
8 Picard–Vessiot theory

One of Lie’s motivations for studying Lie groups was to extend Galois theory to
differential equations, by studying the symmetry groups of differential equations.
We will give a very sketchy account of this, missing out most proofs (and for
that matter most definitions).

The theorem in Galois theory that a polynomial in characteristic 0 is solv-
able by radicals if and only if its Galois group is solvable has an analogue for
differential equaitons: roughly speaking, a differential equation is solvable by
radicals, integration, and exponentiation if and only if its group of symmetries
is a solvable algebraic group. This theory was initiated by Picard and Vessiot
but it is sometimes hard to tell exactly what they proved as their definitions are
somewhat vague. Kolchin gave a rigorous reformulation of their results using the
theory of algebraic groups (which he created for this purpose). In particular one
needs to distinguish between nilpotent and semisimple abelian groups (which
look the same as Lie groups, but are quite different as algebraic groups). The
correct analogue of nilpotent Lie algebras is not nilpotent groups but unipotent
groups (those such that all eigenvalues of all elements are 1): for example, the
group of diagonal matrices is nilpotent but not unipotent.

In this extension of Galois theory, one replaces fields by differential fields:
fields with a derivation D. Just as adjoining a root of a polynomial equation to
a field gives an extension of fields, adjoining a root of a differential equation to
a field gives an extension of differential fields. As in Galois theory, one can form
the differential Galois group of an extension k ⊂ Kof differential fields as the
group of automorphisms of the differential field K fixing all elements of k. Much
of the theory of differential Galois groups is quite similar to usual Galois theory:
for example, one gets a Galois correspondence between algebraic subgroups of
the differential Galois group of an extension and sub differential fields.

Example 90 Suppose we adjoin a root of the equation df/dx = p(x) to the
field k = Q(x) of rational functions over Q. This extension has a group of
automorphisms given by the additive group of Q, because we can change f to
f + c for some constant of integration c to get an automorphism.

Example 91 Suppose we adjoin a root of the equation df/dx = p(x)f (with
solution exp(

∫

p)) to the field k = Q(x) of rational functions over Q. This ex-
tension has a group of automorphisms given by the multiplicative group of Q,
because we can change f to cf for some nonzero constant c to get an automor-
phism.

The theory applies to homogeneous linear differential equations, so that the
set of solutions is a finite-dimensional vector space acted on by the differential
Galois group. Equations such as df/dx = 1/x with solutions log x are not ho-
mogeneous so the theory does not apply directly to them, but we can easily turn
them into homogeneous equations such as (d/dx)x(d/df)f = 0, at the expense
of making the space of solutions 2-dimensional rather than 1-dimensional.

Exercise 92 Find the Lie group of automorphisms of the solutions of

(d/dx)x(d/df)f = 0

and describe its action on the space of solutions.
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We will sketch the proof of one of the results of Picard-Vessiot theory, which
says roughly that a linear homogeneous differential equation can be solved by
radicals, exponentials, and integration if and only if its differential Galois group
is solvable.

In one direction this follows by calculating the differential Galois group: each
time we take radicals we get a finite cyclic group, each time we take an integral
we get a differential Galois group isomorphic to the additive group, and each
time we take an exponential we get a differential Galois group isomorphic to the
multipicative group. So by repeating such extensions we get a group built out
of additive groups, which is solvable.

Conversely, suppose the differential Galois group is solvable. The quotient
by the connected component is a finite solvable group, which corresponds to
repeatedly taking radicals just as in ordinary Galois theory, so we can assume
that the differential Galois group is connected and solvable. Now we apply
Lie’s theorem on solvable Lie algebras (or more precisely Kolchin’s version of
it for solvable algebraic groups) so see that the differential Galois group has an
eigenvector f in the space of solutions of the differential equation. Also Df
has the same eigenvalue as D commutes with the differential Galois group, so
Df/f is fixed by the differential Gaois group and so is in the base field. So f
satisfies the differential equation Df = af for some a, which can be solved by
exponentials and integration.

Example 93 A typical application of differential Galois theory is that Bessel’s
equation x2d2y/dx2+xdy/dx+(x2

−ν2)y = 0 cannot be solved using integration
and elementary functions unless ν − 1/2 is integral. Except for these special
values, the differential Galois group is SL2 which is not solvable. Finding the
differential Galois group is rather too much of a digression, but we can at least
get non-trivial upper and lower bounds for it as follows. First, we can show that
it lies in SL2 (rather than just GL2) by using the Wronskian of the equation,

given by W =
(

f g
f ′ g′

)

for two independent solutions f and g. The Wronskian

get multiplied by the determinant of a matrix of the differential Galois group,
so the elements of the differential Galois group have determinant 1 if and only
if the Wronskian is in the base field.

Exercise 94 Show that the Wronskian of d2y/dx2 + p(x)dy/dx + q(x)y = 0
satisfies the differential equation dW/dx + p(x)W = 0. Use this to find the
Wronskian of Bessel’s equation, and deduce that the differential Galois group
lies in the special linear group.

To find a lower bound for the differential Galois group, we observe that mon-
odromy gives elements of this group. (Monodromy means go around a branch
point.) Bessel’s equation has a branch point at 0, and the two solutions Jν =
xν

×(something holomorphic) and J−ν = x−ν
×· · · for ν not an integer are mut-

liplied by e±2πiν by the monodromy, so the differential Galois group contains
the diagonal matrix with these entries. When ν is an integer the monodromy
is unipotent instead of semisimple: in this case the solutions are Jν with trivial
monodromy, and Yν = (something holomorphic)+Jν×(something holomorphic)×
log that has a logarithmic singularity and is changed by a multiple of Jν by mon-
odromy. So in this case the differential Galois group has a unipotent element of
the form ( 1 1

0 1
) generated by monodromy.
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For proofs of most of the results discussed here, see Kolchin’s papers on differ-
ential Galois theory.

9 Lie groups of dimension at most 3

We will find all (real, connected) Lie groups and Lie algebras of dimension at
most 3.

Dimension 0: This is the hardest case, as it involves classifying all discrete
groups, which is hopeless. Even if we restrict to compact simple groups, the
0-dimensional case is the classification of finite simple groups, which is about
a thousand times longer than the classification of compact simple Lie groups
of positive dimension. In general any Lie group has a normal closed subgroup
consisting of the connected component of the identity, and the quotient is a
discrete group. So we just give up on the discrete part, and from now on try to
find the connected Lie groups of small dimension.

Dimension 1: The only 1-dimensional Lie algebra is the abelian one. The
corresponding simply connected group is just the reals under addition. Other
groups come by quotienting by a discrete subgroup of the center: up to equiva-
lence, the only way to do this is to take R/Z. So there are just two 1-dimensional
connected Lie groups: The reals and the circle group.

Dimension 2: First we find the Lie algebras. One possibility is that the
algebra is abelian. Otherwise the derived algebra has dimension 1 (spanned by
[a, b] for any two independent vectors), so we take one element a of a basis to
span the derived algebra. For any other vector we have [a, b] is a multiple of a,
so by multiplying b by a constant we can assume that [a, b] = a. So there is just
one non-abelian Lie algebra.

The abelian groups correspond to quotients of R2 by discrete subgroups (or
lattices) in R2. There are 3 possibilities: the lattice can have rank 0, 1, or 2,
giving 3 groups R2, R1

× S1, and S1
× S1 (the torus).

Exercise 95 Find the automorphism groups of the 3 connected 2-dimensional
abelian Lie groups.

The non-abelian simply connected group is the ax + b group that can be
represented as the orientation preserving affine transformations of the real line
of the form x 7→ ax+ b for a positive. It also appears acting on the upper half
plane by the same formula, and as 2 by 2 matrices of the form ( a b

0 1
) with a > 0.

The center is trivial, so this is the only non-abelian 2-dimensional Lie group. It
is solvable but not nilpotent.

This group has analogues over finite fields that are semidirect products of
the additive group of order q by the multiplicative group of order q − 1. More
generally, we can form the semidirect product of the additive group of order q
by any subgroup of the multiplicative group, whcih can be a cyclic group of any
order dividing q − 1. These groups account for many of the small non-abelian
finite groups.

Exercise 96 Show that any nonabelian group of order pq for p < q primes is
of this form: more precisely, there are no such groups unless p divides q − 1,
in which case there is a unique such group, given by a subgroup of the ax + b
group.
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Dimension 3: This is where things start to get hairy. We find the connected
groups by first finding the Lie algebras, and then finding the corresponding
simply connected Lie group, and then finding the discrete subgroups of its center.
The algebras were classified by Bianchi.

We first assume that G is solvable. We start by showing that G has a
normal abelian subalgebra of dimension 2. It certainly has some normal subal-
gebra of dimension 2 (codimension 1) as G is not perfect. If this is not abelian
then it must be the unique non-abelian Lie algebra of dimension 2, so G is a
semidirect product of this by a 1-dimensional algebra acting on it. However
this 2-dimensional non-abelian Lie algebra has no outer derivations, so the Lie
algebra is just a product of the 2-dimensional non-abelian Lie algebra with a
1-dimensional Lie algebra, in which case it has a normal 2-dimensional abelian
Lie algebra.

So we see that G can be given as follows: it has a normal 2-dimensional
abelian subalgebra, and is a semidirect product by a 1-dimensional algebra
acting on it by some transformation A. So G is determined by the 2 by 2 real
matrix A. Changing A by conjugation or multiplying it by a non-zero constant
does not change the isomorphism class of the Lie algebra. So to classify the
solvable Lie algebra of dimension 3, we just have to run through all possible
types of 2 by 2 matrices as follows.

• A is zero. The Lie algebra is abelian. (Bianchi type I). There are now 4
possibilities, all products of copies of the circle and the real line.

• A is nilpotent but not zero. The Lie algebra is the Heisenberg algebra
(Bianchi type II).
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