Math 121B first midterm 2013-2-21 11:00-12:30.

Please make sure that your name is on everything you hand in. You are allowed calculators and 1 page of notes. All questions have about the same number of marks. Full credit will only be given for correct working and a clear and correct answer in simplified form.

1. Express the integral

$$
\int_{0}^{\infty} y^{6} e^{-y^{2}} d y
$$

as a gamma function, and use this to evaluate it explicitly.
2. Use Stirling's formula $\Gamma(n) \cong n^{n-1} e^{-n} \sqrt{2 \pi n}$ to evaluate

$$
\lim _{n \rightarrow \infty} \frac{\Gamma(n+3 / 2)}{\Gamma(n+1) \sqrt{n}} .
$$

3. Find the general solution of

$$
y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-2\right) y=0
$$

by writing y as a power series $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$ in x.
4. Find the first five coefficients $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ of the expansion of $f(x)=$ $\sum_{n} a_{n} P_{n}(x)$ as a series of Legendre polynomials, where $f(x)=-1$ for $-1<x<0$ and $f(x)=1$ for $0<x<1$. Find the best (in the least squares sense) third degree polynomial approximation to the function f. (The first few Legendre polynomials are $P_{0}(x)=1, P_{1}(x)=x$, $P_{2}(x)=\left(3 x^{2}-1\right) / 2, P_{3}(x)=\left(5 x^{3}-3 x\right) / 2, P_{4}(x)=\left(35 x^{4}-30 x^{2}+\right.$ 3)/8.)
5. Find the coefficient of x^{3} in the Legendre polynomial $P_{5}(x)$ using either Rodrigues' formula

$$
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}
$$

or any other method that would work in general. (You will get no credit just for copying P_{5} from your notes. To get full credit for this question you have to find the coefficient using a method that would work for any other Legendre polynomial.)

