Homework 4.

- 4.1 Real part = 1, imaginary part=1, absolute value = $\sqrt{2}$, $\theta = \pi/4$ (plus any integral multiple of 2π). Complex conjugate = 1 - i.
- 4.7 Real part = -1, imaginary part=0, absolute value =1, $\theta = 0$ (plus any integral multiple of 2π). Complex conjugate = -1.
- 4.14 Real part = $\sqrt{2}$, imaginary part= $\sqrt{2}$, absolute value =4, $\theta = \pi/4$ (plus any integral multiple of 2π). Complex conjugate = $\sqrt{2} - \sqrt{2}i$.
- 5.1 Multiply numerator an denominator by 1-i to find that this number is (1/2) (1/2)i. Real part = 1/2, imaginary part=-1/2, absolute value = $1/\sqrt{2}$, $\theta = -\pi/4$ (plus any integral multiple of 2π). Complex conjugate = 1/2 + i/2.
- 5.6 (1+i)/(1-i) = i, so the square is -1. Real part = -1, imaginary part=0, absolute value = 1, $\theta = 0$ (plus any integral multiple of 2π). Complex conjugate = -1.
- 5.13 Real part = $5\cos(2\pi/5)$, imaginary part= $5\sin(2\pi/5)$, absolute value = 5, $\theta = 2\pi/5$ (plus any integral multiple of 2π). Complex conjugate = $5\cos(2\pi/5) - 5\sin(2\pi/5)i$. (These expressions can be simplified slightly using $\cos(2\pi/5) = (\sqrt{5}-1)/4$, $\sin(2\pi/5) = \sqrt{10+2\sqrt{5}/4}$. 5.20 $1/(2-3i)^2 = -5/169 + (12/169)i$, $1/(x+iy)^2 = (x^2-y^2)/(x^2+y^2)^2 - 2ixy/(x^2+y^2)^2$. 5.32 $\sqrt{2^2+3^2}^4 = 169$.

- 5.39 x = y = anything.
- 5.45 Some algebra gives 2xy = 0, so either x or y is 0.
- 5.51 A circle, center 0, radius 2.
- 5.53 A circle, center 1, radius 1.
- 5.55 Put z = x + iy; then x + iy (x iy) = 5i, so y = 5/2. This gives a line parallel to the real axis passing through the point 5/2i.
- 5.56 The positive half of the imaginary axis.
- 5.60 A circle, center 1 i, radius 2.
- 5.62 An ellipse with foci 1 and -1 passing through the points ± 4 and $\pm \sqrt{15}i$.
- 6.3 Converges by ratio test.
- 6.4 Diverges as terms do not tend to 0 (they all have absolute value 1).
- 6.10 Converges as this is a geometric series with ratio of absolute value less than 1.
- 6.12 Converges by ratio test (or notice that this is series for $\exp(3+2i)$, and the series for exp converges everywhere).