Homework 3.

When doing hand calculations of series is is normal to give only the first two or 3 non-zero terms. I

have given an excessive number in the solutions below just in case someone got carried away.
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Multiply two power series: x + x2 + (1/3)z% — (1/30)2°

Multiply exp(z) by the series 1+ z + 22 + ... to get 1 + 2z + (5/2)2% + (8/3)x> + (65/24)x* +

Work out series for 1/cos(z) as in lecture: 1+ (1/2)z% + (5/24)x* + (61/720)2° + (277/8064)° +

(There is no really simple formula for the general term.)

Substitute 22 into the series for sin(z) to get x? — (1/6)2% + (1/120)2'° — (1/5040)z14

Divide series for sin(z) by x, then replace z by /z to get 1 — (1/6)x + (1/120)2% — (1/5040)a3 + - - -

Substitute series for log(1 + x) into the series for sin(z). If you managed to get more than 2 non-zero

terms of this you are doing pretty well. Result is x — (1/2)z? + (1/6)2® — (1/12)2° + (1/8)2® — - --

Integrate the series for cos(t?) term by term to get # — (1/10)z° + (1/216)z" — ...

Use method 1 of the hint to get (—1/2)z% — (1/12)z* — (1/45)2% — (17/2520)2® —

e® *636“73*6(14-(1:—3)4—( —3)2/21 4+ (z —3)3/3! +--)

\F \/25 + (x —25) = 5/1 + (z — 25)/25 = 1+ (1/50)(z — 25) — (1/5000) (x — 25)2 + (1/250000) (x —
25)3 — ..., using the bmomlal theorem to expand (1 + y)'/2.

The series is alternating in this region, so the error is at most the first term omitted which is 2*/24.

For = at most 1/2, this is at most (1/2)%/16 = 0 - 002604... < -003.

The error is at most |x|2/2+|z|2/3+4|z|* /4 - -, which is at most |z|?/2+|z|?/2+|z|*/2- - = |z|2/2(1—2),
and for |x| < -1 this is at most (-1)2/2(1 — -1) = -0055555 - - - < -.0056.
Sumis (1-1/2)+(1/2—-1/3)4+(1/3—1/4)+--- = 1. Sum of first n terms is 1 —1/(n+1), so remainder

after n terms is 1/(n 4+ 1). So with 200 terms error is 1/201 which gives 2 decimal places accuracy. On
the other hand the 200’th term is 1/200 x 201 which is much smaller: about -000025. So the size of the
first term omitted is far smaller than the error.

log(1+23) is about 23 — 2°6/2, so its 4’th derivative is about —6 x 5 x 4 x 3z?/2. At x = -2 this is about
—7.2. (In fact just taking the first non-zero term does not give a very good answer. Taking more terms
gives a better answer —6.885)

The power series for [ cos(z?)dx is @ — #°/10 + 2°/240 — - --. Taking the first 3 terms and putting
2 = 1 gives an answer of about 1 —1/10+ 1/240 = -90- - -.

tan(z) =z + 23/3 + - -+, so limit is 1/3 (= coefficient of 3 in tan(x) — z).

1/(exp(x) —1) =27t —1/2+ (1/12)z + - - -, so the limit is 1/2.

Converges by the integral test. The proof given is wrong because not all terms on the left are greater
than the corresponding terms on the right.

Integrate 1 — u? +u* = w8 - -+ term by term to get x — 23/3 + 2°/5 — 27 /7 + - -

By problem 16.18, this is arctan( y=m/4



