Math 1A Final 2006-12-13 12:30-3:30pm

You are allowed 1 sheet of notes. Calculators are not allowed. Each question is worth 3 marks, which will only be given for correct working and a clear and correct answer in simplified form. Write the final answer to each question on the coversheet, and attach the coversheet to your bluebook.

1. Evaluate the limit $\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h}$.
2. Differentiate $x /\left(1+x^{2}\right)$.
3. Find the derivative of the function $y=\sin (\cos (\sqrt{x}))$.
4. Find $d y / d x$ if $x^{3}+x^{2} y+y^{2}=6$.
5. Find the derivative $D^{57} e^{3 x}$. $(D$ means $d / d x)$
6. Find $\lim _{x \rightarrow 0^{+}} x^{x^{2}}$.
7. Find a positive number x such that $x+1 / x$ is as small as possible.
8. Use one iteration of Newton's method applied to the initial approximation $x_{1}=5$ to estimate $\sqrt{26}$.
9. Find the most general antiderivative of $\sin (\theta) / \cos ^{2}(\theta)$.
10. Find f given that $f^{\prime \prime}(x)=1 / x^{2}, f(1)=1, f(2)=0$.
11. If $\int_{1}^{5} f(x) d x=1$ and $\int_{1}^{5} g(x) d x=2$ find $\int_{1}^{5} 2 f(x)-3 g(x) d x$.
12. Evaluate the integral $\int_{-1}^{2}|x| d x$ by interpreting it as an area.
13. Find the derivative of the function $g(x)=\int_{1}^{x} t^{2} \ln (t) d t$.
14. Find the derivative of $y=\int_{\cos (x)}^{x} \cos \left(t^{2}\right) d t$.
15. Evaluate the integral $\int_{1}^{64} \frac{1+x^{1 / 3}}{\sqrt{x}} d x$.
16. Evaluate the integral $\int_{0}^{\pi / 4} \frac{1+\cos ^{2}(\theta)}{\cos ^{2}(\theta)} d \theta$.
17. Evaluate the indefinite integral $\int y^{3} \sqrt{2 y^{4}-1} d y$.
18. Evaluate the indefinite integral $\int \tan (x) \ln (\cos (x)) d x$.
19. Evaluate the definite integral $\int_{1}^{e} \frac{\ln (x)^{3}}{x} d x$.
20. Evaluate the indefinite integral $\int \frac{\cos (x)}{\sqrt{1+\sin (x)}} d x$.
21. Find the area enclosed by the curves $y=1 / x, y=1 / x^{2}, x=3$.
22. Find the volume of the region obtained by rotating the region bounded by the curves $y=1 / x, y=0, x=1, x=3$, about the x-axis.
23. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by $y=x^{4}, y=0, x=1$ about the y-axis.
24. Find the average value of $\cos (x) \sin (x)^{4}$ on $[0, \pi]$.
