
Hartshorne, Chapter 1 Answers to exercises. REB 1994
2.1 a is homogeneous and so defines a cone in An+1. f vanishes on all the elements of this cone (including

0 as f has positive degree) so fq ∈ a for some q > 0 by the usual Nullstellensatz.
2.2 (iii) implies (i) is trivial as xd

i ∈ Sd. Proof that (i) implies (ii): If Z(a) is empty, then in An+1, Z(a)
must be empty or (0, . . . , 0), so

√
a must be S or ⊕d>0Sd. Proof that (ii) implies (iii):

√
a contains xi,

so there is some m with xm
i ∈ a for all i, so a contains Sm(n+1) as any monomial of degree m(n + 1)

must have xm
i as a factor for some i.

2.3 (a),(b),(c),(e) are trivial. For (d), clearly I(Z(a)) contains
√
a. As Z(a) is nonempty, any nonzero

homogeneous polynomial vanishing on it must have positive degree. By 2.1, this implies that fq ∈ a.
Therefore I(Z(a)) is contained in

√
a as it is a homogeneous ideal.

2.4a Follows from 2.3d,e, and 2.2.
2.4b If Y = Y1 ∪ Y2, then I(Y ) = I(Y1) ∩ I(Y2) ⊃ I(Y1)I(Y2). Therefore if I(Y ) is prime, I(Y ) must be

either I(Y1) or I(Y2), so Y is Y1 or Y2. On the other hand if Y is not prime, then ab ∈ I(Y ), with
a /∈ I(Y ), b /∈ I(Y ). Therefore Y is the union of the proper subsets Y ∩Z(a), Y ∩Z(b) and is therefore
not irreducible.

2.4c I(Pn) = 0 which is a prime ideal.
2.5a Pn can be covered by n+ 1 copies of An which is Noetherian.
2.5b See proposition 1.5 and part (a) of this question.

2.6 S(Y) is the coordinate ring of the cone in An+1 corresponding to Y (assuming Y is nonempty). S(Y )xi

is the coordinate ring of the cone Y − (xi = 0) if xi is not identically 0 on Y , i.e., Yi is nonempty.
Therefore the homogeneous part of degree 0 of S(Y )xi is the coordinate ring of the cone with xi = 0,
which is isomorphic to Yi, and therefore S(Y )xi

= A(Yi)[xi, 1/xi] as every element of S(Y )xi
is the sum

of monomials of the form (x±n
i × element of degree 0). Therefore Tr.deg.(S(Y )xi

) = Tr.deg.(A(Yi) +
1) = Tr.deg.S(Y ). Therefore dim(S(Y )) = 1 + dim(Yi) whenever Yi 6= 0. The Yi’s cover Y , so
dim(Y ) = sup(dim(Yi)), so dim(S(Y ) = 1 + dim(Y ).

2.7a Pn is covered by n+ 1 open copies of An, so dim(Pn) = sup(dim(An)) = n.
2.7b Y is contained in Pn, and therefore covered by n+1 copies of An. In each copy Ai of An, Y ∪Ai = Y ∪Ai

as Ai is open. Hence dim(Y ∩Ai) = dim(Y ∩Ai) = dim(Y ∩Ai), and therefore dim(Y ) = sup(dim(Y ∩
Ai) = sup dim(Y ∩Ai) = dim(Y ).

2.8 If f is any homogeneous polynomial of positive degree then the zero set of f has dimension n − 1 as
it has this dimension on some affine subsets and is a proper closed subset of Pn. Also f is irreducible,
so the homogeneous ideal generated by it is prime (as rings of polynomials are U.F.D.’s so irreducibles
are primes) so its variety is irreducible. Conversely if Y is any proper closed subset of Pn then there is
some homogeneous polynomial f vanishing on Y which we can assume to be irreducible because Y is
irreducible (so some factor of f must also vanish on Y if f is not irreducible). Then the zero set of f
is an irreducible n− 1 dimensional closed subset of Pn containing the n− 1 dimensional closed subset
Y , and so must be equal to Y (because any proper closed subset of an irreducible topological space has
smaller dimension).

2.9a βg(x0, . . . , xn) = xd
0g(x1/x0, . . . , xn/x0) if g is of degree d. If g vanishes on Y then βg vanishes on

Ȳ , so I(Ȳ ) ⊇ β(I(Y )). If h vanishes on Ȳ then we can assume h is homogeneous. If g(x1, . . . , xn) =
h(1, x1, . . . , xn), then h = βg, so I(Ȳ ) is generated by β(I(Y ))

2.9b {(t, t2, t3)} = Y , and I(Y ) = (x2 − x2
1, x3 − x3

1). β(x2 − x2
1) = x0x2 − x2

1 and β(x3 − x3
1) = x2

0x3 − x3
1.

But I(Ȳ ) contains x1x3 − x2
2 which is not contained in (β(x2 − x2

1), β(x3 − x3
1)).

2.10a Obvious.
2.10b They have the same ideal, which is prime if and only if they are irreducible.
2.10c See 2.6.
2.11a I(Y ) is generated by linear polynomials {pi} if and only if Y is the intersections of the hyperplanes

{pi = 0}.
2.11b Any hyperplane in Pn is a copy of Pn−1, and the intersection of any other hyperplane of Pn with this

Pn−1 is a hyperplane of the Pn−1. Therefore any r-dimensional linear variety in Pn is the intersection
of n− r hyperplanes and not the intersection of n− r− 1 hyperplanes. Therefore its ideal is minimally
generated by n− r linear polynomials.
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2.11c Y is the intersection of n − r hyperplanes and Z is the intersection of n − s hyperplanes, so Y ∩ Z is
the intersection of 2n − r − s hyperplanes, which has dimension at least n − (2n − r − s) = r + s − n.
In particular it is nonempty if r + s ≥ n.

2.12a θ maps k[y0, . . . , yN ] to an integral domain, so its kernel is a prime ideal. If f ∈ k[y0, . . . , yN ], f =
f0 + fi + · · · with fi of degree i, then θ(fi) has degree di, so θ(f) = 0 if and only if θ(fi) = 0 for all i,
and therefore the kernel is also a homogeneous ideal.

2.12b If f ∈ Ker(θ) then f(M0, . . . ,Mn) = 0. Hence f vanishes on any point (M0(a), . . . ,Mn(a)), so Im(ρd) ⊆
Z(a). This proves the easy half. Any monomial raised to the power of d is a product of monomials of
the form xd

i . Choose any point (m0, . . . ,mN ) ∈ Z(a). Some mi is nonzero and md
i =

∏
N mjn

where
each mjN

corresponds to some monomial xd
i , hence some mi corresponding to a monomial xd

i is nonzero;
say i = 0. If mi1 , . . . ,min

correspond to xd−1
0 x1, . . . , x

d−1
0 xn then put x0 = 1, xk = mik

/m0, and try to
use this to define a map to Pn on the set with m0 6= 0. We have to show that m0Mi(1, x1, . . . , xn) = mi

(where m0 corresponds to xn
0 ), i.e., that m0Mi(1,mi1/m0, . . . ,min/m0) = mi. But this is true because

xd
0Mi(1, x1/x0, . . . , xn/x0) = Mi(x0, . . . , xn), and therefore (m0, . . . ,mN ) is the image of (x0, . . . , xn).

Hence Im(ρd) ⊇ Z(a).
2.12c ρd is continuous and bijective from Pn to Z(a). To show that it is a homeomorphism it is sufficient

to show that its inverse is continuous on any open set of Z(a) of the form mi 6= 0 (notation as above)
because these open sets cover Z(a). But this follows from the construction of this inverse above.

2.12d The 3-tuple embedding of P 1 into P 3 maps (x0 : x1) to (x3
0 : x2

0x1 : x0x
2
1 : x3

1) which is the projective
closure of {(x1, x

2
1, x

3
1)} in P 3, i.e., the twisted cubic curve.

2.13 The map is given by (x0 : x1 : x2) → (x2
0 : x2

1 : x2
2 : x0x1 : x1x2 : x2x0). Any curve in P 2 is defined by

some polynomial f(x0, x1, x2) = 0, f homogeneous, and therefore also by the polynomial f(x0, x1, x2)2 =
g(x2

0, x
2
1, x

2
2, x0x1, x1x2, x2x0) for some polynomial g. Then some factor of this polynomial g defines a

suitable hypersurface containing the image of the curve Z. (This assumes that P 2 is isomorphic to its
image which is easy to check (see 2.14 below) once one has defined isomorphisms of varieties, so that
curves in the image of P 2 correspond to curves in P 2.)

2.14 The image of ψ is the set Y defined by the equations of the form xabxcd = xacxbd. Proof: the image
is clearly contained in Y . Conversely if (x00 : x10 : · · · : xrs) ∈ Y the we may assume that x00 (say) is
nonzero. But then the point is the image of (x00 : x10 : · · · : xr0)× (x00 : x01 : · · · : x0s) ∈ P r × P s.

2.15a (a0 : a1) × (b0 : b1) = (a0b0 : a0b1 : a1b0 : a1b1) = (w : x : y : z), and the image of P 1 × P 1 is then the
subvariety xt− zw = 0 as in 2.14.

2.15b Q is isomorphic to P 1 × P 1, so we can take the two families of lines to correspond to point×line and
line×point. (It is easy to check that these are lines in Q ⊂ P 3; for example the image of (a0 : a1)× P 1

is the set of points (w : x : y : z) ∈ P 3 with a1w = a0y, a1x = a0z.)
2.15c The closed subset x = y of Q is not one of these lines.
2.16a x2 = yw, xy = zw, so y2w = xzw, so w = 0 or y2 = xz. Hence Q1 ∩ Q2 is the intersection of the line

w = x = 0 and the twisted cubic x2 = yw, xy = zw, y2 = xz.
2.16b L ∩ C is the point P = (0 : 0 : 1), so I(P ) = (x, y), but I(L) + I(C) = (x2, y) 6= (x, y).
2.17a By problem 1.8, the intersection of q hypersurfaces has dimension at least n− q. If a can be generated

by q elements then Z(y) is the intersection of q hypersurfaces and therefore has dimension at least n− q
(using problem 2.8).

2.17b If I(Y ) can be generated by r elements then Y is the intersection of their hypersurfaces.
2.17c Y is the intersection of H1 = Z(x2 −wy) and H2 = Z(y3 +wz2 − 2xyz) as (xy−wz)2 = w(y3 +wz2 −

2xyz) + y2(x2 − wy) and (y2 − xz)2 = y(y3 + wz2 − 2xyz) + z2(x2 − wy), and y3 = wz2 − 2xyz =
y(y2 − xz) + z(wz − xy). On the other hand I(Y ) has no homogeneous elements of degree 0 or 1 and
the space of homogeneous elements of degree 2 is 3 dimensional, so any set of generators must have at
least 3 elements.

2.17d Still an unsolved problem (as far as I know).
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