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Advertisement

Online class on Ricci flow this fall semester
14:10-15:30 (Pacific time)
August 27 — December 3

email me (rbamler@berkeley.edu) or check my webpage
(https://math.berkeley.edu/~rbamler/rfclass.html) for Zoom ID
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Motivation & History

Ricci flow (M, (gt)tefo, 7)) on a compact manifold M":

8tgt =-2 Rngt

Important Question:  Understand the singularity formation if T < oo
(and the long-time asymptotics if T = 00)

Blow-up analysis: Tpr-=—======-=--2 o ]

Choose (x;,t;)) € M x [0, T) s.t.:

ti /T IRm|(x;, t;) — o0 (w4,14)

Hope that for some \; — oo:

(Mv ()\Ingl_—szi),X,') - (Moov(goo,t)f§07xoo) 0

i—o0

parabolic rescaling “singularity model”

So far: curvature bounds are necessary!

Richard Bamler (UC Berkeley) Ricci flows in higher dimensions September 2020



Dimension 2:  singularity model = (52, (2|t|gs2)t<0) (Chow, Hamilton)
Dimension 3:  singularity models are k-solutions ... (Perelman)
Gradient shrinking soliton (M, g, f): Ric +V2f — 1g=0
~ gy = |t|dfg is RF, where ¢; = flow of |t|Vf, t <0

o [Rm|~ C/[t| (Type I)

@ The singularity model of (M, (gt)t<0) is the flow itself.

Type-| curvature bound (|JRm| < C/(T —t)):  All singularity models are
gradient shrinking solitons. (Sesum, Naber, Enders, Buzano, Topping)

Type-| scalar curvature bound (R < C/(T —t)):  All singularity models are
gradient shrinking solitons with codimension > 4 singular set.
(B., Chen, Hallgren, Wang, Zhang)

Folklore Conjecture

For a general Ricci flow “most” singularity models are gradient shrinking solitons.

Goal of this talk: Verify this conjecture in a certain (possibly optimal) sense.
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Examples in higher dimensions

Appleton: d RFs in dimension 4 whose blow-up limts are:
Eguchi-Hanson, R* /7, (Bryant soliton/Z, RP3xR)
Ricci flat singular

gradient shrinking soliton

Stolarski: 3 RFs in dimensions n > 13 whose only gradient shrinking soliton
blow-up limit is a Ricci flat cone

Li, Tian, Zhu: 3 Kahler-RF that has to develop a singularity, but cannot
converge to a smooth gradient shrinking soliton.

Conclusion:  Need to allow singular set in Folklore Conjecture + Ricci flat cones
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Recall: Einstein metrics

Consider a sequence of pointed, complete Einstein manifolds (M7, g;, x;),
Ric = A;jgi, |Ai] < 1. Then a subsequence Gromov-Hausdorff converges to a
pointed metric length space:

(M'nagivxi) L) (Xv da Xoo)‘
i—00

1
Suppose that the following non-collapsing condition holds:
|B(xi, r)| > v > 0.
Then there is a regular-singular decomposition
X=RUS
such that:
@ R is an open manifold and there is a smooth Einstein metric g,, on R such
that d|gr = dg_. So (X, d) is isometric to the metric completion of (R, g).
o dmpS<n—4 (Cheeger, Colding, Tian, Naber)
@ Any tangent cone at any point of X is a metric cone. (Cheeger, Colding)
@ There is a stratification S° C ... C 8"* = S such that dimy S¥ < k and

every x € S¥ has a tangent cone that splits of an R*-factor. (Cheeger,
Naber)
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Main results of this talk

Similar theory for minimal surfaces, harmonic maps, mean curvature flow,
harmonic map heat flow, ...

Key points:

@ There is a compactness and partial regularity theory for Ricci flow that is
comparable to (and implies) that of Einstein metrics.

@ This theory allows us to establish the Folklore Conjecture and several other
related results.

@ We need new, parabolic versions of notions such as: “metric space”,
“Gromov-Hausdorff limit", ...
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Theorem (B. 2020) Compactness theory of Ricci flows

Consider a sequence of n-dimensional, pointed Ricci flows:
(M, (&i.t)ee(—T,0 (xi,0)), T = ’lngo T; > 0.

Then a subsequence F-converges to a metric flow over (— Too, 0]:

(M, (&1.0)ce(-Ti01s (v6.0)) ——— (X, d, (15,))-
Suppose that the following non-collapsing condition holds:

Ny0(m0) > =Y > —00.
Then we have a regular-singular decomposition
X=RUS

such that:

o X restricted to R is given by a smooth Ricci flow spacetime structure
and X is uniquely determined by this structure.

o dimy=S < (n+2)—4

o All tangent flows of X are gradient shrinking solitons with singularities.

@ There is a filtration S® C ... € 8”72 = S such that dimy- Sk < k and every
x € S has a tangent flow that splits off an R¥-factor or is static and splits
off an R¥~2-factor.
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Consequences & Further results

Regarding Folklore Conjecture:
Theorem (B. 2020)

Consider a Ricci flow (M, (gt):e[o, 7)), T < co. Then there is a metric space

(M7,d7r)  “=lim; 7 (M, g)"
such that:
o If g¢ — g1 smoothly on U C M, then U C Mt and dr|y is locally isometric
to dgt|U-

e For any “(xi,t;) = (2, T)", z € My, there is a sequence of blow-ups that
converges to singular gradient shrinking soliton.
This soliton can be viewed as the tangent flow at (z, T).

In dimension 4:
Theorem (B. 2020)

In dimension 4 all tangent flows are given by singular gradient shrinking solitons
on smooth orbifolds with conical singularities, i.e. (M, g, f), Ric+V?f — 1g = 0.
Moreover, either R > 0 or (M, g) = R*/T.
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Regarding long-time asymptotics:

Theorem (B. 2020)
If (M, (gt)e>0) is immortal, then for Y,t > 1

M = Mipick(t) U Menin(t)

such that:
o If x; € Miiek(t;) and t; — oo, then (M, (ti_lgt,.t),x,-) converges to a singular,
Einstein Ricci flow with Ric = — 2 goo. .

If n = 4, then this flow is given by an Einstein orbifold.
o If x € Muin(t), then N, ((t/2) < —Y.
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Application: Backwards Pseudolocality

Theorem (B. 2020)
If [to = r2, l'o] C I and

‘B(Xo, to, r)| > ar”

and
|Rm|§(04r)*2 on B(xo,to,r),

then |Rm| < (g(n, a)r)=2 on P(xq, to; er, —(er)?).

Further Remarks:
@ In dimension 3, this theory essentially recovers Perelman’s theory.

o Compactness theory (not assuming non-collapsing) also holds for super Ricci
flows O:g: + 2 Ric > 0.
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Heat kernels on Ricci flow backgrounds

Let (M, (gt)ter) be a Ricci flow and u, v € C3(M x I).

Heat equation: Ou= (0 —Dg)u=0
Conjugate heat equation: [O"v = (—0; — Az, + Rg)v =0

Heat kernel: K(x,t;y,s), x,y €M, s<t

for fixed (y,s): OK(-,y,s)=0, lime s K(-, t;y,5) =0,
for fixed (x, t): O*K(x,t;-,-) =0, lims ~¢ K(x,t;-,5) = dx
Representation formulas: If Ou =O*v =0, then

u(x, £) = /M Kxtios)u(s)dgs  v(y.s) = /M K(-t;y.5)v(- t)dey

Reproduction formula for heat kernel: s<t <t

K(x,ty,s) = / K(x, t; - t"YK(-,t'; y,s)dge
M
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Properties of heat equation:
@ u< Cand u> —C are preserved.
e |Vu| < Cis preserved
o Let & : R x R>¢ be the solution the the 1-dimensional heat equation
0:®; = ® with initial condition ®g = X[0,00)-

o I Byt >0

Improved gradient estimate (B. 2020)

If 0 < u(-,t) <1, then for t > to
u(x) =Pe(x') = [Vue|(x) < Py, (X)) (%)

Moreover, (x) is preserved for any fixed to.

Properties of conjugate heat equation:
@ v >0 is preserved
° / v(+,s)dgs is constant in s and / K(x,t;-,s)dgs =1
M

M
@ Think of v as dus = v(-, s)dgs.
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Conjugate heat kernel probability measure:

dVX,t;s = K(X7 t; -, s)dg57 Ux tit -= 6X
X
t a
S
Vac,t;s

Integral characterization of (conjugate) heat flows:

Heat flow: Ou=0 = u(x,t) = / u(-, 8)dvy e
M

)

Conjugate heat flow:

dps = v(,s)dgs, O'v=0 = s = / V. st
M

Vx,t;s:/ VA,t/;stx,t;t’
M

Reproduction formula:
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Metric flows

Metric flow over an interval /

X = (X7 t, (dt)t617 (Vx;s)xe)(,sel,sgt(x))

@ X is a set consisting of points
@® t: X — [ is the time-function and its level sets X; := t~1(t) are time-slices
® (X, d;) is a complete and separable metric space for all t € /

O v,.s are probability measures called conjugate heat kernel and satisfy
Vyit(x) = Ox and the reproduction formula

Vx;s:/ V~,t;st><;t
Xy

O (Conjugate) heat flows are defined using the integral property as before.
@ We require that the improved gradient estimate holds for heat flows:
If uyy = &y, o £y, for some 1-Lipschitz f, : Xy, — R, then for all t > t5 we
have u; = ®; o f; for some 1-Lipschitz f; : Xy — R.
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Ricci flow (M, (g:)tc/) —  Metric flow X
o X =MxI
@ t:= projection onto second factor.
@ di:=d, on Xy =M x {t}
® dv(y s i= K(x,t;-,5)dgs

Note:
@ The distance between points in different time-slices is not defined!

@ This construction forgets worldlines t — (x, t).
Instead: For x € &; there is a probability distribution vy.s of points y € X
that lie in the “past” of x.

Xt »

Xy

Vg:s
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Concentration property

Variance of probability measure 1 on a metric space (X, d):

Var(u) ;:/X/Xdz(x,y)du(x)d,u(y)

Theorem (B. 2020)

On any Ricci flow
Var(vxrs) < Hu(t —s), (%)

_ (n—1)7>
2

where H, : + 4.

A metric flow X is called H-concentrated if («) + ... holds for H, = H.

“The past in Xs of any point x € X is determined
up to an error of ~ \/t —s.”
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1-Wasserstein distance

{1, o probability measures on complete, separable metric space (X, d)

dw; (p1, p2) == inf / ddg= sup / fd(pr — p2)
q coupling  Jx y x X >R
btw 11, p2 1 Llpschltz

Lemma
If x,y € X}, then for s < t we have

d\;(/sl(VX;Sa Vyis) < de(x, ).

Moreover, s d‘f;l(yx;s, Vy.s) is non-decreasing and the same is true for any other
pair of conjugate heat flows.

X, —o p”

X

Vs Vy;s
“Distances don't shrink on metric flows (in a probabilistic sense)”

Richard Bamler (UC Berkeley) Ricci flows in higher dimensions September 2020 20 / 31



Parabolic balls

Conventional parabolic ball in a Ricci flow:

P(xo, to; r) := Bg, (X0, 1) X [to — r*, to + r?]

P*-parabolic ball in a metric flow:

t(x) € [to — r? to + r?]

P*(x0;r) = 3x € Xy

tg—r2
dy, (Vagito—r2: Vxitg—r2) < r

to

N

=

P*(xo;7) :

Zo

B —

@ standard containment properties still hold for P*-parabolic palls "

(e.g. P*(xin) C P*(x;n)if n < n)

@ Conventional and P*-parabolic balls are comparable if curvature bounded.
@ The natural topology on X is generated by the set of all P*-parabolic balls.
@ P*-parabolic balls allow the definition of the parabolic Hausdorff and

Minkowski dimension dimy;« and dim .
We count the time-direction twice!
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Gromov-W,-distance and convergence

Gromov- W;-distance
If (X;,d;, i), i = 1,2, are two normalized metric measure spaces, then

dew, (X1, dv, 1), (X2, do, p2)) = @1“;‘; Zd\;vl((%)*ﬂlv (02)xp12),

where the infimum is taken over all isometric embeddings ¢; : (X;, d;) — (Z, dz)
into a common metric space (Z, dz).
Gromov- \/;-convergence

(X, diy 117) —2 s (Koo, oo o)
1— 00

Important observation
Compare with pointed Gromov-Hausdorff convergence: The probability measures
1; take the role of the basepoint.
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dr-distance and [F-convergence

dp-distance:
Consider metric flows &}, i = 1,2 equipped with conjugate heat flows (; ¢)tes.
We define

d]F((Xla (N%)tel)7 (Xz, (N?)tel))
to be the infimum over all r > 0 such that there are isometric embeddings

(ot : (X, d}) = (Z, dtz))tel\E,i:LZ

with:
0 |E| < r?
® dii (p1)ents (#3)epf) < rforall t€ 1\ E
© ‘“integral Wi-closeness of conjugate heat kernels between times s, t € |\ E”

F—convel_'geqce
If d]F((X’, (1)eer), (X, (u‘t”)te,)) — 0, then we write

F
(X, (it )eer) ? (Xoo, (Hoo,t)ter)

This implies Gromov-W;-convergence at almost every time.
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Let F; be the space of pairs (X, (te)rer)-

Theorem (B. 2020)

(Fy, dr) is a complete metric space.
Suppose | = (—T,0]. Fix n.

Theorem (B. 2020)

{ (X, (ut)eer) corresponding to

Ricci flows (M”, (g:)eer, (x.0)ser) } C F; is precompact. (%)

Corollary

For any sequence of n-dimensional, pointed Ricci flows (M;, (gi.t)ee(—T,0, (Xi50))
there is a subsequence such that:
F
(Ml" (gl}t)tE(fT;,O]’ (VX,‘,O)) - (Xv (VXoo))'

11— 00

Remark: There is a compact subset F;(H) C F,, essentially corresponding to
all H-concentrated metric flows, that contains the subset from ().
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Digesting [F-convergence

If we assume curvature bounds, then: F-convergence <= local smooth
convergence in the sense of Cheeger, Gromov, Hamilton.

Example: Bryant soliton (Mg, (&8ry.t)ters XBry)  (Mpry. g5ry)

@ rotational symmetric
® gory.e = dr’ + f2(r)gsz,
where f(r) ~/r
o steady gradient soliton
—> all time-slices are isometric
Consider blow-downs (Mg,y, (/\lzgsry,,\;Zt)tEMXBry)
for )\,‘ — 0.
@ Gromov-Hausdorff limit at any fixed time:
[0, 00)
o [F-limit:
round shrinking cylinder (52 x R, (g: = 2|t|gs> + gr)t<0)
this is the asymptotic soliton!
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Ricci flow spacetimes

Ricci flow spacetime over an interval /:
M = (M7t7 a’ug)

@ M is a smooth (n+ 1)-manifold, called spacetime manifold

® t: M — [ is a smooth map whose level sets M, := t~1(t) are called
time-slices.

©® O is a smooth vector field on M with 0¢t = 1. Its trajectories are worldlines.
O g is a metric on the horizontal distribution ker dt C TM
@ Ricci flow equation: Ly g = —2Ric,

Ricci flow (M, (gt)te;) —  Ricci flow spacetime M
oM =MxI
@ t:= projection onto second factor
@ O := std. vector field on /
e g:=gron M; =M x {t}
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Structure of non-collapsed F-limits

Let X be a F-limit of smooth Ricci flows over /.
Assume the non-collapsing condition NV, o(70) > — Yo > —oc.

Theorem (B. 2020)

There is a decomposition

X=RUS
and a smooth Ricci flow spacetime structure (R, t, 0y, g) on R such that:

@ R C X is open and dense.

@ For any t € I the time-slice (X, d;) is the metric completion of (R¢, gt).

o (Conjugate) heat flows restricted to R are uniquely characterized by Ou =0
and O%v =0 on R.

o dimp»S < (n+2)—4

@ Tangent flows at any x € X' (= F-limits of blow-ups of (X, (v))) are
singular gradient shrinking solitons.

@ There is a filtration S® C ... € 8”72 = S such that dimy- S¥ < k and every

x € 8k has a tangent flow that splits off an R¥-factor or is static and splits
off an R*—2-factor.
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Theorem (B. 2020)

If X is a gradient shrinking soliton, then there is an identification
X=XxI
for a metric space (X, d) with regular part Rx C X such that:
o (X k) = (X, |t]!/2d)
o (Re,8t) = (Rx, |tlgrx)
@ The soliton equation holds on Rx.

If n =4, then (X, d) is the length space of a smooth orbifold.
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Outstanding promise: Non-collapsing condition

Pointed Nash entropy: (Perelman, Topping, Hein, Naber)
Fix (x0,t0) € M x | and write 7 .=ty — t,  K(xo, to;-,-) =: (4n1) " "2e=f

NX07t0(T) = / f(-’ to — T)dVXoyfo:to—T -
M

NS

Basic properties:
° Xo,to (T) < 0
@ %—NXOJO(T) < 0

@ There is a relation between A/ and Perelman’s p-entropy that implies: If
I =10, T), then

NXO,tO(T) Z M[Mag07 T] > —00.

So a non-collapsing condition always holds on a fixed flow with T < oo.
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B
| (Xa r)| ~ eNX(rZ)

Guiding principle:  On a manifold with Ric > —g: -
r

Theorem (B. 2020)
Suppose that R > Rmin. Set NV (x, t) := Ny ¢(t — s).

(t—>s)

n
— < [ONI <0
2(t—s) — N <

® (1)+(2) imply a bound on osc N over P*-parabolic neighborhoods.
O For any (x, t), s < t, there is a point z near the “center” of vy ;s such that

) C(€) ds?(yaz)
Ko tiy,s) S gy &P <(8+6)(t—s)>

0 |VN5*| S - Rmin

g_

® [B(x. t,7)] < C(Ruin) xp(Nie(r2))
0@ Reverse lower volume bound holds near concentration centers of conjugate
heat kernels and under scalar curvature bounds.

o ...
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The picture at the first singular time

Suppose that (M, (g:)¢c[o,)) develops a singularity at time T < oco.

Singular time-slice (M, dr):
M+ = {conjugate heat flows(pit)eeo, 7y Var(ue) < Ho(T — t)}

dr((1d), (13)) = fim dj, ()

Theorem

o (My,dr) is a complete metric space.
olfgg—gronUast 7T,then U< U C My and dg, = dr locally.

@ For any p := () any blow-ups of (M, (gt):efo, 7); (14t)tefo, 7)) Subsequentially
F-converge to a singular gradient shrinking soliton.
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