
1 Examples

A typical example of a Lie group is the group GL2(R) of invertible 2 by 2
matrices, and a Lie group is defined to be something that resembles this. Its
key properties are that it is a smooth manifold and a group and these structures
are compatible. So we define a Lie group to be a smooth manifold that is also a
group, such that the product and inverse are smooth maps. All manifolds will
be smooth and metrizable unless otherwise stated.

We start by trying to list all Lie groups.

Example 1 Any discrete group is a 0-dimensional Lie group.

This already shows that listing all Lie groups is hopeless, as there are too
many discrete groups. However we can split a Lie group into two: the component
of the identity is a connected normal subgroup, and the quotient is discrete.
Although a complete description of the discrete part is hopeless, we can go
quite far towards classifying the connected Lie groups.

Example 2 The real numbers under addition are a 1-dimensional commutative
Lie group. Similarly so is any finite dimensional real vector space under addition.

Example 3 The circle group S1 of all complex numbers of absolute value 1 is
a Lie group, also abelian.

We have essentially found all the connected abelian Lie groups: they are
products of copies of the circle and the real numbers. Foe example, the non-
zero complex numbers form a Lie group, which (via the exponential map and
polar decomposition) is isomorphic to the product of a circle and the reals.

Example 4 The general linear group GLn(R) is the archetypal example of a
non-commutative Lie group. This has 2 components as the determinant can be
positive or negative. Similarly we can take the complex general linear group.

The classical groups are roughly the subgroups of general linear groups that
preserve bilinear or hermitian forms. The compact orthogonal groups On(R)
preserve a positive definite symmetric bilinear form on a real vector space. We
do not have to restrict to positiver definite forms: in special relativity we get
the Lorentz group O1,3(R) preserving an indefinite form. The symplectic group
Sp2n(R) preserves a symplectic form and is not compact. The unitary group
Un preserves a hermitian form on Cn and is compact as it is a closed subgroup
of the orthogonal group on R

2n. Again we do not have to restict to positive
definite Hermitean forms, and there are non-compact groups Um,n preserving
|z1|2 + · · ·+ |zm|2 − z2

m+1 − · · · .
There are many variations of these groups obtained by tweaking abelian

groups at the top and bottom. We can kill off the abelian group at the top
of many of them by taking matrices of determinant 1: this gives special linear,
special orthogonal r groups and so on. (“Special” usually means determinat
1). Alternatively we can make the abelian group at the top bigger: the general
symplectic group GSp is the group of matrices that multiply a symplectic form
by a non-zero constant. We can also kill off the abelian group at the bottom
(often the center) by quotienting out by it: this gives projective general linear
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groups and so on. (The word “projective” usually means quotient out by the
center, and comes from the fact that the projective general linear group acts
on projective space.) Finally we can make the center bigger by taking a central
extension. For example, the spin groups are double covers of the special orthog-
onal groups. The spin group double cover of SO3(R) can be constructed using
quaternions.

Exercise 5 If z = a+ bi+ cj + dk is a quaternion show that zz is real, where
z = a − bi − cj − dk. Show that z 7→ |z| =

√
zz is a homomorphism of groups

from non-zero quaternions to positive reals. Show that the quaternions form
a division ring; in other words check that every non-zero quaternion has an
inverse.

Exercise 6 Identify R
3 with the set of imaginary quaternions bj + cj + dk.

Show that the group of unit quaternions S3 acts on this by conjugation, and
gives a homomorphism S3 7→ SO3(R) whose kernel has order 2.

A typical example of a solvable Lie group is the group of upper triangular
matrices with nonzero determinant. (Recall that solvable means the group can
be split into abelian groups.) It has a subgroup consisting of matrices with 1s
on the diagonal: this is a typical example of a nilpotent Lie group. (Nilpotent
means that if you keep killing the center you eventually kill the whole group.
We will see later that a connected Lie group is nilpotent if all elements of its lie
algebra are nilptent matrices: this is where the name “nilpotent” comes from.)

Exercise 7 Check that these groups are indeed solvable and nilpotent.

Exercise 8 Show that any finite group of prime-power order pn is nilpotent,
and find a non-abelian example of order p3 for any prime p. (Hint: show that
any conjugacy class not in the center has order divisible by p, and deduce that
the center has order divisible by p unless the group is trivial.)

Exercise 9 The Moebius group consists of all ismorphisms from the complex
unit disk to itself: z 7→ (az + b)/(cz + d) with ad − bc = 1, a = d, b = c.
Show that this is the group PSU1,1. Similarly show that the group of conformal
transformations of the upper half plane is PSL2(R). Since the upper half plane
is isomorphic to the unit disc, we see that the groups PSU1,1 and PSL2(R) are
isomorphic. This illustrates one of the confusing things about Lie groups: there
are a bewildering number of unexpected isomorphisms between them in small
dimensions.

Exercise 10 Show that there is a (nontrivial!) homomorphism from SL2(R)
to the group O2,1(R), and find the image and kernel. (Consider the action of
the groups SL2(R) on the 3-dimensional symmetric square S2(R2) and show
that this action preserves a quadratic form of signature (2, 1).)

Klein claimed at one point that geometry should be identified with group
theory: a geometry is determined by its group of symmetries. (This fails for Rie-
mannian geometry.) For example, affine geometry consists of the properties of
space invariant under the group of affine transformsations, projective geometry
is properties of projective space invariant under projective transformations, and

6



so on. The group of affine transformations in n dimensicanons is a semidirect
product Rn.GLn(R). This can be identified with the subgroup of GLn+1 fixing a
vector (sometimes called the mirabolic subgroup). For example, in 1-dimension
we get a non-abelian 2-dimensional Lie group of transformations x 7→ ax + b
with a 6= 0.
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