Homework 2.

- 6.18 Ratio $(2^{n+1}/(n+1)^2)/(2^n/n^2)$ tends to 2 as n tends to ∞ ; as |2| > 1 the series diverges.
- 6.21 Ratio of terms a_n/a_{n-1} is $5n^2/2n(2n-1)$ which tends to 5/4 > 1 as $n \to \infty$, so series diverges.
- 6.27 Ratio tends to 100; series diverges.
- 6.27 Compare with $\sum 1/2^n$; series converges.
- 6.34 Compare with $\sum n^2/n^4 = \sum 1/n^2$; series converges.
- 6.35 Compare with $\sum n^2/5n^4$ (noting that $\log(n)$ is much smaller than n for n large). Series converges.
- 7.2 Diverges because terms do not tend to 0.
- 7.3 Converges by alternating series test.
- 7.5 Converges by alternating series test.
- 7.6 Diverges because terms do not tend to 0.
- 9.1 Diverges by comparison with $\sum_{n=1}^{\infty} 1/n$. 9.3 Converges by integral test $(\int_{n=1}^{\infty} n^s dn$ converges for s < -1, and $-\log(3) < -1$).
- 9.7 Use ration test: $a_n/a_{n-1} = 2n(2n-1)/3n^2$ which tends to 4/3 > 1 so series diverges.
- 9.14 Converges by alternating series test.
- 9.21 Note that $|a_n| < |a_0|/2^n$, so series converges by comparison with convergent series $\sum a_0/2^n$.
- 10.1 Converges for -1 < x < 1. (Geometric series.) Diverges for $|x| \ge 1$ as terms do not tend to 0.
- 10.3 Converges for $-1 \le x \le 1$ by comparison with $\sum 1/n^2$.
- 10.15 Converges for |(x-2)/3| < 1 as this is a geometric series, in other words for -1 < x < 5. Diverges otherwise.
- 10.19 Converges for $|(x^2-1)/8| < 1$, which is equivalent to $x^2 < 9$, in other words |x| < 3.
- 10.20 This is the series for $\exp(-2(x^2+1)^2)$ which converges for all x because the exponential series always converges.