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By 6.7, Y is isomorphic to an open subset of some projective space, and therefore to a proper open
subset of P!, and therefore to some open subset of Al.

We can assume Y = A'\{ay,...,a,}. Then Y is isomorphic to the subset y(z —a1)--- (z — a,) = 0 of
Al

Any element of A(Y') can be written uniquely in the form a(x —b1)“* - - - (x — b, )™ with ¢; some integer,
and ¢; positive if b; is not one of aq, ..., a,. Hence A(Y) is a U.F.D. with primes x—b; for b; # a1, ..., a,.
Singular points must satisfy y? —x3+x = 0, 2y = 0, —322+1 = 0, and if k does not have characteristic 2
this implies y = 0, z = 0, =1 which contradicts —3z2 +1 = 0. The polynomial y2 — 23 + z is irreducible,
because if it were reducible then its two factors would intersect somewhere (possibly at infinity) and
this point of intersection would be singular. (We should really also check that the curve has no singular
points at infinity!) As Y is nonsingular, all points of Y are normal, so Y is normal, so A(Y) is integrally
closed.

k[z] is clearly a polynomial ring, and y? € k[x] so y is in the integral closure of k[z]. So A is contained in
the integral closure of k[z], and is therefore equal to the integral closure because A is integrally closed.
The automorphism x + x, y — —y is an automorphism of k[z,y] which maps the ideal (y? — 2 + z)
to itself and therefore induces an automorphism of A (fixing x). Any element of A can be written as
yf(x)+g(x), so its norm is (g(z) +yf(z))(9(z) —yf(z)) = g(x)* — f(x)*(2* — ) € k[z]. The remaining
properties of N(a) are trivial to check.

If @ is a unit then N(a) is also a unit (with inverse N(1/a)) so must be an element of k as these are the
only units in k[z]. But if a = yf(z) + g(z), then its norm is g(z)? — f(z)?(2® — ) and if f is nonzero
then the second term has odd degree while the first has even degree so their sum cannot be a constant.
Hence f = 0, and g? is a constant, so a is a constant. To show that A is not a UFD, note that = and
y are irreducible (this follows easily by looking at their norms 22 and 2® — z and noting that there are
no elements whose norms is a degree 1 polynomial). But x|y? and y is not a unit times x, so A cannot
be a UFD.

Y is clearly not P!, and by exercise 6.1c it is not A! minus a finite number of points, so Y is not rational.
Map A2\(0,0) to P! by (z,y) — (z :y).

Map P'\oo to Al in the obvious way.

Any nonconstant rational map from Y to P! induces ¢* from k(x) to k(Y'), which is injective. Then
every valuation ring of k(x) can be extended to one of k(Y'), so every point of P! is the image of a point
of Y. For every p € P!, $~1(P) is closed. If it was infinite it would have to be all of Y as the closure
of any infinite subset of Y is Y, so the map ¢ would have to be constant.

We know that X is a curve. If € X — X then by 6.8 the map from X to X can be extended to a map
from x U X to X which is impossible. (Alternatively this problem follows from the fact that the image
of any projective variety under a regular map is closed.)

The inverse of z +— (ax +b)/(cx +d) is © — (dz — b)/(a — cz) if ad — be # 0.

Follows from corollary 6.12 (i) and (iii).

Any automorphism of k(x) maps x to f(z)/g(x) for some coprime polynomials f and g, and = =
h(f(x)/g(x)) for some rational function h. Therefore f(z)/g(x) is not equal to f(y)/g(y) if x # y. But
if f or g have degree greater than 1 then g(y)a = f(y) will usually have more than one solution for y.
Hence f and g have degrees at most 1, and the result follows from part (a).

Any map from one curve to the other can be extended to a map from P! to P!, so the points P; must
be mapped to the points ();, so 7 = s. The converse is true if and only if r < 3, because any set of at
most 3 distinct points in P! can be mapped to any other set of the same size under Aut(P'), but this
is not true for sets of 4 or more points.



