Homework 3.

When doing hand calculations of series is is normal to give only the first two or 3 non-zero terms. I have given an excessive number in the solutions below just in case someone got carried away.
13.2 Multiply two power series: $x+x^{2}+(1 / 3) x^{3}-(1 / 30) x^{5}$
13.6 Multiply $\exp (x)$ by the series $1+x+x^{2}+\ldots$ to get $1+2 x+(5 / 2) x^{2}+(8 / 3) x^{3}+(65 / 24) x^{4}+\ldots$
13.8 Work out series for $1 / \cos (x)$ as in lecture: $1+(1 / 2) x^{2}+(5 / 24) x^{4}+(61 / 720) x^{6}+(277 / 8064) x^{8}+\ldots$. (There is no really simple formula for the general term.)
13.13 Substitute x^{2} into the series for $\sin (x)$ to get $x^{2}-(1 / 6) x^{6}+(1 / 120) x^{10}-(1 / 5040) x^{14}+\cdots$
13.14 Divide series for $\sin (x)$ by x, then replace x by \sqrt{x} to get $1-(1 / 6) x+(1 / 120) x^{2}-(1 / 5040) x^{3}+\cdots$
13.16 Substitute series for $\log (1+x)$ into the series for $\sin (x)$. If you managed to get more than 2 non-zero terms of this you are doing pretty well. Result is $x-(1 / 2) x^{2}+(1 / 6) x^{3}-(1 / 12) x^{5}+(1 / 8) x^{6}-\cdots$
13.17 Integrate the series for $\cos \left(t^{2}\right)$ term by term to get $x-(1 / 10) x^{5}+(1 / 216) x^{9}-\ldots$
13.33 Use method 1 of the hint to get $(-1 / 2) x^{2}-(1 / 12) x^{4}-(1 / 45) x^{6}-(17 / 2520) x^{8}-\ldots$
$13.37 e^{x}=e^{3} e^{x-3}=e^{3}\left(1+(x-3)+(x-3)^{2} / 2!+(x-3)^{3} / 3!+\cdots\right)$
$13.40 \sqrt{x}=\sqrt{25+(x-25)}=5 \sqrt{1+(x-25) / 25}=1+(1 / 50)(x-25)-(1 / 5000)(x-25)^{2}+(1 / 250000)(x-$ $25)^{3}-\cdots$, using the binomial theorem to expand $(1+y)^{1 / 2}$.
14.5 The series is alternating in this region, so the error is at most the first term omitted which is $x^{4} / 24$. For x at most $1 / 2$, this is at most $(1 / 2)^{4} / 16=0 \cdot 002604 \ldots<\cdot 003$.
14.6 The error is at most $|x|^{2} / 2+|x|^{3} / 3+|x|^{4} / 4 \cdots$, which is at most $|x|^{2} / 2+|x|^{3} / 2+|x|^{4} / 2 \cdots=|x|^{2} / 2(1-x)$, and for $|x| \leq \cdot 1$ this is at most $(\cdot 1)^{2} / 2(1-\cdot 1)=\cdot 0055555 \cdots<\cdot .0056$.
14.9 Sum is $(1-1 / 2)+(1 / 2-1 / 3)+(1 / 3-1 / 4)+\cdots=1$. Sum of first n terms is $1-1 /(n+1)$, so remainder after n terms is $1 /(n+1)$. So with 200 terms error is $1 / 201$ which gives 2 decimal places accuracy. On the other hand the 200 'th term is $1 / 200 \times 201$ which is much smaller: about $\cdot 000025$. So the size of the first term omitted is far smaller than the error.
$15.5 \log \left(1+x^{3}\right)$ is about $x^{3}-x^{6} / 2$, so its 4^{\prime} th derivative is about $-6 \times 5 \times 4 \times 3 x^{2} / 2$. At $x=\cdot 2$ this is about -7.2 . (In fact just taking the first non-zero term does not give a very good answer. Taking more terms gives a better answer -6.885)
15.11 The power series for $\int_{0}^{x} \cos \left(x^{2}\right) d x$ is $x-x^{5} / 10+x^{9} / 240-\cdots$. Taking the first 3 terms and putting $x=1$ gives an answer of about $1-1 / 10+1 / 240=.90 \cdots$.
$15.16 \tan (x)=x+x^{3} / 3+\cdots$, so limit is $1 / 3$ ($=$ coefficient of x^{3} in $\left.\tan (x)-x\right)$.
$15.181 /(\exp (x)-1)=x^{-1}-1 / 2+(1 / 12) x+\cdots$, so the limit is $1 / 2$.
16.3 Converges by the integral test. The proof given is wrong because not all terms on the left are greater than the corresponding terms on the right.
16.18 Integrate $1-u^{2}+u^{4}=u^{6} \cdots$ term by term to get $x-x^{3} / 3+x^{5} / 5-x^{7} / 7+\cdots$.
16.22 By problem 16.18 , this is $\arctan (1)=\pi / 4$

