check that it is degenerate but not identically zero.

Exercise 112 Find the Killing form on the Lie algebra su(2), and check that
it is negative definite.

Exercise 113 Find the Killing form on the Lie algebra sl2(R), and check that
it is non-degenerate and indefinite.

Exercise 114 If L is the complex Lie algebra spanned by W,X, Y, Z with re-
lations [X,Y ] = Z, [W,X] = X, [W,Y ] = −Y, Z ∈ center, find a non-degenerate
invariant symmetric bilinear form on L. Show that the bilinear form associated
to any finite-dimensional representation of L is degenerate (use Lie’s theorem
to put L in upper triangular form).
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Theorem 115 (Jordan decomposition) Suppose that a is a linear transforma-
tion of a vector space V over a perfect field k. Then there is a unique way
to write a = as + an where as is semisimple, an is nilpotent, and as and an
commute.

Proof We can assume k is algebraically closed, as uniqueness of the decompo-
sition implies it is fixed by all elements of the absolute Galois group of k, and
therefore in k as k is perfect.

For existence, write V as a direct sum of the generalized eigenspaces Vλ of
a with eigenvalues λ. (Recall that v is a generalized eigenvector for eigenvalue
λ if (a− λ)nv = 0 for some positive integer n.) Then we just put as = λ on Vλ,
an = a− as and it is easy to check that an and as have the required properties.

Uniqueness is left as an exercise. �

Exercise 116 (Jordan decomposition can fail over non-perfect fields) Suppose
that V is the field Fp(x) and k the subfield Fp(x

p). Show that V is a vector
space over k of dimension p, and multiplication by x is a linear transformation
of V that cannot be written as the sum xs + xn of commuting semisimple and
nilpotent endomorphisms.

Exercise 117 (Multiplicative Jordan decomposition) Show that an invertible
linear transformation a acting on a finite dimensional vector space over a perfect
field can be written uniquely as a = asau where as is semisimple and au is
unipotent (all eigenvalues 1) and asau = auas.

Lemma 118 Suppose that M ⊆ gl(V ) is the normalizer of a subspace G of
gl(V ), for a complex vector space V . If a is in the kernel of the form (, )V on
M ×M , then a is nilpotent.

Proof The semisimple part as of a also lies in M because Ad(as) = Ad(a)s.
If b is in M and Ad(c) is a polynomial in Ad(b) then c is also in M .

Suppose that a has eigenvalues αi. Suppose that φ is any additive (possibly
not R-linear) function from the rational vector space spanned by the αi. The
eigenvalues of Ad(a) are αi−αj , so there is a polynomial p such that p(αi−αj) =
φ(αi) − φ(αj), as whenever two of the terms αi − αj are equal, so are the
corresponding terms φ(αi) − φ(αj) by linearity of φ. So the element c with
eigenvalues φ(αi) is in M because Ad(c) has eigenvalues φ(αi) − φ(αj) so is
p(Ad(a). But then

∑
αiφ(αi) = (a, c) = φ(0) = 0. Taking φ to be complex

conjugation shows that
∑

|αi|
2 = 0, so all the αi are zero. So as = 0 and a is

nilpotent. �

A little more effort show that the same result holds over fields of character-
istic 0, but we will not use or prove this.

Theorem 119 Cartan’s criterion for a faithful representation. Suppose that G
is a subalgebra of gl(V ) with (a, b)V = 0 for all a, b ∈ G, where V is a finite
dimensional complex vector space. Then G is solvable.

Proof Let M be the normalizer of G. Then (m, [g1, g2]) = ([m, g1], g2) = 0 for
gi ∈ G, so (M, [G,G]) = 0. By the previous lemma this implies that all elements
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of [G,G] are nilpotent. Engel’s theorem then implies that [G,G] is nilpotent, so
G is solvable.

�

Exercise 120 Suppose that G is a subalgebra of gl(V ) where V is a finite
dimensional complex vector space. Show that G is solvable if and only if
(a, b)V = 0 for all a, b ∈ [G,G], (Use Cartan’s criterion above and Lie’s the-
orem.)

Theorem 121 Cartan’s criterion for the Killing form. If G is a finite dimen-
sional Lie algebra over a field of characteristic 0 whose Killing form is 0, then
G is solvable.

Proof We apply Cartan’s criterion for the adjoint representation. There is
a slight glitch because G need not act faithfully on the adjoint representation
because its center acts trivially on G. However this is not a big deal, because we
find that G/center is solvable, which immediately implies that G is also solvable.

�

Cartan’s criterion as stated above does not give a necessary and sufficient
condition for a Lie algebra to be solvable, because the Killing form on a solvable
Lie algebra need not be zero. It is often stated as the following variation, which
does give a necessary and sufficient condition.

Exercise 122 Cartan’s criterion, necessary and sufficient form. If G is a fi-
nite dimensional Lie algebra over a field of characteristic 0, then the following
conditions are equivalent:

• G is solvable

• (a, b) = 0 if a is in [G,G]. In other words [G,G] is in the kernel of the
Killing form.

• (a, b) = 0 if a and b are both in [G,G].

(For one implication use Lie’s theorem, and for another use Cartan’s criterion
and the fact that if [G,G] is solvable then so is G.

Example 123 A nilpotent Lie algebra has a Killing form that is identically
zero. The converse is not true. Suppose that V is a finite dimensional vector
space with and automorphism A, and we take the Lie algebra G that is a
semidirect product of V with a 1-dimensional Lie algebra whose action on V is
given by A. Then G is nilpotent if and only if A is a nilpotent endomorphism.
The Killing form contains V in its kernel, so vanishes on G × G if (A,A) = 0.
But (A,A) = Trace(A2), so if we take A to be any endomorphism whose square
has trace 0 but is not nilpotent we get a non-nilpotent Lie algebra whose Killing
form vanishes.

Exercise 124 Find a non-nilpotent 2 by 2 real matrix A whose square has
trace 0.
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