Math 1A Final 2005-12-15 5:00-8:00pm

You are allowed 1 sheet of notes. Calculators are not allowed. Each question is worth 3 marks, which will only be given for a clear and correct answer in simplified form.

1. Draw the graph of the function $y=|\cos (x)|$ for $-\pi \leq x \leq \pi$.
2. Evaluate the limit $\lim _{x \rightarrow 9} \frac{x^{2}-81}{\sqrt{x}-3}$.
3. Prove that $x^{4}+1=3 x$ has at least one real root.
4. Differentiate $e^{x} /(x+1)$.
5. Find the derivative of the function $y=\cos (\cos (\cos (x)))$.
6. Find $d y / d x$ if $x^{2} y+x y^{2}=2 x$.
7. Find the derivative $D^{57} \sin (2 x)$. (D means $d / d x$)
8. If $f(1)=10$ and $f^{\prime}(x) \geq-1$ for all x, what is the smallest possible value of $f(5)$?
9. Find $\lim _{x \rightarrow+\infty} x^{1 / x}$.
10. Sketch the curve $y=x \ln (x)^{2}$ for $x>0$.
11. Find two numbers whose difference is 10 and whose product is a minimum.
12. Use one iteration of Newton's method applied to the initial approximation $x_{1}=2$ to estimate $9^{1 / 3}$.
13. Find a function f such that $f^{\prime}(x)=x^{3}$ and the line $x+y=0$ is tangent to the graph of f.
14. Find f given that $f^{\prime \prime}(x)=\sin (x), f(0)=1, f^{\prime}(0)=0$.
15. Estimate the area under the graph of $f(x)=x^{2}$ from $x=1$ to $x=4$ using three rectangles and left endpoints. Sketch the graph and rectangles.
16. If $\int_{1}^{5} f(x) d x=12$ and $\int_{1}^{4} f(x) d x=14$ find $\int_{4}^{5} f(x) d x$.
17. Evaluate the integral $\int_{0}^{3}\left(1+\sqrt{9-x^{2}}\right) d x$ by interpreting it as an area.
18. Prove that $1 / e \leq \int_{0}^{1} e^{-x^{2}} d x \leq 1$.
19. Find the derivative of the function $g(x)=\int_{0}^{x} e^{-t^{2}} d t$.
20. Find the derivative of $y=\int_{\cos (x)}^{\sin (x)} \tan (t) d t$.
21. Evaluate the integral $\int_{-1}^{1}\left(x^{3}+2 x+1\right) d x$.
22. Evaluate the integral $\int_{0}^{\pi / 4} \sec (\theta) \tan (\theta) d \theta$.
23. Evaluate the indefinite integral $\int\left(1+y^{2}\right)^{10} y d y$.
24. Evaluate the indefinite integral $\int \tan (x) \ln (\cos (x)) d x$.
25. Evaluate the definite integral $\int_{1}^{e} \frac{\ln (x)^{3}}{x} d x$.
26. By comparing areas, show that $1+1 / 2+1 / 3+\cdots+1 /(n-1)>\ln (n)$ if $n \geq 2$.
27. Find the area enclosed by the curves $y=x^{2}, y=2 /\left(x^{2}+1\right)$.
28. Find the volume of the region obtained by rotating the region bounded by the curves $y=\sqrt{x-1}, y=0, x=2, x=10$, about the x-axis.
29. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by $y=x^{2}, y=0, x=1$ about the y-axis.
30. Find the average value of $\sin (x)^{2}$ on $[0,2 \pi]$.
