
Hartshorne, Chapter 1.5 Answers to exercises. REB 1994
5.1a This is the tacnode. The singular points are the points with x2 = x4 + y4, 2x = 4x3, and 4y3 = 0, so

(at least in characteristic 0) the only singular point is (0, 0).
5.1b This is the node; singular point is (0, 0).
5.1c This is the cusp; singular point is (0, 0).
5.1d This is the triple point; singular point is (0, 0).
5.2 The singular points of f(x, y, z) = 0 are given by f = 0, ∂f

∂x = 0, ∂f
∂y = 0, and ∂f

∂z = 0.
5.2a This is the pinch point; singular points are where xy2 = z2, y2 = 0, 2xy = 0, and 2z = 0, which is the

line y = z = 0.
5.2b This is the conical double point; singular points are where x2 + y2 = z2, 2x = 0, 2y = 0, and 2z = 0,

which is the point (0, 0, 0).
5.2c This is the double line; singular points are where xy+x3 + y3 = 0, y+ 3x2 = 0, x+ 3y2 = 0, and 0 = 0,

which is the line x = y = 0.
5.3a If P is a point on Y then P is a nonsingular point of Y is equivalent to saying that one of ∂f

∂x , ∂f
∂y are

nonzero at P , which is equivalent to saying that f has a term of degree 1 in x and y, which is equivalent
to saying that µP (Y ) = 1.

5.3b The singularities in 1a, 1b, and 1c have multiplicity 2, and 1d has multiplicity 3.
5.4a f and g both vanish at only a finite number of points, so we can find a polynomial h(y) which vanishes

whenever f and g both vanish, so hn ∈ (f, g) for some n, so we can assume n = 1. The submodules of
OP /(f, g) correspond to ideals of OP containing f and g, so it is sufficient to show that k[x, y]/(f, g) is
finite dimensional (as its dimension is at least the length of OP /(f, g)). But if we have polynomials h1(x)
and h2(y) of degrees m and n in (f, g) then k[x, y]/(f, g) has dimension at most that of k[x, y]/(h1, h2)
which is mn which is finite.

5.4b Put P = (0, 0) and take any line L not in the tangent cone of Y . We can assume that L is the line
y = 0, so the terms of lowest degree in f contain xm (where m is the multiplicity of Y at P ). Then
OP /(f, g) = OP /(y, xm + · · ·) = OQ/(xm + · · ·) which has length m (where OQ is the local ring of
Q = 0 ∈ A1).

5.4c We can assume that L is y = 0. If z 6= 0, the equation of the curve Y is f(x) + y(∗) = 0 where f if a
polynomial in x of some degree n. Then if x is a root of f of multiplicity m, we have (L.Y )(x, 0) = m,
so the sums of the intersection multiplicities along the x axis is the number of roots of f which is n.
On the other hand, at the point (0 : 1 : 0) the intersection multiplicity is d− n as the equation for f is
locally zd−n + · · ·+ x(∗) = 0. So the sum of all intersection multiplicities is n+ d− n = d.

5.5 If the characteristic p does not divide d we can use xd + yd + zd = 0 Otherwise we can use xyd−1 +
yzd−1 + zxd−1 = 0.
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