Math 121 midterm, Tuesday October 30, 9:40-11:00.

Please make sure that your name is on everything you hand in. You are allowed calculators and 1 page of notes. All questions have about the same number of marks.

1. Find the point on the sphere $x^{2}+y^{2}+z^{2}=1$ for which $x+2 y+2 z$ is a maximum.
2. If $w=\int_{x}^{x^{2}} e^{-u^{2}} d u$ find $d w / d x$.
3. Show that $x /\left(x^{2}+y^{2}\right)$ is harmonic (in other words, it satisfies Laplace's equation). Find an analytic function $f(z)=f(x+i y)$ of which it is the real part. (Hint: the function has degree -1 , so the same is likely to be true for f.) Find the conjugate harmonic function $\operatorname{Im}(f(x+i y))$.
4. Evaluate the contour integral $\int_{C} e^{z} d z /(z-2)$ if C is the circle of center 0 and radius 3 .
5. Find the Laurent series for $\sin (\pi z) /\left(4 z^{2}-1\right)$ about the point $z=1 / 2$ and use this to find the residue at $z=1 / 2$.
6. Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+1} d x
$$

(Hint: $\cos (x)=\operatorname{Re}(\exp (i x))$.)
7. Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{5-3 \cos (\theta)}
$$

(Hint: put $z=e^{i \theta}$.)
8. A flat plate is in the shape of a quarter circle of radius 1 , and consists of the points (x, y) in the plane with $x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1$. The curved part of the boundary is insulated and the edges $y=0$ and $x=0$ are held at temperatures of 0° and 100°. Find the temperature distribution $T(x, y)$ inside the plate. (Hint: if the quarter circle is regarded as part of the unit circle in the z-plane, then the mapping function $w=\log (z)$ maps the quarter circle to an infinitely long rectangle in the w-plane.)

