Homework 7.

$1.2 \partial s / \partial t=t^{u-1}, \partial s / \partial u=t^{u} \log (t)$.
$1.4 \partial w / \partial x=3 x^{2}-2 y \partial w / \partial y=-3 y^{2}-2 x$. The only real solutions to both of these being zero are $(x, y)=$ $(0,0)$ or $(-2 / 3,2 / 3)$. (There are also a couple of complex solutions.) At $(0,0), \partial^{2} w / \partial x^{2}=\partial^{2} w / \partial y^{2}=0$. . At $(-2 / 3,2 / 3), \partial^{2} w / \partial x^{2}=6 x=-4, \partial^{2} w / \partial y^{2}=-6 y=-4$.
1.6a $\partial^{2} u / \partial x \partial y=-e^{x} \sin (y)=\partial^{2} u / \partial y \partial x$.
1.6b $\partial^{2} u / \partial x^{2}=e^{x} \cos (y)=-\partial^{2} u / \partial y^{2}$.
$1.72 x$
$1.8 z=2 r^{2}-x^{2}$ so $(\partial z / \partial x)_{r}=-2 x$.
$1.9 z=x^{2}\left(1+2 \tan ^{2}(\theta)\right.$, so $(\partial z / \partial x)_{\theta}=2 x\left(1+2 \tan ^{2}(\theta)\right)$.
$1.23 z=r^{2}\left(1+\sin (\theta)^{2}\right)$, so $\partial^{2} z / \partial r \partial \theta=4 r \sin (\theta) \cos (\theta)=2 r \sin (2 \theta)$
$1.24 \partial^{2} z / \partial x \partial y=0$.
2.3 Multiply series for $\log (1+x)$ by series for $1 /(1+y)$ to get $x-x^{2} / 2-x y+x^{3} / 3+x^{2} y / 2+x y^{2}+\cdots$
2.6 Substitute $x+y$ into series for exp to get $1+x+y+x^{2} / 2+x y+y^{2} / 2+\cdots$.
$2.8 e^{x} \cos (y)=1+x+x^{2} / 2-y^{2} / 2+x^{3} / 6-x y^{2} / 2+\cdots, e^{x} \sin (y)=y+x y+x^{2} y / 2-y^{3} / 6+\cdots$
4.1 The difference is about $d / d n\left(n^{-3}\right)=-3 n^{-4}$.
4.2 The difference is about $a \frac{d}{d n}(\sqrt{n})=a / 2 \sqrt{n}$. For $a=5, n=10^{12}$ this is about 2.5×10^{-6}.
4.10 Component $=\cos (\theta) \times f(\mathrm{f}=$ force, $\theta=$ angle) so $d($ component $)=\cos (\theta) d f-\sin (\theta) f d \theta$. For $f=500$, $d f= \pm 1, \theta=60^{\circ}=\pi / 3, d \theta= \pm .5^{\circ}=.5 \pi / 180$, we find that the error in the component is at most about $\cos (\pi / 3) \times 1+\sin (\pi / 3) \times 500 \times .5 \pi / 180$ which is about $4 n t$. (The book gives $4.28 n t$; this is excessive precision as the initial values are only give to one significant figure so the final answer should NOT be given to 3 significant figures!)
$\left.4.11 d\left(\sqrt{x^{2}-y^{2}}\right)=(2 x d x-2 y d y) / 2 \sqrt{x^{2}-y^{2}}\right)$. For $x=5, d x=-.02, y=3, d y=.03$ this gives a change of about $(2 \times 5 \times(-.02)-2 \times 3 \times .03) / 2 \sqrt{5^{2}-3^{2}}=-.0475$. So the answer is about $\sqrt{5^{2}-3^{2}}-.0475$ which is about 3.9525. (For comparison, the exact answer is $3.95215 \ldots$)
$4.13 d\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)=(x d x+y d y+z d z) / \sqrt{x^{2}+y^{2}+z^{2}}$. For $x=200, d x=1, y=200, d y=2, z=$ $100, d z=-1$ this gives a change in the length of the diagonal of about $500 / 300=1.66 \ldots$, so the new diagonal has length about 301.67.

