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3.1a Follows from exercise 1.1 as 2 affine varieties are isomorphic if and only if their coordinate rings are.
3.1b The coordinate ring of any proper subset of A1 has invertible elements not in k and o is not isomorphic

to the coordinate ring of A1.
3.1c The aut group of P 2 acts transitively on sets of 3 points not on a line, so we can assume the conic

contains (0 : 0 : 1), (0 : 1 : 0), and (1 : 0 : 0), i.e., it is of the form axy + byz + czx = 0 for some a, b, c,
which are nonzero as otherwise the conic would be a union of two lines. We can multiply x, y, and z
by constants to make a, b, and c all equal to 1, so we can assume the conic is xy + yz + zx = 0, and in
particular all conics are isomorphic. Hence we only have to show 1 conic is isomorphic to P 1, e.g., the
image of P 1 under the 2-uple embedding.

3.1d Any 2 1-dimensional closed subsets of P 2 intersect (see ex. 3.7a), but A2 does not have this property.
3.1e By theorem 3.4 the regular functions on a projective variety is the ring k, which is only possible for an

affine variety if it is a point.
3.2a If φ had an inverse, this would give a polynomial f(x, y) such that f(t2, t3) = t, which is impossible.
3.2b φ is 1:1 because if xp = yp in characteristic p then (x − y)p = 0 so x = y. It has no inverse because

there is no polynomial f with f(tp) = t.
3.3a If f is a regular function defined on a neighborhood V of φ(p) then f ◦ φ is a regular function on the

neighborhood φ−1(V ) of p, This gives a map from Oφ(p),Y to Op,X which is a homomorphism.
3.3b We have to show that if V is an open set in X, and f is regular on V , then f ◦ φ−1 is regular on φ(V ).

If φ(p) ∈ φ(V ) then f ∈ Op,X , so φ−1∗
p maps f to an element of Oφ(p),y, so f ◦ φ−1 is regular near φ(p),

so it is regular on φ(V ).
3.3c If φ∗p(f) = 0 then f vanishes on φ(X)∩V which is a dense subset of V . As f is continuous and vanishes

on a dense subset, it must be 0. Therefore φ∗p is injective.
3.4 It is enough to show that φ−1 is regular near φ(1 : x1 : · · · : xn), where φ is the d-uple embedding. But

near this point φ−1 takes (m0 : · · · : mN ) to (mi0 : · · · : min) where mik is the coordinate corresponding
to the monomial xd−1

0 xk, and this is a regular map.
3.5 Identify Pn with its image under the d-uple embedding. Then H is the intersection of a hyperplane in

PN with Pn, so Pn −H is a closed subset of PN −H = AN and is therefore an affine variety.
3.6 Any regular function on X has the form f(x, y)/g(x, y) where f and g are coprime. The curves of f

and g only intersect in a finite number of points and g can only vanish at (0, 0) or where f = 0, so g
has only a finite number of zeros and must therefore be constant. Hence O(X) = k[x, y]. Therefore
the map from X to A2 is an isomorphism of their coordinate rings, so if X was affine it would be an
isomorphism of varieties, which it obviously is not as is is not surjective on points.

3.7b Suppose Y ∩H = φ. Then Y is a closed subset of an affine variety Pn −H and therefore a finite set of
points, as any projective subset of an affine variety is finite.

3.8 Any regular function on Pn−Hi is of the form fi(x0, . . . , xn)/xdi
i where di is the degree of the homoge-

neous polynomial fi. Hence for a function to be regular except on Hi ∪Hj we would have fix
dj

j = fjx
di
i

for some fi, fj . But this implies fi = xdi
i , so the function must be constant.

3.9 S(X) is the polynomial ring k[X0, X1], but S(Y ) is the subring k[X2
0 , X0, X1, X

2
1 ] of k[X0, X1, X2],

which is not a graded polynomial ring in 2 variables (as the space of elements of the smallest nonzero
degree is 3 dimensional).

3.10 For any point x ∈ X ′ there is an affine neighborhood U of x in X and a regular function f from U to Y
with φ|U = f . Therefore f is a regular function from the neighborhood U ∩X ′ of x to Y and therefore
to Y ′. Hence φ is regular near each point of X ′ and is therefore regular.

3.11 We can assume that X is affine as the irreducible varieties of X containing P are just the closures of the
irreducible varieties containing P of any affine neighborhood of P . But then the varieties containing P
just correspond to the prime ideals of A(X) contained in the maximal ideal M of P , which correspond
to the prime ideals of the ring A(X) localized at M , which are the prime ideals of the local ring OP .

3.12 By exercise 2.6 there is an affine neighborhood Y of P with dim(Y ) = dim(X). But OP,X = OP,Y so
dim(X) = dim(Y ) = dim(OP,Y ) (by 3.2c) = dim(OP,X).

3.13 OY,X is clearly a ring. Put I = image of set of pairs {U, f}, f regular on U , with f = 0 on U ∩ Y .
Then I is the unique maximal ideal, because if {V, g} is not in I then it has an inverse {W, 1/g} where
W = V ∩(set where g 6= 0), as W ∩ Y 6= 0. The residue field is obviously K(Y ). To prove the result
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about dimensions, we can assume X affine. Put B = A(X), p=functions on X vanishing on Y . Then by
1.8A, height(p) + dim(B/p) = dim(B). But dim(B) = dim(X) and dim(B/p) = dim(Y ) and height of
p in B = height of maximal ideal of OY,X = dimension of OX,Y . Hence dim(OX,Y + dim(Y ) = dim(X).

3.14a We can assume that Pn is the set where x0 6= 0, and p is the point (1 : 0 : · · · : 0). If x = (x0 : · · · :
xn) ∈ Pn+1 − P , then xi 6= 0 for some i > 0. Therefore the line containing P and x meets Pn in
(0 : x1 : · · · : xn), which is a morphism in the neighborhood xi 6= 0 of x. Therefore φ is a morphism.

3.14b The projection maps (t3, t2u, tu2, u3) to (t3, t2u, u3) ∈ P 2. It is easy to check that the image is the
whole of the variety given by the equation x3

1 = x2x
2
0. For x2 6= 0 this is the same as the variety given

by y3 = x2 which has a cusp at (0, 0), i.e., the image has a cusp at (0, 0, 1).

2


