
Solution to Math256a section IV.3 (H.Zhu, 1994)
3.1) One direction follows easily from 3.3.4. We show that D is not very

ample when deg(D) < 5. Now suppose D is very ample, then l(D) = l(D −
P − Q) + 2 ≥ 2. Futhermore, if l(D) = 2, dim|D| = 1, thus |D| defines an
isomorphism from X to P1, which is obsurd. Thus we have l(D) > 2.

If deg(D) ≤ 1, Since l(D) 6= 0, we may apply Ex. 1.5., l(D) ≤ deg(D) + 1 ≤
2, thus D is not very ample.

If deg(D) = 2, l(D) = l(K − D) + 1. Since D 6= 0, l(K − D) < l(K) = 2.
Thus l(D) ≤ 2. Contradiction.

If deg(D) = 3, then l(K −D) = 0. So l(D) = 2. Contradiction.
If deg(D) = 4, then l(D) = 3. By 3.2, we know that D is base point free.

Thus |D| defines a morphism from X to P2. But this is impossible since any
plane curve has genus (d− 1)(d− 2)/2, which is never 2. Contradiction.

We conclude that deg(D) ≥ 5.
3.2) (a) From I, Ex.7.2, g(X) = 3. It results in l(K) = 3 and deg(K) = 4.

Denote D =: X.L. Recall Bezout’s theorem from I, 7. so deg(D) = 4. Now
claim that l(D) ≥ 3. Since the line L on X is determined exactly by two points
(not necessary distinct) so dim|L| = 2, i.e. l(D) = 3. (This may be rigorously
proved by considering the possible linearly independent sets.) Then l(K−D) =
l(D)+g−deg(D)−1 = 1. But deg(K−D) = 0 and l(K−D) = deg(K−D)+1,
thus K = D by Ex.1.5.

(b) SinceD is an effective divisor of degree 2, D = P1+P2 for some two points
on X (not necessary distinct). Suppose there is an effective divisor Q1 + Q2

such that P1 + P2 ∼ Q1 +Q2. Since the line passing thru P1 and P2 intersects
X at two other points P3 and P4. By (a) we have K = P1 + P2 + P3 + P4, so
Q1, Q2, P3, P4 is collinear. Hence Q1, Q2 coincide with P1, P2. Thus dim|D| = 0.

(c) From Ex. 1.7.(a), dim|K| = 1. But we may pick an effective canonical
divisor K such that dim|K| = 0 by (b). Thus X can not be a hyperelliptic
curve.

3.3) It is clear that the second statement follows from the first one since
K is not very ample on a hyperelliptic curve. (Cf. 5.2.) By II.Ex.8.4, ωX

∼=
O(

∑
di−n−1). Since the dimension of the global section of this invertible sheaf

equals g ≥ 2, ωX has to be very ample. (Otherwise it has no global sections.)
This is equivalent to saying that the canonical divisor K is very ample.

We showed in Ex.1.7 that any curve of genus 2 has to be a hyperelliptic
curve, and its canonical divisor is not very ample. Thus it can not be a complete
intersection in Pn.

3.4) (a) Denote θ as the corresponding ring homomorphism. deg(θ) = d. We
know that the image of the d-uple embedding is Z(ker(θ)). We may check that
ker(θ) is generated by x2

i+1 − xixi+2, for i = 0, · · · , d− 2, and x0xd − x1xd−1.
(b) If i is the close immersion, denote i∗(O(1)) as D. Because dim|D| = n

and deg(D) = d, we have l(D) = n+ 1 ≤ deg(D) + 1 = d+ 1 ≤ n+ 1. Therefore
n = d and g = 0 by Ex..1.5. Consequently, X ∼= P1. Since X does not lie in
Pn−1, the natural map Γ(Pn,O(1)) → Γ(X, i∗(O(1)) is injective. Thinking X

1



as P1, D corresponds to a (n + 1)-dimension subspace V ∈ Γ(P1,O(n)) hence
they are equal since the later has dimension n + 1. Therefore, X is indeed a
rational normal curve. (see II. 7.8.1).

(c) It is clear this curve X can not be in P1. From (b), X is a plane curve
of degree 2.

(d) Suppose X is not a plane cubic curve, we apply (b), have X ⊆ P3\P2,
thus it is a rational normal curve of degree 3, which is indeed a twisted cubic.

3.6) (a) When n ≥ 4, Ex.3.4 (b) implies that X is a rational normal curve.
If X is a plane curve, g(X) = (d− 1)(d− 2)/2 = 3. Otherwise, X ⊆ P3\P2, we
claim that g = 0, 1. Suppose g = 2, then Ex.3.1 shows that any divisor of degree
4 is not very ample, that is X can not be embedded to P3, which is absurd. If
g = 0, then it is a rational quartic curve by II,7.8.6. g can not be 3 since X is
not a plane curve. Thus g has to be 1.

3.7) Suppose C is a nonsingular curve which projects to the given curve X.
We prove that deg(C) = 4 which will soon lead a contradiction with assertions
in Ex.3.6. To prove our first claim, we carefully choose a suitable hyperplane
H passing the projection point to cut C which intersects with P2 by a line L
such that there is a 1-1 map from C.H to X.L. We conclude that deg(C) = 4
by recalling Bezout’s Theorem.

Since C has a node, it can not lie in case (1) or (2) in Ex.3.6. By Hurwitz’s
theorem, g(C) ≥ g(X̃) = 3− 1 from 3.11.1, thus g(X) 6= 1. Contradiction with
Ex.3.6. Thus such C does not exist.

3.8) (a) By a simple calculation, the tangent vector is (1, 0, 0) at each point.
Pick an point P = (x0, y0, z0) on X, its tangent line is given by the intersection
of two hyperplanes: y = y0 and z = z0. Writen in homogeneous polynomial,
y = y0w and z = z0w. Thus all tangent lines pass through the point at infinity
(1 : 0 : 0 : 0). There is one strange point on this curve.

(b) Note that when char(k) = 0, X has finitely many singular points. By
choosing a proper projection, we may still project X in P3. Suppose P is a
strange point on X. Choose an affine cover such that P is the infinity point on
x-axis, and other relevant conditions in the proof of Theorem 3.9. The resulted
morphism is ramified at all but finitely many points on X. The image is thus a
point otherwise the map is inseparable which is not the case over a field of char
0. Hence X is the line P1.

3.9) Three points are collinear iff there is a multisecant line passing through
them. A hyperpalne in P3 intersects X at exactly d points iff the hyperplane
does not pass any tangent lines of X. Prop 3.5 showed that dim(Tan(X)) ≤ 2.
Also it is not hard to show that the dimension of the space of multisecant lines
of X has dimension ≤ 1. Hence the union of these two spaces is a proper closed
subspace of P3∗ which is of dimension 3. Therefore almost all hyperplanes
intersect X in exactly d points.
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