Math 121 Final, 2001 December 14 8:00-11:00.

Please make sure that your name is on everything you hand in.
You are allowed calculators and 1 page of notes.
Answer as many questions as you can.
All questions have about the same number of marks.

1. Evaluate $\sin (\theta)+\sin (2 \theta)+\cdots+\sin (n \theta)$.
2. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sqrt{x} d x}{(1+x)^{2}}
$$

3. Expand the function $f(x)$ in a sine-cosine Fourier series, where $f(x)$ is 1 if $0 \leq x<\pi, 0$ if $-\pi \leq x<0$, and $f(x+2 \pi)=f(x)$.
4. Calculate the Laplace transform $\int_{0}^{\infty} e^{-p t} f(t) d t$ of $f(t)=e^{-a t} \sin (b t)$.
5. Use Laplace transforms to solve the differential equation $y^{\prime \prime}-4 y^{\prime}+$ $4 y=4, y(0)=0, y^{\prime}(0)=-2$. (If y has Laplace transform Y then y^{\prime} has Laplace transform $p Y-y(0)$ and $y^{\prime \prime}$ has Laplace transform $p^{2} Y-p y(0)-y^{\prime}(0)$. Also 1 has Laplace transform $1 / p$ and $e^{-a t}$ has Laplace transform $1 /(p+a)$.)
6. Find the exponential Fourier transform

$$
g(\alpha)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \alpha x} d x
$$

for the function $f(x)$ defined by $f(x)=x$ if $|x|<1, f(x)=0$ if $|x| \geq 1$.
7. Write and solve the Euler equations $(d / d x)\left(\partial F / \partial y^{\prime}\right)=\partial F / \partial y$ to make the following integral stationary:

$$
\int_{x_{1}}^{x_{2}}\left(y^{\prime 2}+\sqrt{y}\right) d x
$$

TURN OVER
8. Change the dependent variable from y to x in the following integral, then write and solve the Euler equation to make it stationary.

$$
\int_{x_{1}}^{x_{2}}\left(y^{\prime 2}+y^{2}\right) d x
$$

9. Calculate the inverse Laplace transform

$$
f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(z) e^{z t} d z
$$

when F is the function $F(z)=1 /\left(z^{4}-1\right)$.
10. Find the shortest distance from the origin to the surface

$$
3 x^{2}+y^{2}-4 x z=4
$$

