
A useful way of thinking of free groups is that they are the fundamental
groups of (connected) graphs with base points. Given such a graph we can
obtain an independent set of generators for its free fundamental group by picking
a maximal tree. The remaining edges then correspond to generators of the
fundamental group as follows: given such an edge, start at the basepoint, travel
along the tree to one end of the edge, go along the edge, then go back along the
tree to the basepoint.

Lemma 66 Any subgroup of a free group is free. More precisely, an index m
subgroup of a free group on n generators is free on m(n− 1) + 1 generators.

Proof Represent the free group as the fundamental group of a graph with n
loops. Then a subgroup of index m is the fundamental group of the correspond-
ing m-fold connected cover. Since this is also a tree, its fundamental group is
also free.

To count the number of generators, observe that the number of generators
of the fundamental group of a graph is 1−χ where χ is the Euler characteristic
(number of vertices minus number of edges). Since the Euler characteristic
gets multiplied by m when we take an m-fold cover, this gives the number of
generators of a subgroup. �

Exercise 67 Consider the action of the free group on 2 generators a, b on 3
points 1, 2, 3 such that a and b act as the transposition (12) and (13). Find a
set of four generators for the free subgroup fixing 1. (Draw the graph with three
vertices 1, 2, 3 and four edges giving the actions of a and b on the vertices, then
pick a maximal tree (with 2 edges) then find the four generators by starting at
1, running along the tree, across and edge, and back along the tree.)

Exercise 68 How many subgroups of index 3 does the free group on 2 genera-
tors have? (The subgroups correspond to transitive actions on 3 points, one of
which is marked.) How many triple covers does a figure 8 have?

Now we show that free Lie algebras and free Lie groups are closely related.
This may be a little surprising, because these correspond to connected and
discrete groups, which in some sense are opposite to each other. Given a free
group F , we can form its descending central series F0 ⊇ F1 ⊇ · · · , with Fi+1 =
[Fi, F ], the group generated by commutators.

If a group has a descending central series G0 ⊃ G1 · · · we can construct a
graded Lie ring from it as follows. The Lie ring will be G0/G1 ⊕G1/G2 ⊕ · · · .
The additive structure of the ring is just given by the (abelian) group structure
on each quotient. The Lie bracket is given by the commutator [a, b] = a−1b−1ab.
The key point is to check that the Jacobi identity holds. This follows from Philip
Hall’s identity:

Exercise 69

[[x, y−1], z]y · [[y, z−1], x]z · [[z, x−1], y]x = 1

Exercise 70 Check that G0/G1 ⊕G1/G2 ⊕ · · · is a Lie ring.
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Theorem 71 The Lie ring of the descending central series of the free Lie group
on n generators is the free Lie ring on these generators.

Proof First, there is an obvious homomorphism from the free Lie ring to the
Lie ring of the free group, by the universal property of the free ring. To prove
this is an isomorphism we want to construct a map in the other direction. We
do this as follows.

We map each generator A of the free group to exp(a) in the rational com-
pleted universal enveloping algebra of the free Lie ring, where a is the generator
of the free Lie ring corresponding to the generator A of the free group. This ex-
tends to a homomophism f of groups by the universal property of a free group.
If A is in Fn then f(A) is of the form 1 + an+1 + an+2 + · · · where ai has de-
gree i in the universal enveloping algebra. We define the image of A to be the
element an+1. We can check that this is primitive (as the log of a group-like
element is primitive) and integral, so an element of the free Lie algebra. We
can also check that this preserves addition and the Lie bracket and so gives a
Lie algebra homomorphism from the Lie ring of the free group. This gives the
desired inverse map, so proves that the Lie ring of the free group is the free Lie
algebra. �

Exercise 72 Show that free groups are residually nilpotent. Show that free Lie
algebras are residually nilpotent.

So the relation between the free group and the free Lie algebra on some
generators is given as follows. The Lie ring of the free group is the free Lie
ring on the generators. The group generated by the elements exp(a), as a runs
through generators for a free Lie ring, is the free group.

6 Nilpotent Lie groups

The main result about nilpotent Lie algebras is Engel’s theorem, due to Friedrich
Engel (not to be confused with the philosopher Friedrich Engels).

Theorem 73 (Engel) Suppose that g is a Lie algebra of nilpotent endomor-
phisms of a non-zero finite dimensional vector space V . Then V has a nonzero
vector fixed by g.

Proof We use induction on the dimension of g. The main step is to show that
g has an ideal h of codimension 1 (unless g is 0). So fix any proper nonzero
subalgebra h of g. Then h acts on g by nilpotent endomorphisms, and so acts
on the vector space g/h by nilpotent endomorphisms. By induction there is a
nonzero element of g/h killed by h, so if h has codimension greater than 1 we
can add this to h and repeat until h has codimension 1. In this case h is an
ideal of g.

Now look at the subspace W of V fixed by all elements of h, which is non-
zero by induction. This is acted on by the 1-dimensional Lie algebra g/h as h
is an ideal, and as g/h acts by a nilpotent endomorphism of W there must be
a non-trivial fixed vector. �

This theorem shows that if g is a Lie algebra of nilpotent endomorphisms of
V , then there is a flag 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V such that g acts trivially
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on each Vi/Vi−1. (Take V1 to be the vectors fixed by g and apply induction
to V/V1). In other words V has a basis so that g is strictly upper triangu-
lar. Conversely any strictly upper triangular Lie algebra consists of nilpotent
endomorphisms.

We would like to say that a Lie algebra is nilpotent if all elements are rep-
resented by nilpotent matrices, but there is a slight problem that this depends
on the choice of representation: an 1-dimensional abelian Lie algebra can be
represented by either a nilpotent or a non-nilpotent matrix. So instead we use
the following definition:

Definition 74 A Lie algebra g is called nilpotent if it has a central series 0 =
g0 ⊂ g1 ⊂ · · · ⊂ gn = g. This means that each gi is an ideal, and g fixes all
elements of gi/gi−1 (or equivalently that gi/gi−1 is in the center of g/gi−1).

There are two obvious ways to construct a central series of a group or Lie
algebra: we can start at the bottom, and repeatedly quotient out by the center
(gi/gi−1 = center of g/gi−1), or we can start at the top and repeatedly take
commutators (gi = [g, gi+1] ). The first method produces the “largest” central
series and the second produces the “smallest”. It is also possible to continue
the upper and lower central series “transfinitely” but then they are no longer
closely related: for example, for the free group or Lie algebra the descending
central series becomes trivial after ω steps, but the ascending one never takes
off as the center is trivial.

Exercise 75 Find an example of a nilpotent Lie algebra whose ascending and
descending central series are not the same. (The smallest example is 4-dimensional.)

A reasonably typical example of a nilpotent Lie algebra is the Lie algebra
of all strictly upper triangular matrices. A Lie algebra is nilpotent if and only
if it is isomorphic to a Lie algebra of strictly upper triangular matrices. This
follows immediately from Engel’s theorem if we can show that it has a finite-
dimensional faithful representation in which all elements act nilpotently. We
will prove this later as a special case of Ado’s theorem.

Similarly we define a group to be nilpotent if it has a central series. There is
nothing obviously nilpotent in a nilpotent group: the terminology comes from
Lie algebras.

Theorem 76 For finite groups, the nilpotent ones are just the products of
groups of prime power order.

Proof First we show that any group of prime power order is nilpotent. The
key step is to show that it has a nontrivial center (if it is nontrivial). For this,
look at the partition into conjugacy classes. Each conjugacy class has order
(order of G)/(order of subgroup fixing an element), so has order divisible by p
if it is not in the center. If G is nontrivial it also has order divisible by p, so the
number of elements in the center is divisible by p. So by repeatedly killing the
center we see that G has a central series and is nilpotent.

It is trivial to see that a product of two nilpotent groups is nilpotent, so any
finite product of groups of prime power order is nilpotent.

Conversely we want to show that if G is nilpotent then it is a product of its
Sylow subgroups, or in other words all its Sylow subgroups are normal. If G
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is nontrivial then we can find an element of some prime order p in the center
generating a subgroup H as G is nilpotent, and by induction G/H is a product
of its Sylow subgroups. But if Q is a Sylow q-subgroup of G, then its image in
G/H is the unique Sylow q-subgroup of G/H, whose inverse image in G is QH.
But since H is in the center of QH there is only one Sylow q-subgroup of QH
(either Q or QH depending on whether or not p = q) so it must be normalized
by G. So all Sylow subgroups of G are normal, so G is a product of its Sylow
subgroups. �

For any finite nilpotent group we can construct a finite Lie ring of the same
order, as in the previous section. This does not seem to help all that much, as
finite Lie rings seem just as messy as finite nilpotent groups.

The naive analogue of Engel’s theorem fails for nilpotent groups: for exam-
ple, the dihedral group of order 8 is nilpotent but has no fixed vectors in its
2-dimensional real representation. However there is an analogue that works: if
a p-group acts on a non-zero finite dimensional vector space over a field with
p elements then it fixes some vector The proof is similar to the proof that a
non-trivial p group has a nontrivial center. There is also a similar analogue for
algebraic groups: an algebraic group acting on a nonzero vector space whose
elements are unipotent (all eigenvalues 1, or equivalently 1 plus nilpotent) fixes
some vector, so is conjugate to a group of upper-triangular matrices with 1’s on
the diagonal.

There are huge numbers of p-groups of order pn if n is reasonably large;
in fact the number of groups of order less than some number is dominated by
groups of order 2n. In fact we can do this with just 2-step nilpotent groups. Fix
two vector spaces V , W over a field (such as the field with p elements). If we
are given a skew symmetric bilinear map [, ] from V ×V to W then we can make
V ⊕W into a nilpotent group by letting the commutator of w1, w2 be the element
[w1, w2] of V . So the number of groups we get is about pdim(V )2 dim(W )/2. For
groups of order pn we have dim(V ) + dim(W ) = n, so the number of groups is
maximized for dim(V ) = n/3, dim(W ) = 2n/3, and the number of groups is

about p2n
3/27. Of course we should divide out by groups that are isomorphic, but

the number of choices we make is only psomething quadratic in n so this is dominated
by the cubic exponent of p and does not reduce the number of groups all that
much. The number of groups of order 2n is 1, 1, 2, 5, 14, 51, 267, 2328, 56092,
10494213, 49487365422, ..., and almost all groups of order less than some large
integer are 2-group.

Exercise 77 Classify the groups of order 8. (The 3 abelian ones are obvious;
the other two are the dihedral group and the quaternion group. One way to find
the non-abelian ones is to start by observing that the center of a nonabelian
group has order 2 and the quotient by the center is a Kelin 4-group.)

Trying to classify nilpotent Lie algebras or nilpotent Lie groups of given
dimension is just as bad: beyond dimension about 6 or so everything just gets
horribly messy.

We saw earlier that in some sense Lie groups are commutative to first order.
This suggests that maybe discrete subgroups generated by elements close to the
identity will be commutative. This is not quite correct: for example, the group
of unipotent upper trianular matrices has non-abelian subgroups generated by
elements close to the identity. However Zassenhaus showed that it is essentially

38



correct, except that “abelian” has to be replaced by “nilpotent”, which is in
some sense very close to “abelian”.

Theorem 78 (Zassenhaus) The identity of a Lie group has a neighborhood U
with the following property: any discrete subgroup generated by elements of U
is nilpotent.

Proof The idea of the proof is that elements near the identity almost commute
with each other. The commutator of two elements is second order. So if U is
small enough then then sets u1 = U , U2 = [U,U ], U3 = [[U,U ], U ], will tend
to 0 in the sense that they will eventually be in any given neighborhood. If a
subgroup H of G is discrete this means that its intersection with Un for n large
is the identity element. If in addition H is generated by elements of U , this
means that [...[g1, g2], g3, ...], gn] = 1 for any n elements in the generating set,
which implies that H is nilpotent of step n. �

For nilpotent Lie algebras g over fields of characteristic 0, the Campbell-
Baker-Hausdorff formula converges as it only has a finite number of nonzero
terms, so can be used to give g a group structure. In particular, if G is a
nilpotent Lie group then its universal covering space is a vector space and in
particular is contractible. This fails completely for general Lie groups: for
example the group S3 is simply connected so has universal covering space a
sphere.

We should at least mention Gromov’s theorem that a finitely-generated
group has polynomial growth if and only if it has a nilpotent subgroup of finite
index.
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