Homework 2.

6.18 Ratio $\left(2^{n+1} /(n+1)^{2}\right) /\left(2^{n} / n^{2}\right)$ tends to 2 as n tends to ∞; as $|2|>1$ the series diverges.
6.21 Ratio of terms a_{n} / a_{n-1} is $5 n^{2} / 2 n(2 n-1)$ which tends to $5 / 4>1$ as $n \mapsto \infty$, so series diverges.
6.27 Ratio tends to 100 ; series diverges.
6.27 Compare with $\sum 1 / 2^{n}$; series converges.
6.34 Compare with $\sum n^{2} / n^{4}=\sum 1 / n^{2}$; series converges.
6.35 Compare with $\sum n^{2} / 5 n^{4}$ (noting that $\log (n)$ is much smaller than n for n large). Series converges.
7.2 Diverges because terms do not tend to 0 .
7.3 Converges by alternating series test.
7.5 Converges by alternating series test.
7.6 Diverges because terms do not tend to 0 .
9.1 Diverges by comparison with $\sum 1 / n$.
9.3 Converges by integral test $\left(\int^{\infty} n^{s} d n\right.$ converges for $s<-1$, and $\left.-\log (3)<-1\right)$.
9.7 Use ration test: $a_{n} / a_{n-1}=2 n(2 n-1) / 3 n^{2}$ which tends to $4 / 3>1$ so series diverges.
9.14 Converges by alternating series test.
9.21 Note that $\left|a_{n}\right|<\left|a_{0}\right| / 2^{n}$, so series converges by comparison with convergent series $\sum a_{0} / 2^{n}$.
10.1 Converges for $-1<x<1$. (Geometric series.) Diverges for $|x| \geq 1$ as terms do not tend to 0 .
10.3 Converges for $-1 \leq x \leq 1$ by comparison with $\sum 1 / n^{2}$.
10.15 Converges for $|(x-2) / 3|<1$ as this is a geometric series, in other words for $-1<x<5$. Diverges otherwise.
10.19 Converges for $\left|\left(x^{2}-1\right) / 8\right|<1$, which is equivalent to $x^{2}<9$, in other words $|x|<3$.
10.20 This is the series for $\exp \left(-2\left(x^{2}+1\right)^{2}\right)$ which converges for all x because the exponential series always converges.

