Homework 6.

$14.2-i$ has absolute value 1 and argument $-\pi / 2$. So $\log (-i)=\log (1)+i(2 n-1 / 2) \pi=i(2 n-1 / 2) \pi$ for integers n.
$14.6(1-i) / \sqrt{2}$ has absolute value 1 and argument $-\pi / 4$ So $\log ((1-i) / \sqrt{2})=i(2 n-1 / 4) \pi$ for integers n.
$14.9(-1)^{i}=\exp (i \log (-1))$. We know $\log (-1)=(2 n+1) \pi i$ for any integer n, so the values of $(-1)^{i}$ are $\exp (-(2 n+1) \pi)$ for integers n. For example, one value is $e^{\pi}=23 \cdot 14 \ldots$
$14.19 \cos (\pi+i \log (2))=-\cos (i \log (2))=-\cosh (\log (2))=-\left(e^{\log (2)}+e^{-\log (2)}\right) / 2=-(2+1 / 2) / 2=-5 / 4$.
14.24(b) i^{-1} has only one value $-i$. But $i^{i}=\exp (i \log (i))=\exp (i(2 n+1 / 2) i \pi)=\exp (-(2 n+1 / 2) \pi)$, so $\log \left(i^{i}\right)=-(2 n+1 / 2) \pi+2 m \pi i$, so $\left(i^{i}\right)^{i}=\exp ((-(2 n+1 / 2) \pi+2 m \pi i) i)=\exp (2 m \pi-\pi i / 2)=-i \exp (2 m \pi)$ for any integer m.
15.1 If $z=\arcsin (2)$ then $2=\sin (z)=\left(e^{i z}-e^{-i z}\right) / 2 i$. Put $a=e^{i z}$. Then $a-a^{-1}=4 i$, so $a^{2}-4 i a-1=0$, so $a=2 i \pm \sqrt{-3}=(2 \pm \sqrt{3}) i$. So $i z=\log (a)=\log (2 \pm \sqrt{3})+(2 n+1) \pi i / 2$. So $z=-i \log (2 \pm \sqrt{3})+(2 n+1) \pi / 2$.
15.2 If $z=\arctan (2 i)$ then $2 i=\tan (z)=\left(a-a^{-1}\right) / i\left(a+a^{-1}\right)$ where $a=e^{i z}$. Solving for a gives $a^{2}=-1 / 3$, so $a= \pm i / \sqrt{3}$. Therefore $i z=\log (1 / \sqrt{3})+i \pi(n+1 / 2)$ so $z=\pi(n+1 / 2)+\log (3) / 2$.
15.3 We want to solve $1 / 2=\cosh (z)=\left(e^{z}+e^{-z}\right) / 2$, so $e^{z}=1 / 2 \pm \sqrt{3} i / 2$, so $z=\pi i(2 n \pm 1 / 3)$.
15.17 We want to show that $\tan (z)= \pm i$ has no solutions. This equation is equivalent to $(a-1 / a) /(a+1 / a)=$ ± 1 where $a=e^{i z}$. But this equation for a has no solutions in a for non-zero complex numbers. (Note that a must be non-zero as it is for the form $e^{i z}$.)
16.11 Put $z=e^{i \theta}$. Then $z+z^{3}+z^{5}+\cdots+z^{2 n-1}=z\left(1-z^{2 n}\right) /\left(1-z^{2}\right)$ (geometric series) $=\left(1-z^{2 n}\right) /(z-z-1)=$ $i(1-\cos (2 n \theta)-i \sin (2 n \theta)) / 2 \sin (\theta)$. Equating real and imaginary parts shows that the sum of the sin series in the question is $(1-\cos (2 n \theta)) / 2 \sin (\theta)$, and the sum of the $\cos \operatorname{series}$ is $\sin (2 n \theta) / 2 \sin (\theta)$. This is equivalent to the answer given because $1-\cos (2 n \theta)=2 \sin ^{2}(n \theta)$.
$17.1(1+i) /(1-i)=i$, so its 2718^{\prime} th power is $i^{2718}=(-1)^{1359}=-1$.
$17.7(-i)^{i}=\exp (i \log (-i))=\exp (i(2 n-1 / 2) \pi i)=\exp ((1 / 2-2 n) \pi)$.
17.14 Circle, center $2 i$, radius 1 .
17.17 Done in class.
17.19 Done in class.
$17.23 \cos (i z)=\left(\exp \left(i^{2} z\right)+\exp \left(-i^{2} z\right)\right) / 2=(\exp (-z)+\exp (z)) / 2=\cosh (z)$.
17.24 Similar to 17.23 .
17.25a $\overline{\cos (z)}=\overline{(\exp (i z)+\exp (-i z)) / 2}=\overline{\exp (i z)} / 2+\overline{\exp (-i z)} / 2=\exp (i \bar{z}) / 2+\exp (-i \bar{z}) / 2=\cos (\bar{z})$.
17.25 b Yes.
17.25c No; try $z=1$.
17.25d Follows because $\overline{a_{n} z^{n}}={\overline{a_{n} z}}^{n}=a \bar{z}^{n}$ if a is real.
$17.30 \exp ((1+i) x)=\sum(1+i)^{n} x^{n} / n$!. Also $(1+i)^{n}=2^{n / 2} e^{n \pi / 4}$. If n is $2+4 m$ for some integer m then $e^{n \pi / 4}$ is $\pm i$ and so its real part is 0 . We know that $e^{x} \cos (x)$ is the real part of $\sum(1+i)^{n} x^{n} / n!$, so the coefficient of x^{n} vanishes if n is of the form $2+4 m . e^{x} \cos (x)=\sum x^{n}\left((1+i)^{n}+(1-i)^{n}\right) / n!$. The result for $e^{x} \sin (x)$ is similar: this time the coefficients of x^{0}, x^{4}, x^{8}, and so on vanish.
17.32 This series is $\exp (1+i \pi)=\exp (1) \exp (i \pi)=\exp (1)=-e$.

