Math 121B practice midterm.

Please make sure that your name is on everything you hand in.
You are allowed calculators and 1 page of notes.
All questions have about the same number of marks.

1. Solve the following differential equation by the method of Frobenius (generalized power series):

$$
x^{2} y^{\prime \prime}-6 y=0 .
$$

2. Express $\frac{d}{d x} J_{0}(x)$ in terms of $J_{1}(x)$, using the definition

$$
J_{p}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(x / 2)^{2 n+p}}{n!(n+p)!}
$$

3. Use the relation

$$
\exp \left(2 x h-h^{2}\right)=\sum_{n=0}^{\infty} \frac{H_{n}(x) h^{n}}{n!}
$$

to calculate the Hermite polynomials H_{0}, H_{1}, H_{2}, and H_{3}. What is the coefficient of x^{n} of $H_{n}(x)$?
4. The Laguerre differential equation is

$$
x y^{\prime \prime}+(1-x) y^{\prime}+p y=0 .
$$

Find the polynomial solution $L_{p}(x)$ with constant term 1 for $p=3$.
5. A bar of length π with insulated sides is initially at a temperature of 1. Starting at time $t=0$, the ends are held at a temperature of 0 . Find the temperature distribution $T(x, t)$ in the bar at time t. The temperature T satisfies the heat equation

$$
\frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial x^{2}}
$$

