
The corresponding simply connected group is the group of unipotent up-
per triangular 3 by 3 matrices: the exponential map is a bijection because
the exponential and logarithm maps are polynomials. The center of the
simply connected group is R, and there is an outer automorphism that
acts by recaling the center, so there are two possible groups with this Lie
algebra, one simple connected, and one with center S1. The simply con-
nected one can be represented as upper triangular unipotent matrices, and
is the group associated with one of the 8 Thurston geometries (the nil-
manifolds: take a quotient of the group by a discrete subgroup, such as the
subgroup of matrices with integer coefficients). The other group can be
represented as the group of transformations of L2(R) generated by trans-
lations and multiplication by eixy. These satisfy the Weyl commutation
relations. The center is multiplication by constants of absolute value 1.
This group has no faithful finite dimensional representations: in any finite
dimensional representation the center must act trivially. One way to see
this is to observe that any element of the center of a characteristic 0 Lie al-
gebra in the derived algebra must act nilpotently in any finite dimensional
representation (chop the representation up into generalized eigenspaces,
and then look at the trace on any generalized eigenspace. The trace must
be zero as the element is in the derived algebra, so the eigenvalue must
be zero.) But the only way a nilpotent element can generate a compact
group is if it acts trivially. There are several variations and generalizations
of these groups. There is a Heisenberg group of dimension 2n+ 1 for any
positive integer n associated to a symplectic form of dimension 2n. We
can also define Heisenberg groups over finite fields in a similar way.

Exercise 97 Show that over a finite field of prime order p for p odd, every
element of the Heisenberg group has order 1 or p, and the exponential map
is a bijection. What happens over the field of order 2?

The universal enveloping algebra of the Heisenberg algebra becomes the
ring of polynomials in x and d/dx if we take a quotient by identifing the
center of the Heisenberg algebra with the real numbers. This gives a rep-
resentation of the Lie algebra on the ring of polynomials, with the center
acting as scalars. The center of this Lie algebra cannot make up its mind
whether it is semisimple or nilpotent: in finite dimensional representations
it acts nilpotently, but in the infinite dimensional representations we have
described its acts semisimply.

• A is not nilpotent and not semisimple. Both eigenvalues must be the
same, and we can normalize A so they are both 1. So we can assume A is
(

1 1
0 1

)

. (Bianchi type IV)

Exercise 98 Show that there is a unique connected Lie group with this
Lie algebra, and represent it by 3 by 3 upper triangular matrices. Find
the conjugacy classes of this group that are in the 2-dimensional derived
subalgebra, and sketch a picture of them, paying careful attention to what
happens near the origin (the answer may be slightly stranger than you
expect).
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• A is semisimple, nonzero, with one eigenvector zero. The Lie algebra is the
product of the 1-dimensional abelian Lie algebra with the 2-dimensional
non-abelian Lie algebra (Bianchi type III). There are two corresponding
Lie groups.

• A is semisimple, nonzero, with real non-zero eigenvectors (Bianchi type
VI if the eigenvalues are distinct, type V if they are the same). Here
we get an uncountable infinite family of distinct Lie algebras, as we can
change the smallest eigenvalue to anything we want, but then the second
is determined. There is only one connected group for each of these Lie
algebras. If the eigenvalues have sum 0 the Lie algebra has an extra
symmetry (Bianchi type V I0) This is the Lie algebra of isometries of 2-
dimensional Minkowski space. This also appears as the group of one of the
8 Thurston geometries, giving the solv manifolds. For example one can
take a quotient of this group by a cocompact discrete subgroup. Some of
these manifolds are the mapping cyliner of an Anosov map of the 2-torus
(given by an integral matrix A with distinct real nonzero eigenvectors
whose product is 1).

Exercise 99 Find an example of an Anosov map. Show how to construct
a cocompact discrete subgroup of the Bianchi group V I0 from any Anosov
map.

Exercise 100 Show that the outer automorphism group of this connected
Lie group is dihedral of order 8. (Some elements correspond to time re-
versal, parity reversal, and changing the sign of the metric of Minkowski
space.)

When the eigenvalues are the same the group consists of translations and
dilations of the plane.

• A is semisimple, nonzero, with non-real eigenvectors. Bianchi type VII.
Again we get an infinite family of Lie algebras. The simply connected
group has trivial center except for the following special case (Bianchi type
V II0): this is the one with imaginary eigenvalues, and is the Lie algebra
of isometries of the plane. It has an extra symmetry. There is an obvious
connected group with this Lie algebra: we can take orientation-preserving
isometries of the plane. However this group is not simply connected, as it
has homotopy type the circle, so we can also take its universal cover, or
the cover of any order 1, 2, 3, . . .. We came across this group earlier as a
solvable connected Lie group whose exponential map is not surjective.

Exercise 101 Show that the real Lie algebras of type V I0 and V II0 are
not isomorphic, but become isomophic when tensored with the complex
numbers.

The remaining cases are whereG is not solvable, in which case it must be sim-
ple as all groups of smaller dimension are solvable. (Similarly the non-solvable
finite group of smallest order is necessarily simple.) We will postpone the classi-
fication of these as this will be easier when we have developed more theory, and
just state the result. There are 2 possible Lie algebras, su(2) (Bianchi type IX)
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and sl2(R) (Bianchi type VIII). The first has simply connected group SU(2)
with center of order 2, so we get two possible Lie groups (one is SO3(R)). For
the other there are two obvious groups SL2(R) and the quotient by its center
PSL2(R). However there are infinitely many other groups because SL2(R) is
not simply connected: its fundamental group is Z so we can take its universal
cover (which also has fundamental group Z) and quotient out by any subgroup
of Z. These covers have no faithful finite dimensional representations. The
double cover of SL2(Z) appears in the theory of modular forms of half-integral
weight and it called the metaplectic group. It has a representation called he
metaplectic representation that we will construct later in the course. The other
covers of PSL2(R) do not seem to appear very often.

The two Lie algebras have the same complexification. This means that the
corresponding real Lie algebras or groups are closely related: for example, the
finite dimensional complex representation theory of su(2) is essentially the same
as that of sl2(R). However in some ways they are quite different: for example,
the irreducible unitary representations of SU(2) are all finite dimensional, while
the non-trivial irreducible unitary representations of SL2(R) are all infinite di-
mensional.

Exercise 102 Show that the groups SU(1, 1), SL2(R), Sp2(R) (symplectic
group), SO1,2(R) all have the same Lie algebra. Which of the groups are iso-
morphic?

Exercise 103 The 3-dimensional group of orientation-preserving isometries of
2-dimensional hyperbolic space is one of the groups above. Which one? (One
way is to identify hyperbolic space with one of the components of norm 1 vectors
in R

1,2.)

Exercise 104 Identify the 3-dimensional group of Moebius transformations
(invertible conformal transformations of the unit disk in the complex plane)
with one of the groups on the list above.

Exercise 105 Show that R
3 with the usual cross-product of vectors is a Lie

algebra, and identify it with one of the Bianchi LIe algebras.

Exercise 106 Identify the 3-dimensional Lie algebras of matrices of the forms




0 0 0
a b c
0 0 0



 ,





c 0 c
a 0 b
0 0 c





with Lie algebras on the list above.

Dimension 4: The classification can be (and has been) pushed beyond di-
mension 3, but becomes rather tiresome. The problem is that, as suggested by
the 3-dimensional case, there are huge numbers of rather uninteresting solvable
groups and Lie algebras, which just seem to form a complicated mess. In higher
dimensions one just gives up on classifying the sovable ones. We will later prove
Levi’s theorem that any finite dimensional Lie algebra is a semidirect product
of a solvable normal Lie algebra with a product of simple Lie algebras, and will
classify the simple ones. So in some sense the finite dimensional Lie algebras
can be classified modulo the solvable ones.
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Exercise 107 Classify the complex Lie algebras of dimension at most 3. (The
Bianchi algebras of types VIII and IX become isomorphic when tensored with
the complex numbers.)

Thurston conjectured (and Perelman proved) that 3-manifolds can be cut
up in a certain way into 3-manifolds with one of 8 geometries. Five of the
eight Thurston geometries in 3 dimensions are the obvious ones: 3-dimensional
flat, spherical or hyperbolic space, or the product of 2-dimensional spherical or
hyperbolic space with a line. The remaning 3 are those modeled on the 3 groups
mentioned above: the nilpotent one, the solvable one related to Minkowski
space, and the universal cover of SL2(R). (Although most of the Thurston
geometries can be modeled as left-invariant metrics on 3-dimensional groups
this is not true for all of them: there is no 3-dimensional group structure on
S2

× R.)
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