Hartshorne, Chapter 1.4 Answers to exercises.

- 4.1 If f = g on $U \cap V$, then the function which is f on U and g on V is clearly regular. Therefore the union of all open sets on which f is represented by a regular function is the largest open set on which f is regular.
- 4.2 A map is regular if and only if it is regular in a neighborhood of each point, so the conclusion follows as in 4.1.
- 4.3a $f = x_1/x_0$ is defined in the set where $x_0 \neq 0$. This set is isomorphic to A^2 , and f is just projection to the first coordinate.
- 4.3b ϕ is defined everywhere except the point (1:0:0).
- 4.4a See exercise 3.1c.
- 4.4b The maps taking $t \in A^1$ to (t^3, t^2) and (x, y) to y/x (for $x \neq 0$) are inverse birational isomorphisms from the cuspidal curve to A^1 .
- 4.4c The projection maps (x:y:z) to (x:y) if $(x:y:z) \neq (0:0:1)$. The inverse map from P^1 to Y takes (x:y) to $((y^2 x^2)x:(y^2 x^2)y:x^3)$ for $(x:y) \neq (1:\pm 1)$.
- 4.5 The subvariety of Q given by $w \neq 0$ is isomorphic to A^2 by $(w : x : y : z) \rightarrow (x/w, y/w), (x, y) \rightarrow (1 : x : y : xy)$. Therefore Q is birational to $Q \{w = 0\}$, which is isomorphic to A^2 , which is birational to P^2 . Q is isomorphic to $P^1 \times P^1$, which is not isomorphic to P^2 as it contains 2 closed 1-dimensional subvarieties that do not intersect.
- 4.6ab Put $U = V = \{(x : y : z) | xyz \neq 0\}$. Φ clearly maps U to V, and ϕ^2 maps (x : y : z) to (ax : xy : az) = (x : y : z) where a = xyz, so ϕ^2 is the identity map.
- 4.6c $\phi = \phi^{-1}$ is defined everywhere on P^2 except at the points (1:0:0), (0:1:0), (0:0:1). Remark: The group of birational transformations of P^2 is generated by quadratic transformations (or by one quadratic transformation and $PGL_3(k)$) and very little about it seems to be known beyond the fact that it is very large.
- 4.7 We can assume that X and Y are closed subsets of A^n , and P = Q = 0. If f is a homomorphism from $O_{Q,Y}$ to $O_{P,X}$ then define a map g from an open subset of X to Y by

$$g(x_1, \dots, x_n) = (f(y_1)(x_1, \dots, x_n), f(y_2)(x_1, \dots), \dots)$$

where y_i is the *i*'th coordinate function on A^n . This is defined on the open set where all the $f(y_i)$'s are defined. Likewise we can define a similar map from an open set of Y to X, and the composition of these two maps is the identity wherever it is defined. Therefore there is an isomorphism from an open set of X to an open set of Y taking P to Q.

- 4.8a Clearly the cardinality of P^n is at most $(n + 1)card(k)^n$ which is the cardinality of k. To prove the other inequality we can assume that X is contained in A^n . If the possible values of any coordinate x_1, \ldots, x_n are finite, the X consists of a finite number of points, so we can assume that one coordinate, say x_1 , takes on an infinite number of values. By elimination theory the condition for a point with a given value of x_1 to exist on X is given by a finite number of equalities and inequalities in x_1 . Therefore the possible values of x_1 are either a finite set or the complement of a finite set in k. But we know the number of possible values of x_1 is infinite, so the number of values is the cardinality of k minus a finite number, which is the cardinality of k.
- 4.8b Any two curves have the same cardinality and the finite complement topology, and so are homeomorphic.
- 4.9 We can assume that X is affine and is contained in A^n , the set of points in P^n with first $x_0 \neq 0$. The field of fractions k(X) is generated by x_1, \ldots, x_n , so we can assume that x_1, \ldots, x_r is a separating transcendence basis for k(X)/k by 4.7A and 4.8A, and k(X) is generated by $a_{r+1}x_{r+1} + \cdots + a_nx_n$ for some a_i 's in k, by 4.6A. As $r \leq n-2$ we can find a form $b_{r+1}x_{r+1} + \cdots + b_nx_n$ not proportional to $a_{r+1}x_{r+1} + \cdots + a_nx_n$. Choose any point at infinity not in this plane or in \overline{X} . Then the projection from this point to the plane maps k(hyperplane) onto k(X), so it is an isomorphism from the function field of the image of X to k(X), and therefore a birational isomorphism.
- 4.10 If $(x, y, w; z) \in A^2 \times P^2$ is in $\phi^{-1}(Y)$ -(exceptional curve) then $y^2 = x^3$, xz = yw, so $x^2(z^2 xw^2) = 0$, so $z^2 - xw^2 = 0$. Therefore the only possibility for this point to lie on the exceptional curve x = y = 0is (0, 0, 1; 0). If w = 0 then x = 0 which is not possible, so we can define the map f from \bar{Y} to A^1 by f(x, y, w; z) = z/w. The inverse takes t to $(t^2, t^3, 1; t)$, so \bar{Y} is isomorphic to A^1 .

REB 1994