Homework 17.

$9.1 x=\sqrt{\left(\sqrt{u^{2}+v^{2}}+u\right) / 2}, y=\sqrt{\left(\sqrt{u^{2}+v^{2}}-u\right) / 2}$
$9.2 u=y / 2, v=-(x+1) / 2$.
$9.3 u=x /\left(x^{2}+y^{2}\right), v=-y /\left(x^{2}+y^{2}\right)$.
$9.4 u=e^{x} \cos (y), v=e^{x} \sin (y)$.
$9.5 u=\left(x^{2}+y^{2}-1\right) /\left(x^{2}+(y+1)^{2}\right), v=-2 x /\left(x^{2}+(y+1)^{2}\right)$
10.4 $T=200 \arctan (y / x) / \pi$. Isothermals are straight lines through the origin.
10.6 $T=100 y /\left(x^{2}+y^{2}\right)$. Isothermals $y /\left(x^{2}+y^{2}\right)=$ constant. Flow lines $x /\left(x^{2}+y^{2}\right)=$ constant.
10.11 The lines with u constant are the circles $(x+1)^{2}+y^{2}=C\left((x-1)^{2}+y^{2}\right)$. The lines with v constant are the circles passing through $(1,0)$ and $(-1,0)$.
$10.12 T=(20 / \pi) \arctan \left(2 y /\left(1-x^{2}-y^{2}\right)\right)$ where the arctangent is the value between $\pi / 2$ and $3 \pi / 2$.

