Homework 4.

4.1 Real part $=1$, imaginary part $=1$, absolute value $=\sqrt{2}, \theta=\pi / 4$ (plus any integral multiple of 2π). Complex conjugate $=1-i$.
4.7 Real part $=-1$, imaginary part $=0$, absolute value $=1, \theta=0$ (plus any integral multiple of 2π). Complex conjugate $=-1$.
4.14 Real part $=\sqrt{2}$, imaginary part $=\sqrt{2}$, absolute value $=4, \theta=\pi / 4$ (plus any integral multiple of 2π). Complex conjugate $=\sqrt{2}-\sqrt{2} i$.
5.1 Multiply numerator an denominator by $1-i$ to find that this number is $(1 / 2)-(1 / 2) i$. Real part $=1 / 2$, imaginary part $=-1 / 2$, absolute value $=1 / \sqrt{2}, \theta=-\pi / 4$ (plus any integral multiple of 2π). Complex conjugate $=1 / 2+i / 2$.
$5.6(1+i) /(1-i)=i$, so the square is -1 . Real part $=-1$, imaginary part $=0$, absolute value $=1, \theta=0$ (plus any integral multiple of 2π). Complex conjugate $=-1$.
5.13 Real part $=5 \cos (2 \pi / 5)$, imaginary part $=5 \sin (2 \pi / 5)$, absolute value $=5, \theta=2 \pi / 5$ (plus any integral multiple of 2π). Complex conjugate $=5 \cos (2 \pi / 5)-5 \sin (2 \pi / 5) i$. (These expressions can be simplified slightly using $\cos (2 \pi / 5)=(\sqrt{5}-1) / 4, \sin (2 \pi / 5)=\sqrt{10+2 \sqrt{5}} / 4)$.
$5.201 /(2-3 i)^{2}=-5 / 169+(12 / 169) i, 1 /(x+i y)^{2}=\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)^{2}-2 i x y /\left(x^{2}+y^{2}\right)^{2}$.
$5.32{\sqrt{2^{2}+3^{2}}}^{4}=169$.
$5.39 x=y=$ anything.
5.45 Some algebra gives $2 x y=0$, so either x or y is 0 .
5.51 A circle, center 0, radius 2.
5.53 A circle, center 1, radius 1.
5.55 Put $z=x+i y$; then $x+i y-(x-i y)=5 i$, so $y=5 / 2$. This gives a line parallel to the real axis passing through the point $5 / 2 i$.
5.56 The positive half of the imaginary axis.
5.60 A circle, center $1-i$, radius 2 .
5.62 An ellipse with foci 1 and -1 passing through the points ± 4 and $\pm \sqrt{15} i$.
6.3 Converges by ratio test.
6.4 Diverges as terms do not tend to 0 (they all have absolute value 1).
6.10 Converges as this is a geometric series with ratio of absolute value less than 1.
6.12 Converges by ratio test (or notice that this is series for $\exp (3+2 i)$, and the series for exp converges everywhere).

