Math 1A Final 2012 Dec 14 $7{:}00\mathrm{pm}{-}10{:}00\mathrm{pm}$

Name	Student ID	Name of GSI
is worth 3 mark correct answer	s, which will only be given	ators are not allowed. Each questio for correct working and a clear an he final answer on this cover-shee per.
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		
16.		

1. Evaluate the limit $\lim_{t\to 0} \frac{\sqrt{2+t}-\sqrt{2-t}}{t}$.

2. Find dy/dx if $x\sin(y) + y\sin(x) = 2$.

3. If f(1) = 2 and $f'(x) \le 3$ for all x, what is the largest value that f(5) could be?

4. Find $\lim_{x\to 0} \frac{e^x - 1 - x - x^2/2}{x^3}$.

5. Use two steps of Newton's method starting with the initial approximation x = 1 to estimate a root of the equation $x^3 - 2x - 1 = 0$.

6. Find f given that $f''(t) = 2e^t + 3\sin(t), f(0) = 0, f(\pi) = 0.$

7. Evaluate the integral $\int_{-2}^{0} (1 + \sqrt{4 - x^2}) dx$ by interpreting it as an area.

8. Find the derivative of the function $g(x) = \int_x^{\pi} \sqrt{1 + \sec(t)} dt$.

9. Find the indefinite integral $\int \frac{1}{x^2(x+2)} dx$ by writing the integrand in the form $a/x^2 + b/x + c/(x+2)$.

10. Evaluate the integral $\int_{\pi/4}^{\pi/3} \frac{1}{(\sin x)^2} dx$.

11. Find the area of the finite region bounded by the lines $x = 0, x = 2y - y^2$.

12. Estimate $1 + 1/2 + 1/3 + \cdots + 1/1000000000$ as a decimal number with an error of less than 1/2, given that $\ln(10)$ is about 2.30.

13. Evaluate the indefinite integral $\int \frac{\ln(x)}{x} dx$.

14. Evaluate the definite integral $\int_0^2 x e^x dx$.

15. Use the method of cylinderical shells to find the volume generated by rotating the region bounded by $y = e^{-x^2}$, y = 0, x = 0, x = 1, about the y-axis.

16. Find the volume of the region obtained by rotating the region bounded by the curves $y = x^4$, y = 0, x = 1, about the x-axis.