Homework .

$1.1\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)$.
$1.6 e^{x} \cos (y)+i e^{x} \sin (y)$
$1.9 x /\left(x^{2}+y^{2}\right)-i\left(y / x^{2}+y^{2}\right)$.
2.22 Not analytic.
2.23 Analytic for $z \neq 0$. (This is $1 / z$.)
$2.34-z-z^{2} / 2-z^{3} / 3-\cdots$. Radius of convergence 1 , as the singularity closest to 0 is $z=1$.
$2.361+(1 / 2) z^{2}+(1 / 2)(-1 / 2) z^{4} / 2!+(1 / 2)(-1 / 2)(-3 / 2) z^{6} / 3!+\cdots$. Nearest singularity is at $z^{2}=-1$, so $z= \pm i$. So radius of convergence is 1 .
2.39 Singularities are at $z= \pm 3 i$, so radius of convergence $=3$. Power series is $z / 9\left(1+z^{2} / 9\right)=z / 9-z^{3} / 9^{2}+$ $z^{5} / 9^{3}-\cdots$.
$2.54 f(z)=-i z, v(x, y)=-x$.
$2.55 f(z)=-i z^{3}, v(x, y)=-x^{3}+3 x y^{2}$.
$2.56 f(z)=-i z^{2} / 2, v(x, y)=\left(y^{2}-x^{2}\right) / 2$.
$2.59 f(z)=e^{z}, v(x, y)=e^{x} \sin (y)$.
$2.60 f(z)=2 \log (z), v(x, y)=2 \arg (y / x)$, at least for $\Re(x)>0$.

