Homework .

- $\begin{array}{l} 4.3 \ g(\alpha) = i(e^{i\pi\alpha} 2 + e^{-i\pi\alpha})/2\pi\alpha = 2i(\cos(\pi\alpha) 1)/2\pi\alpha \\ 4.4 \ g(\alpha) = (\sin(\alpha\pi) \sin(\alpha\pi/2))/\alpha\pi \\ 4.6 \ g(\alpha) = (\sin(\alpha) \alpha\cos(\alpha))/\pi i\alpha^2 \\ 4.7 \ (e^{-i\alpha} 1)/\pi\alpha^2 \\ 4.11 \ \cos(\pi\alpha/2)/\pi(1 \alpha^2) \\ 4.12 \ -i\alpha\cos(\pi\alpha/2)/\pi(1 \alpha^2) \\ 4.17 \ \sqrt{2/\pi} \int_0^\infty \sin(\alpha x) f(x) dx = \sqrt{2/\pi}(1 \cos(\pi\alpha))/\alpha \\ 4.21 \ g(\alpha) = \sigma e^{-\alpha^2 \sigma^2/2}/\sqrt{2\pi} \end{array}$
- 4.23 By the Fourier sin inversion formula applied to problem 4.17 we get $\int_0^\infty (1 \cos(\pi \alpha))/\alpha \sin(\alpha x) d\alpha = (\pi/2)f(x)$ where f(x) is 1 for $0 < x < \pi$, -1 for $-\pi < x < 0$, 0 for $|x| > \pi$, 1/2 for $x = \pi$ (as this is half the left and right limits). So for x = 1 (or anything else between 0 and π) we get $\pi/2$ and for $x = \pi$ we get $\pi/4$.

4.24 (c) $\sqrt{\pi/2}e^{-\alpha}$.