Math 1A Practice Final

You are allowed 1 sheet of notes. Calculators are not allowed. Each question is worth 3 marks, which will only be given for a clear and correct answer in simplified form. There are questions on both sides of the paper.

The questions on this practice final are all exercises in Stewart; the exercise number is given at the end of the question so you can check your answer.

1. Draw the graph of $y=\sqrt{x+3}$. (1.3.17)
2. Prove that $\lim _{x \rightarrow 0} x^{2}=0$ using the ϵ, δ definition of limit. (2.4.25)
3. Prove that $e^{x}=2-x$ has at least one real root. (2.5.51)
4. Differentiate e^{x} / x^{2}. (3.2.5)
5. Find the derivative of $\tan (\cos (x))$. (3.5.29)
6. Find $d y / d x$ if $x^{2} y+x y^{2}=3 x$. (3.6.9)
7. Find the absolute maximum and absolute minimum values of $x /\left(x^{2}+1\right)$ on $[0,2]$. (4.1.53)
8. Prove that $2 \sin ^{-1} x=\cos ^{-1}\left(1-2 x^{2}\right)$ for $0 \leq x \leq 1$. (4.2.32)
9. Find $\lim _{x \rightarrow 1^{+}} \ln (x) \tan (\pi x / 2)$. (4.4.43)
10. Find the dimensions of the rectangle of largest area that can be inscribed in an equilateral triangle of side L if one side of the rectangle lies on the base of the triangle. (4.7.21)
11. Find the point on the line $y=4 x+7$ that is closest to the origin. (4.7.15)
12. Use Newton's method to find $30^{1 / 3}$ to two decimal places. (4.9.11)
13. Find the most general anti-derivative of $5 x^{1 / 4}-7 x^{3 / 4}$. (4.10.5)
14. Find f given that $f^{\prime \prime}(x)=2-12 x, f(0)=9, f(2)=15$. (4.10.37)
15. Estimate the area under the graph of $f(x)=1+x^{2}$ from $x=-1$ to $x=2$ using three rectangles and right endpoints. (5.1.5a)
16. Find an expression for the area under the graph of $f(x)=x \cos (x), 0 \leq x \leq \pi / 2$, as a limit. (5.1.19)
17. Evaluate the integral $\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x$ by interpreting it as an area. (5.2.37)
18. Prove that $\int_{0}^{\pi / 4} \sin ^{3}(x) d x \leq \int_{0}^{\pi / 4} \sin ^{2}(x) d x$. (5.2.51)
19. Find the derivative of $g(x)=\int_{0}^{x} \sqrt{1+2 t} d t$. (5.3.7)
20. Find the derivative of $y=\int_{\sqrt{x}}^{x^{3}} \sqrt{t} \sin (t) d t$. (5.3.51)
21. Evaluate the integral $\int_{0}^{2}\left(6 x^{2}-4 x+5\right) d x$. (5.4.17)
22. Evaluate the integral $\int_{0}^{\pi / 4}\left(\left(1+\cos ^{2}(\theta)\right) / \cos ^{2}(\theta)\right) d \theta$. (5.4.33)
23. Evaluate the indefinite integral $\int \frac{1+4 x}{\sqrt{1+x+2 x^{2}}} d x$. (5.5.11)
24. Evaluate the indefinite integral $\int \cot (x) d x$. (5.5.35)
25. Evaluate the definite integral $\int_{0}^{2}(x-1)^{25} d x$. (5.5.49)
26. Show that $1 / 2+1 / 3+\cdots+1 / n<\ln (n)$. (5.6.3)
27. Find the area enclosed by the curves $x=2 y^{2}, x+y=1$. (6.1.17)
28. Find the volume of the region obtained by rotating $y=x^{2}, 0 \leq x \leq 2, y=4, x=0$, about the y-axis. (6.2.5)
29. Use the method of cylindrical shells to find the volume of a sphere of radius r. (6.3.43)
30. Find the average value of $(x-3)^{2}$ on $[2,5]$. (6.5.9a)
