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Hartshorne, Chapter 1.3 Answers to exercises. REB 1994
Follows from exercise 1.1 as 2 affine varieties are isomorphic if and only if their coordinate rings are.
The coordinate ring of any proper subset of A' has invertible elements not in & and o is not isomorphic
to the coordinate ring of A'.

The aut group of P? acts transitively on sets of 3 points not on a line, so we can assume the conic
contains (0:0:1), (0:1:0), and (1:0:0), i.e., it is of the form azy + byz + czx = 0 for some a, b, c,
which are nonzero as otherwise the conic would be a union of two lines. We can multiply z, y, and z
by constants to make a, b, and c all equal to 1, so we can assume the conic is zy + yz + zz = 0, and in
particular all conics are isomorphic. Hence we only have to show 1 conic is isomorphic to P!, e.g., the
image of P! under the 2-uple embedding.

Any 2 1-dimensional closed subsets of P? intersect (see ex. 3.7a), but A? does not have this property.
By theorem 3.4 the regular functions on a projective variety is the ring k, which is only possible for an
affine variety if it is a point.

If ¢ had an inverse, this would give a polynomial f(x,y) such that f(t2,t3) = t, which is impossible.

¢ is 1:1 because if P = yP in characteristic p then (z — y)? = 0 so x = y. It has no inverse because
there is no polynomial f with f(t?) = t.

If f is a regular function defined on a neighborhood V of ¢(p) then f o ¢ is a regular function on the
neighborhood ¢~ (V') of p, This gives a map from Oy,)y to Op x which is a homomorphism.

We have to show that if V' is an open set in X, and f is regular on V, then f o ¢! is regular on ¢(V).
If ¢(p) € (V) then f € O, x, so gb;l* maps f to an element of Oy, s0 f o ¢! is regular near ¢(p),
so it is regular on ¢(V).

If ¢5(f) = 0 then f vanishes on ¢(X )NV which is a dense subset of V. As f is continuous and vanishes
on a dense subset, it must be 0. Therefore ¢, is injective.

It is enough to show that ¢! is regular near ¢(1 : 1 : --- : x,,), where ¢ is the d-uple embedding. But
near this point ¢~1 takes (mg : ---: my) to (my, : --- : m;, ) where m;, is the coordinate corresponding
to the monomial 33371531€7 and this is a regular map.

Identify P™ with its image under the d-uple embedding. Then H is the intersection of a hyperplane in
PN with P", so P* — H is a closed subset of PN — H = AN and is therefore an affine variety.

Any regular function on X has the form f(x,y)/g(x,y) where f and g are coprime. The curves of f
and ¢ only intersect in a finite number of points and g can only vanish at (0,0) or where f = 0, so g
has only a finite number of zeros and must therefore be constant. Hence O(X) = k[x,y]. Therefore
the map from X to A? is an isomorphism of their coordinate rings, so if X was affine it would be an
isomorphism of varieties, which it obviously is not as is is not surjective on points.

Suppose Y N H = ¢. Then Y is a closed subset of an affine variety P” — H and therefore a finite set of
points, as any projective subset of an affine variety is finite.

Any regular function on P"™ — H; is of the form f;(zo,... ,xn)/xfi where d; is the degree of the homoge-

neous polynomial f;. Hence for a function to be regular except on H; U H; we would have f,;:c;.lj = fjx?i

for some f;, f;. But this implies f; = x?i, so the function must be constant.

S(X) is the polynomial ring k[Xo, X1], but S(Y) is the subring k[X3, Xo, X1, X?] of k[Xo, X1, Xa],
which is not a graded polynomial ring in 2 variables (as the space of elements of the smallest nonzero
degree is 3 dimensional).

For any point x € X’ there is an affine neighborhood U of z in X and a regular function f from U to Y
with ¢|U = f. Therefore f is a regular function from the neighborhood U N X’ of = to Y and therefore
to Y’. Hence ¢ is regular near each point of X’ and is therefore regular.

We can assume that X is affine as the irreducible varieties of X containing P are just the closures of the
irreducible varieties containing P of any affine neighborhood of P. But then the varieties containing P
just correspond to the prime ideals of A(X) contained in the maximal ideal M of P, which correspond
to the prime ideals of the ring A(X) localized at M, which are the prime ideals of the local ring Op.
By exercise 2.6 there is an affine neighborhood Y of P with dim(Y) = dim(X). But Op x = Opy so
dim(X) = dim(Y) = dim(Opy) (by 3.2¢) = dim(Op x).

Oy, x is clearly a ring. Put I = image of set of pairs {U, f}, f regular on U, with f =0on UNY.
Then I is the unique maximal ideal, because if {V, g} is not in I then it has an inverse {W,1/g} where
W = VN(set where g # 0), as WNY # 0. The residue field is obviously K(Y). To prove the result
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about dimensions, we can assume X affine. Put B = A(X), p=functions on X vanishing on Y. Then by
1.8A, height(p) + dim(B/p) = dim(B). But dim(B) = dim(X) and dim(B/p) = dim(Y) and height of
p in B = height of maximal ideal of Oy, x = dimension of Ox y. Hence dim(Ox y + dim(Y’) = dim(X).

3.14a We can assume that P" is the set where zg # 0, and p is the point (1:0:---:0). If z = (g : ---:
r,) € P"*1 — P, then x; # 0 for some i > 0. Therefore the line containing P and z meets P" in
(0:xy:---:xy,), which is a morphism in the neighborhood z; # 0 of . Therefore ¢ is a morphism.

3.14b The projection maps (3, t%u, tu?, u®) to (¢3,t?u,u3) € P2, It is easy to check that the image is the
whole of the variety given by the equation z3 = xox3. For x5 # 0 this is the same as the variety given
by y? = 22 which has a cusp at (0,0), i.e., the image has a cusp at (0,0,1).



