Homework .

$4.3 g(\alpha)=i\left(e^{i \pi \alpha}-2+e^{-i \pi \alpha}\right) / 2 \pi \alpha=2 i(\cos (\pi \alpha)-1) / 2 \pi \alpha$
$4.4 g(\alpha)=(\sin (\alpha \pi)-\sin (\alpha \pi / 2)) / \alpha \pi$
$4.6 g(\alpha)=(\sin (\alpha)-\alpha \cos (\alpha)) / \pi i \alpha^{2}$
$4.7\left(e^{-i \alpha}-1\right) / \pi \alpha^{2}$
$4.11 \cos (\pi \alpha / 2) / \pi\left(1-\alpha^{2}\right)$
$4.12-i \alpha \cos (\pi \alpha / 2) / \pi\left(1-\alpha^{2}\right)$
$4.17 \sqrt{2 / \pi} \int_{0}^{\infty} \sin (\alpha x) f(x) d x=\sqrt{2 / \pi}(1-\cos (\pi \alpha)) / \alpha$
$4.21 g(\alpha)=\sigma e^{-\alpha^{2} \sigma^{2} / 2} / \sqrt{2 \pi}$
4.23 By the Fourier sin inversion formula applied to problem 4.17 we get $\int_{0}^{\infty}(1-\cos (\pi \alpha)) / \alpha \sin (\alpha x) d \alpha=$ $(\pi / 2) f(x)$ where $f(x)$ is 1 for $0<x<\pi,-1$ for $-\pi<x<0,0$ for $|x|>\pi, 1 / 2$ for $x=\pi$ (as this is half the left and right limits). So for $x=1$ (or anything else between 0 and π) we get $\pi / 2$ and for $x=\pi$ we get $\pi / 4$.
4.24 (c) $\sqrt{\pi / 2} e^{-\alpha}$.

