Homework .

- 1.1 $(x^3 3xy^2) + i(3x^2y y^3)$.
- 1.6 $e^x \cos(y) + ie^x \sin(y)$ 1.9 $x/(x^2 + y^2) i(y/x^2 + y^2).$
- 2.22 Not analytic.

- 2.23 Analytic for $z \neq 0$. (This is 1/z.) 2.34 $-z z^2/2 z^3/3 \cdots$. Radius of convergence 1, as the singularity closest to 0 is z = 1. 2.36 $1 + (1/2)z^2 + (1/2)(-1/2)z^4/2! + (1/2)(-1/2)(-3/2)z^6/3! + \cdots$. Nearest singularity is at $z^2 = -1$, so $z = \pm i$. So radius of convergence is 1.
- 2.39 Singularities are at $z = \pm 3i$, so radius of convergence = 3. Power series is $z/9(1+z^2/9) = z/9 z^3/9^2 + z^3/9^2 +$ $z^5/9^3 - \cdots$

- 2.54 f(z) = -iz, v(x, y) = -x.2.55 $f(z) = -iz^3, v(x, y) = -x^3 + 3xy^2.$ 2.56 $f(z) = -iz^2/2, v(x, y) = (y^2 x^2)/2.$
- 2.59 $f(z) = e^z$, $v(x, y) = e^x \sin(y)$.
- 2.60 $f(z) = 2\log(z), v(x, y) = 2\arg(y/x)$, at least for $\Re(x) > 0$.