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a is homogeneous and so defines a cone in A"*1. f vanishes on all the elements of this cone (including
0 as f has positive degree) so f¢ € a for some g > 0 by the usual Nullstellensatz.

(iii) implies (i) is trivial as #¢ € S4. Proof that (i) implies (ii): If Z(a) is empty, then in A"+, Z(a)
must be empty or (0,...,0), so y/a must be S or ®y50S54. Proof that (ii) implies (iii): y/a contains z;,
so there is some m with zj" € a for all i, so a contains S,,(,4+1) as any monomial of degree m(n + 1)
must have z}" as a factor for some .

(a),(b),(c),(e) are trivial. For (d), clearly I(Z(a)) contains v/a. As Z(a) is nonempty, any nonzero
homogeneous polynomial vanishing on it must have positive degree. By 2.1, this implies that f? € a.
Therefore I(Z(a)) is contained in /a as it is a homogeneous ideal.

Follows from 2.3d,e, and 2.2.

IfY =Y,UYs, then I(Y) = I(Y1) N I(Yz) D I(Y1)I(Yz). Therefore if I(Y) is prime, I(Y) must be
either 1(Y7) or I(Y3), so Y is Y7 or Y5. On the other hand if Y is not prime, then ab € I(Y), with
a ¢ I(Y),b¢ I(Y). Therefore Y is the union of the proper subsets Y N Z(a), Y N Z(b) and is therefore
not irreducible.

I(P™) = 0 which is a prime ideal.

P can be covered by n + 1 copies of A™ which is Noetherian.

See proposition 1.5 and part (a) of this question.

S(Y) is the coordinate ring of the cone in A" corresponding to Y (assuming Y is nonempty). S(Y),,
is the coordinate ring of the cone Y — (x; = 0) if z; is not identically 0 on Y, i.e., Y; is nonempty.
Therefore the homogeneous part of degree 0 of S(Y),, is the coordinate ring of the cone with z; = 0,
which is isomorphic to Y;, and therefore S(Y),, = A(Y;)[zi, 1/x;] as every element of S(Y),, is the sum
of monomials of the form (zF™ x element of degree 0). Therefore Tr.deg.(S(Y),,) = Tr.deg.(A(Y;) +
1) = Tr.deg.S(Y). Therefore dim(S(Y)) = 1+ dim(Y;) whenever Y; # 0. The Y;’s cover Y, so
dim(Y") = sup(dim(Y;)), so dim(S(Y) = 1 + dim(Y).

P"™ is covered by n + 1 open copies of A", so dim(P™) = sup(dim(A™)) = n.

Y is contained in P", and therefore covered by n+1 copies of A™. In each copy A; of A", Y U A; = YUA;
as A; is open. Hence dim(Y N 4;) = dim(Y N 4;) = dim(Y N A4;), and therefore dim(Y") = sup(dim(Y N
A;) =supdim(Y N 4;) = dim(Y).

If f is any homogeneous polynomial of positive degree then the zero set of f has dimension n — 1 as
it has this dimension on some affine subsets and is a proper closed subset of P". Also f is irreducible,
so the homogeneous ideal generated by it is prime (as rings of polynomials are U.F.D.’s so irreducibles
are primes) so its variety is irreducible. Conversely if Y is any proper closed subset of P™ then there is
some homogeneous polynomial f vanishing on Y which we can assume to be irreducible because Y is
irreducible (so some factor of f must also vanish on Y if f is not irreducible). Then the zero set of f
is an irreducible n — 1 dimensional closed subset of P™ containing the n — 1 dimensional closed subset
Y, and so must be equal to Y (because any proper closed subset of an irreducible topological space has
smaller dimension).

Bg(zo, ..., xn) = xdg(x1/70,...,2n/70) if g is of degree d. If g vanishes on Y then (g vanishes on
Y, so I(Y) 2 B(I(Y)). If h vanishes on Y then we can assume h is homogeneous. If g(zy,...,z,) =
h(1,z1,...,2,), then h = Bg, so I(Y) is generated by B3(I(Y))

{#, 2,3} =Y, and I(Y) = (22 — 23,23 — 23). B(z2 — 23) = 2072 — 2% and B(x3 — 23) = 2323 — 273.
But I(Y) contains z;23 — 23 which is not contained in (3(zy — 22), B(z3 — z3)).

Obvious.

They have the same ideal, which is prime if and only if they are irreducible.

See 2.6.

I(Y) is generated by linear polynomials {p;} if and only if ¥ is the intersections of the hyperplanes
{pi = 0}.

Any hyperplane in P™ is a copy of P"~!, and the intersection of any other hyperplane of P™ with this
P~ is a hyperplane of the P"~!. Therefore any r-dimensional linear variety in P" is the intersection
of n — 7 hyperplanes and not the intersection of n — r — 1 hyperplanes. Therefore its ideal is minimally
generated by n — r linear polynomials.
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Y is the intersection of n — r hyperplanes and Z is the intersection of n — s hyperplanes, so Y N Z is
the intersection of 2n — r — s hyperplanes, which has dimension at least n — (2n —r — s) = r + s — n.
In particular it is nonempty if » + s > n.

6 maps k[yo,...,yn] to an integral domain, so its kernel is a prime ideal. If f € k[yo,...,yn], f =
fo+ fi+ - with f; of degree i, then 6(f;) has degree di, so 6(f) = 0 if and only if 6(f;) = 0 for all 4,
and therefore the kernel is also a homogeneous ideal.

If f € Ker(9) then f(Mo,...,M,) = 0. Hence f vanishes on any point (My(a), ..., M,(a)), so Im(pq) C
Z(a). This proves the easy half. Any monomial raised to the power of d is a product of monomials of
the form z¢. Choose any point (mg,...,my) € Z(a). Some m; is nonzero and m¢ = [], m;, where
each m;, corresponds to some monomial x4, hence some m; corresponding to a monomial z¢ is nonzero;
say ¢ = 0. If m;,,...,m;, correspond to :rgflxl, - ,nglxn then put ¢y = 1, x, = m,, /mo, and try to
use this to define a map to P" on the set with mg # 0. We have to show that moM;(1,z1,...,2,) = m;
(where mg corresponds to x{}), i.e., that moM;(1, m;, /mo,...,m;, /mg) = m;. But this is true because
xdM; (1,21 /70, ..., 2, /x0) = M;i(x0,...,7,), and therefore (myg, ..., my) is the image of (zo,...,z,).
Hence Im(pq) 2 Z(a).

pa is continuous and bijective from P™ to Z(a). To show that it is a homeomorphism it is sufficient
to show that its inverse is continuous on any open set of Z(a) of the form m; # 0 (notation as above)
because these open sets cover Z(a). But this follows from the construction of this inverse above.

The 3-tuple embedding of P! into P3 maps (zo : x1) to (23 : 2321 : zox? : 23) which is the projective
closure of {(z1,2%,23)} in P3, i.e., the twisted cubic curve.

The map is given by (xg : z1 : 22) — (23 : 23 : 23 : mox1 : T1292 : T270). Any curve in P? is defined by
some polynomial f(zg,21,72) = 0, f homogeneous, and therefore also by the polynomial f(xg,z1,22)% =
g(x3, 23,23, w021, 1172, T270) for some polynomial g. Then some factor of this polynomial g defines a
suitable hypersurface containing the image of the curve Z. (This assumes that P? is isomorphic to its
image which is easy to check (see 2.14 below) once one has defined isomorphisms of varieties, so that
curves in the image of P? correspond to curves in P2.)

The image of ¢ is the set Y defined by the equations of the form x,pTcq = Zacxpg. Proof: the image
is clearly contained in Y. Conversely if (xog : 210 : -+ : Zrs) € Y the we may assume that zqgg (say) is
nonzero. But then the point is the image of (oo : 10 : -+ : @ro) X (oo : To1 : -+ : Ts) € PT x P*.

(ag : a1) x (bg : by) = (agbg : agby : aibg : a1by) = (w: z : y : z), and the image of P* x P! is then the
subvariety xt — zw = 0 as in 2.14.

Q is isomorphic to P! x P!, so we can take the two families of lines to correspond to pointxline and
linexpoint. (It is easy to check that these are lines in Q C P3; for example the image of (ag : a1) x P!
is the set of points (w: xz :y: 2) € P3 with a;w = apy, a1z = apz.)

The closed subset z = y of () is not one of these lines.

2% = yw, vy = 2w, so y?w = zzw, so w = 0 or y?> = rz. Hence Q1 N Q5 is the intersection of the line
w =z = 0 and the twisted cubic 22 = yw, zy = 2w, y? = xz.

LNC is the point P=(0:0:1), so I(P) = (z,y), but I(L) + I(C) = (z%,y) # (z,y).

By problem 1.8, the intersection of ¢ hypersurfaces has dimension at least n — ¢q. If a can be generated
by ¢ elements then Z(y) is the intersection of ¢ hypersurfaces and therefore has dimension at least n — ¢
(using problem 2.8).

If I(Y) can be generated by r elements then Y is the intersection of their hypersurfaces.

Y is the intersection of Hy = Z(2? —wy) and Hy = Z(y® + wz? — 22y2) as (vy — wz)? = w(y® + wz? —
22y2) + y*(2? — wy) and (y? — 22)? = y(y® + w2? — 22yz) + 22(2? — wy), and y® = w2? — 22yz =
y(y?> — 22) + 2(wz — xy). On the other hand I(Y’) has no homogeneous elements of degree 0 or 1 and
the space of homogeneous elements of degree 2 is 3 dimensional, so any set of generators must have at
least 3 elements.

Still an unsolved problem (as far as I know).



