Homework 3.

When doing hand calculations of series is is normal to give only the first two or 3 non-zero terms. I have given an excessive number in the solutions below just in case someone got carried away.

- 13.2 Multiply two power series: $x + x^2 + (1/3)x^3 (1/30)x^5$
- 13.6 Multiply $\exp(x)$ by the series $1 + x + x^2 + \dots$ to get $1 + 2x + (5/2)x^2 + (8/3)x^3 + (65/24)x^4 + \dots$ 13.8 Work out series for $1/\cos(x)$ as in lecture: $1 + (1/2)x^2 + (5/24)x^4 + (61/720)x^6 + (277/8064)x^8 + \dots$
- 13.8 Work out series for $1/\cos(x)$ as in lecture: $1 + (1/2)x^2 + (5/24)x^4 + (61/720)x^6 + (277/8064)x^8 + \dots$ (There is no really simple formula for the general term.)
- 13.13 Substitute x^2 into the series for $\sin(x)$ to get $x^2 (1/6)x^6 + (1/120)x^{10} (1/5040)x^{14} + \cdots$
- 13.14 Divide series for $\sin(x)$ by x, then replace x by \sqrt{x} to get $1 (1/6)x + (1/120)x^2 (1/5040)x^3 + \cdots$
- 13.16 Substitute series for $\log(1 + x)$ into the series for $\sin(x)$. If you managed to get more than 2 non-zero terms of this you are doing pretty well. Result is $x (1/2)x^2 + (1/6)x^3 (1/12)x^5 + (1/8)x^6 \cdots$
- 13.17 Integrate the series for $\cos(t^2)$ term by term to get $x (1/10)x^5 + (1/216)x^9 \dots$
- 13.33 Use method 1 of the hint to get $(-1/2)x^2 (1/12)x^4 (1/45)x^6 (17/2520)x^8 \dots$
- 13.37 $e^x = e^3 e^{x-3} = e^3 (1 + (x-3)^2 + (x-3)^2/2! + (x-3)^3/3! + \cdots)$
- 13.40 $\sqrt{x} = \sqrt{25 + (x 25)} = 5\sqrt{1 + (x 25)/25} = 1 + (1/50)(x 25) (1/5000)(x 25)^2 + (1/250000)(x 25)^3 \cdots$, using the binomial theorem to expand $(1 + y)^{1/2}$.
- 14.5 The series is alternating in this region, so the error is at most the first term omitted which is $x^4/24$. For x at most 1/2, this is at most $(1/2)^4/16 = 0 \cdot 002604... < \cdot 003$.
- 14.6 The error is at most $|x|^2/2 + |x|^3/3 + |x|^4/4 \cdots$, which is at most $|x|^2/2 + |x|^3/2 + |x|^4/2 \cdots = |x|^2/2(1-x)$, and for $|x| \le 1$ this is at most $(\cdot 1)^2/2(1-\cdot 1) = \cdot 0055555 \cdots < \cdot .0056$.
- 14.9 Sum is $(1-1/2) + (1/2 1/3) + (1/3 1/4) + \cdots = 1$. Sum of first *n* terms is 1 1/(n+1), so remainder after *n* terms is 1/(n+1). So with 200 terms error is 1/201 which gives 2 decimal places accuracy. On the other hand the 200'th term is $1/200 \times 201$ which is much smaller: about $\cdot 000025$. So the size of the first term omitted is far smaller than the error.
- 15.5 $\log(1+x^3)$ is about $x^3 x^6/2$, so its 4'th derivative is about $-6 \times 5 \times 4 \times 3x^2/2$. At $x = \cdot 2$ this is about -7.2. (In fact just taking the first non-zero term does not give a very good answer. Taking more terms gives a better answer -6.885)
- 15.11 The power series for $\int_0^x \cos(x^2) dx$ is $x x^5/10 + x^9/240 \cdots$. Taking the first 3 terms and putting x = 1 gives an answer of about $1 1/10 + 1/240 = \cdot 90 \cdots$.
- 15.16 $\tan(x) = x + \frac{x^3}{3} + \cdots$, so limit is $\frac{1}{3}$ (= coefficient of x^3 in $\tan(x) x$).
- 15.18 $1/(\exp(x) 1) = x^{-1} 1/2 + (1/12)x + \cdots$, so the limit is 1/2.
- 16.3 Converges by the integral test. The proof given is wrong because not all terms on the left are greater than the corresponding terms on the right.
- 16.18 Integrate $1 u^2 + u^4 = u^6 \cdots$ term by term to get $x x^3/3 + x^5/5 x^7/7 + \cdots$
- 16.22 By problem 16.18, this is $\arctan(1) = \pi/4$