1.2 Done in class.
$1.5 .583333=58 / 100+3 \times(1+1 / 10+1 / 100+\ldots) / 1000=7 / 12 .($ Or note that $.583333 \times 3=1.74999999 \ldots=$ 7/4.)
$2.61+1 / 2+1 / 6+1 / 20+1 / 70 \ldots$.
$2.7 \sum_{n=1}^{\infty} 2^{n-1} /(2 n+1)$.
4.1 Remainder $\left|S-S_{n}\right| \leq 1 / 2^{n}$ (in fact it is equal to $1 / 2^{n}$). So for example, choose $\epsilon=1 / 1000000$. Then we can take $N=30$ (say). (This is not the best possible value of N.)
4.4 For $n \geq 3$, remainder is smaller than for the geometric series in question 1 by the hint, so we can use the same ϵ, N as in 4.1.
4.7 Remainder $S-S_{n}$ is less than $1 /(n-1)$ by integral test, so if we put (say) $\epsilon=1 / 1000000$ we can take $N=1000002$.
5.1 Divergent, as limit is not 0 .
5.8 Limit of terms is 0 , so preliminary test says nothing. (In fact series is divergent.)
$6.1 n!\geq 24 \times 5 \times 6 \times \cdots \times n>16 \times 2 \times 2 \cdots \times 2=2^{n}$ if $n \geq 4$.
$6.21+(1 / 2)+(1 / 3+1 / 4)+(1 / 5+1 / 6+1 / 7+1 / 8)+\cdots \geq 1+(1 / 2)+(1 / 4+1 / 4)+(1 / 8+1 / 8+1 / 8+1 / 8)+\cdots=$ $1+(1 / 2)+(1 / 2)+(1 / 2)+\cdots=+\infty$.
$6.31+\left(1 / 2^{2}+1 / 3^{2}\right)+\left(1 / 4^{2}+1 / 5^{2}+1 / 6^{2}+1 / 7^{2}\right)+\cdots \leq 1+\left(1 / 2^{2}+1 / 2^{2}\right)+\left(1 / 4^{2}+1 / 4^{2}+1 / 4^{2}+1 / 4^{2}\right)+\cdots=$ $1+\left(2 / 2^{2}\right)+\left(4 / 4^{2}\right)+\left(8 / 8^{2}\right)+\cdots=1+1 / 2+1 / 4+1 / 8+\cdots=2$.
6.5 (a) Diverges; the terms are larger than those of the divergent series $1+1 / 2+1 / 3 \ldots$ (b) Diverges; the terms are larger than those of the divergent series $1+1 / 2+1 / 3 \ldots$.
6.7 Diverges; integral is $\log \log (n)$ which tends to infinity with n.
6.8 Diverges; integral is $\log \left(n^{2}+4\right) / 2$ (substitute $\left.y=n^{2}+4\right)$.
6.11 Converges; integral is $-2(1+\log (n))^{-1 / 2}$ which is bounded as n tends to infinity.
6.12 Converges; integral is $-1 / 2\left(n^{2}+1\right)$.
6.15 Done in class; integral is $\log (n)$ if $p=1, n^{1-p} /(1-p)$ if $p \neq 1$.
6.16 The integral should have lower limit 1 , not 0 . The integral diverges because it is bad at 0 , which has nothing to do with the convergence of the sum.
$6.17 \int_{1}^{\infty} e^{-n^{2}} d n \leq \int_{1}^{\infty} e^{-n} d n$ because $n^{2} \geq n$ for $n \geq 1$, and the latter integral converges (and has value e^{-1}). (By the way, the hint is slightly wrong: the integral $\int_{0}^{\infty} e^{-n^{2}} d n$ can be evaluated explicitly, and it has value $\sqrt{\pi} / 2$. However this is a very hard integral to do, and it is much easier just to bound it from above which is all that is needed.)

