Homework 11.

- 8.1 If f'(a) = 0 then near a, f(x) is about $f(a) + x^x \times f''(a)/2!$. So if f''(a) > 0 we have a minimum, and if f''(a) < 0 we have a maximum.
- 8.2 We can change variables so a = b = 0. Then f(x, y) f(0, 0) is about $x^2 f_{xx}/2 + xy f_{xy} + y^2 f_{yy}/2$. Recall that a quadratic form $ax^2 + bxy + cy^2$ is positive definite if $b^2 < 4ac$ and a > 0. This quadratic form is positive definite if $f_{xy}^2 < 4(f_{xx}/2)(f_{yy}/2)$ and $f_{xx} > 0$, in other words $f_{xx}f_{yy} > f_{xy}^2$ and $f_{xx} > 0$. So in this case the function has a minimum at (0,0). The proof for a maximum is similar.
- 8.5 $f_x = 1 2x y$, $f_y = 1 x y$, so stationary point is at (x, y) = (0, -1). $f_{xx} = -2$, $f_{xy} = -1$, $f_{yy} = -1$, so $f_{xx}f_{yy} > f_{xy}^2$ the point is either a maximum or a minimum. As $f_{xx} < 0$ the point is a maximum. 9.1 $l = s, \theta = \pi/3$ (so we get a regular hexagon).
- 9.2 $r: l: s = \sqrt{5}: (1 + \sqrt{5}): 3.$
- 9.3 Maximize abc subject to a + 2b + 2c = 84. Taking partial derivatives of $abc + \lambda(a + 2b + 2c 84)$ we get $bc + \lambda = 0$ and $ab + 2\lambda = 0$ and $ac + 2\lambda = 0$. So a = 2b = 2c. So a = 28, b = 14, c = 14 and abc = 5488. 9.4 $4/\sqrt{3}$ by $6/\sqrt{3}$ by $10/\sqrt{3}$.
- 9.5 Taking partial derivatives of $\lambda(2x+3y+z-11)+4x^2+y^2+z^2$ gives $2\lambda+8x=0, 3\lambda+2y=0, \lambda+2z=0, \lambda+2z=$ 2x + 3y + z - 11 = 0. Solution is (x, y, z) = (1/2, 3, 1).
- 9.6 $xyz \lambda(2x + 3y + 4z 6)$ gives $yz = 2\lambda$, $xz = 3\lambda$, $xy = 4\lambda$. Solution is (x, y, z) = (1, 2/3, 1/2) giving the volume to be 1/3.
- 9.7 $xyz \lambda(ax + by + cz d)$ gives $yz = a\lambda$, $xz = b\lambda$, $xy = c\lambda$. Solution is (x, y, z) = (d/3a, d/3b, d/3c)giving the volume to be $d^3/27abc$.
- 9.8 $((x-1)^2 + y^2) + ((x+1)^2 + y^2) + \lambda(2x+3y-4)$ gives $4x + 2\lambda = 0, 4y + 3\lambda = 0, 2x + 3y 4 = 0$. So (x, y) = (8/13, 12/13).
- 10.1 1 (Draw the graph and look!)
- 10.2 $x^2 + y^2 \lambda(5x^2 6xy + 5y^2 32)$ gives $x = y = \pm\sqrt{8}$ or $x = -y = \pm\sqrt{2}$, so the largest and smallest distances are 4 and 2.
- 10.7 $z + \lambda(2x + 4y 5) + \mu(x^2 + z^2 2y)$ gives $2\lambda + 2x\mu = 0$, $4\lambda 2\mu = 0$, $1 + 2\mu z = 0$. Solution is $x = -1/2, y = 3/2, z = \pm \sqrt{11/4}$. So largest z is $\sqrt{11/4}$.

10.10

- (a) Max 1/2, min -1/2.
- (b) Max 1, min -1/2.
- (c) Max 1, min -1/2.