Homework 11.

8.1 If $f^{\prime}(a)=0$ then near $a, f(x)$ is about $f(a)+x^{x} \times f^{\prime \prime}(a) / 2$. So if $f^{\prime \prime}(a)>0$ we have a minimum, and if $f^{\prime \prime}(a)<0$ we have a maximum.
8.2 We can change variables so $a=b=0$. Then $f(x, y)-f(0,0)$ is about $x^{2} f_{x x} / 2+x y f_{x y}+y^{2} f_{y y} / 2$. Recall that a quadratic form $a x^{2}+b x y+c y^{2}$ is positive definite if $b^{2}<4 a c$ and $a>0$. This quadratic form is positive definite if $f_{x y}^{2}<4\left(f_{x x} / 2\right)\left(f_{y y} / 2\right)$ and $f_{x x}>0$, in other words $f_{x x} f_{y y}>f_{x y}^{2}$ and $f_{x x}>0$. So in this case the function has a minimum at $(0,0)$. The proof for a maximum is similar.
$8.5 f_{x}=1-2 x-y, f_{y}=1-x-y$, so stationary point is at $(x, y)=(0,-1) . f_{x x}=-2, f_{x y}=-1, f_{y y}=-1$, so $f_{x x} f_{y y}>f_{x y}^{2}$ the point is either a maximum or a minimum. As $f_{x x}<0$ the point is a maximum.
$9.1 l=s, \theta=\pi / 3$ (so we get a regular hexagon).
$9.2 r: l: s=\sqrt{5}:(1+\sqrt{5}): 3$.
9.3 Maximize $a b c$ subject to $a+2 b+2 c=84$. Taking partial derivatives of $a b c+\lambda(a+2 b+2 c-84)$ we get $b c+\lambda=0$ and $a b+2 \lambda=0$ and $a c+2 \lambda=0$. So $a=2 b=2 c$. So $a=28, b=14, c=14$ and $a b c=5488$.
$9.44 / \sqrt{3}$ by $6 / \sqrt{3}$ by $10 / \sqrt{3}$.
9.5 Taking partial derivatives of $\lambda(2 x+3 y+z-11)+4 x^{2}+y^{2}+z^{2}$ gives $2 \lambda+8 x=0,3 \lambda+2 y=0, \lambda+2 z=0$, $2 x+3 y+z-11=0$. Solution is $(x, y, z)=(1 / 2,3,1)$.
$9.6 x y z-\lambda(2 x+3 y+4 z-6)$ gives $y z=2 \lambda, x z=3 \lambda, x y=4 \lambda$. Solution is $(x, y, z)=(1,2 / 3,1 / 2)$ giving the volume to be $1 / 3$.
$9.7 x y z-\lambda(a x+b y+c z-d)$ gives $y z=a \lambda, x z=b \lambda, x y=c \lambda$. Solution is $(x, y, z)=(d / 3 a, d / 3 b, d / 3 c)$ giving the volume to be $d^{3} / 27 a b c$.
$9.8\left((x-1)^{2}+y^{2}\right)+\left((x+1)^{2}+y^{2}\right)+\lambda(2 x+3 y-4)$ gives $4 x+2 \lambda=0,4 y+3 \lambda=0,2 x+3 y-4=0$. So $(x, y)=(8 / 13,12 / 13)$.
10.11 (Draw the graph and look!)
$10.2 x^{2}+y^{2}-\lambda\left(5 x^{2}-6 x y+5 y^{2}-32\right)$ gives $x=y= \pm \sqrt{8}$ or $x=-y= \pm \sqrt{2}$, so the largest and smallest distances are 4 and 2 .
$10.7 z+\lambda(2 x+4 y-5)+\mu\left(x^{2}+z^{2}-2 y\right)$ gives $2 \lambda+2 x \mu=0,4 \lambda-2 \mu=0,1+2 \mu z=0$. Solution is $x=-1 / 2, y=3 / 2, z= \pm \sqrt{11 / 4}$. So largest z is $\sqrt{11 / 4}$.
10.10
(a) $\operatorname{Max} 1 / 2, \min -1 / 2$.
(b) $\operatorname{Max} 1, \min -1 / 2$.
(c) $\operatorname{Max} 1, \min -1 / 2$.

