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1 Motivation (Teichner, 1/19)

Let X be a complete Riemannian manifold. For every interval I C R, let EL(I) be the space
of geodesics I — X. (This is a space of critical points of a Lagrangian in a classical field
theory; in this case the Lagrangian is the energy functional on paths.) This can be identified
with the tangent bundle T' X, since a geodesic is determined by a point and a tangent vector,
independent of I. In fact if I — J is an inclusion the pullback map FL(J) — EL(I) is an
isomorphism. Hence the ”classical observables” functor

I+ Obs®(I) = C*(EL(I)) = C™(TX) (1)

is locally constant. It is an example of a locally constant factorization algebra. It is in
particular a cosheaf of rings. Part of the structure it has is that any pair of intervals I, I,
contained in another interval J, there is a map

Obs(I;) ® Obs® (1) — Obs?(.J) (2)

satisfying the obvious associativiy condition.

What happens when we quantize? Quantum observables Obs?(/) will still end up having
a factorization algebra structure. This means that we have the above maps when I; and I
are disjoint. We will also have a more complicated cosheaf condition.

2 The definition (Teichner, 1/21)

Let M be a topological space. The category Open(M) of open subsets and inclusions has a
symmetric multicategory structure where there is a unique multimorphism Uy, Us, ... U, — V
if the U; are disjoint and contained in V', and no morphism otherwise. Any symmetric
monoidal category also has a symmetric multicategory structure where the multimorphisms
X1, Xs,... X, — Y are morphisms X; ® Xo ® --- ® X,, — Y. Intuitively, a symmetric
multicategory is like a symmetric monoidal category but where the monoidal structure is
allowed to be partially defined.

Definition A prefactorization algebra on M with values in a symmetric monoidal category
(C,®) is a symmetric multifunctor (Open(M),[]) — (C,®). (C could also be another
symmetric multicategory but we will never write down examples like this.)

Explicitly, this means that a prefactorization algebra consists of the following data:

1. For each open set U, an object F(U) € C
2. For each inclusion U C V', a morphism F(U) — F(V)

3. For each disjoint inclusion Uy [[---[[ U, — V, a morphism
FUh)®---@FU,) = F(V) (3)
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4. A unit map 1¢ — F(0).

This data is subject to various axioms, e.g. a functoriality axiom, an associativity axiom,
a symmetry axiom, and a unit axiom. In particular, F'((})) is a commutative algebra object
in C' (although it might just be the unit 1), and everything in sight is a module over it.
In examples (C,®) will be vector spaces of some sort, ® will be tensor product, and F(()
will be 1¢, which will be the ground ring, usually C or C[[A]]. Every F(U) admits a map
F() — F(U).

3 Examples of factorization algebras (Teichner, 2/2)

3.1 Quantum mechanics as factorization algebra on [0, 1]

Pick the stratification on [0, 1] given by the endpoints. A constructible (stratified locally
constant) factorization algebra associates three different vector spaces V, A, W to open in-
tervals containing 0, neither, and 1 respectively. A is an algebra as usual. V' turns out to be
a right A-module and W is a left A-module. And V, W both have distinguished points v, w.
This is all of the data.

What do we assign to the entire interval? Using the cosheaf condition, we get V ®4 W.

Now we can relax the constructibility condition and also incorporate a semigroup h; € A
as before. This will modify the inclusions F(}) — F(U) as follows: if U is [0, s) then we
assign vhg, if U is (s,t) then we assign h;_, and if U is (s, 1] then we assign hy_sw. The
entire interval gets assigned vhy @ w =v @ hjw € V@, W.

To apply this to quantum mechanics, take V' to be a Hilbert space, A = B(V) to be
bounded operators on it, h; = e for some self-adjoint H, and W = V where the module
structure is defined using the adjoint. With the convention that inner products are antilinear
in the second variable, we get

F([0,1)) =V ®py) V' =C (4)

where the isomorphism sends v ® w to (v, w). This factorization algebra computes ”scat-
tering amplitudes”; for example, if after time ¢t we perform an observation a, then after time
s we reach the end, then for initial state vy € V and final state v; € V', the quantity

(vohy | a | hyvy) € C (5)

is the amplitude that the system is in state v; if it started out in state vy (where h; is
time evolution), which the factorization algebra knows. Or something like that.

3.2 Universal enveloping algebras

Let g be a Lie algebra and M a smooth manifold. First consider
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This is a covariant functor into chain complexes (because we can extend by zero). It also
sends disjoint unions to direct sums, even in the case of infinite disjoint unions. And in fact
this is a functor into commutative DGAs.

Now we can apply (—) ® g. This produces DGLAs (differential graded Lie algebras). Fi-
nally we can apply the Chevalley-Eilenberg functor C'F,, which produces cochain complexes
(in fact cocommutative DGCAs) and sends direct sums to tensor products. Altogether we
get a functor

F:U— CE,(Q(U,qg),d) € (Ch,®) (7)

In fact g could be a DGLA here (in cohomological indexing, so degree 1 like the de Rham
differential). The Chevalley-Eilenberg functor takes g to the graded vector space S°®(g[1])
given by the symmetric algebra on g[1] (which is g shifted to the left), with a differential
defined in terms of the Lie bracket and the differential on g.

This is in fact a locally constant infinitely strong (arbitrary disjoint unions to tensor
products) pFA. On R this means it’s some associative algebra, which for g an ordinary Lie
algebra is the universal enveloping algebra U(g). But now we can do more interesting things.
E.g. on R™ we get the universal enveloping F,, algebra.

4 The divergence complex and Feynman diagrams (Mazel-
Gee and 777, 2/4)

4.1 Motivation

Recall that if M is a d-dimensional compact, orientable, connected manifold, we have the de
Rham complex, which ends

QYD) L4 Qd (). (8)

Picking an orientation of M, we can integrate against the fundamental class, and this
gives an isomorphism

HY(M,R) > [w] /Mw €R. (9)

We'd like an analogue of this story if M is infinite-dimensional, but unfortunately there
are no top forms in this setting. So we need to do something else. Consider the graded
vector space

Vi = D(A*(TM)) (10)

of polyvector fields (sections of exterior powers of the tangent, rather than cotangent,
bundle). These are dual to differential forms. If we pick a volume form pu € Q%(M), then
we can transport the de Rham differential to a differential A, on polyvector fields, and the
homology of this chain complex can be identified with de Rham cohomology. In particular,
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HY(M,R) = R 2 Hy(VL). (11)

Note that although V, has an algebra structure, A, is not a differential on it. Measuring
its failure to be a differential gives a Poisson bracket.

Physicists would like to calculate integrals, or more precisely quotients of integrals, of
the form

[ fe¥mpu

(f) = Te sy (12)

(At least this is a toy model of what we want.) This is the expectation of the observable f,
where S is the action. One way to think about this is that it is the quotient of the homology
class [f] of f by the homology class [1] of 1 in the divergence complex with differential
A -s/m,. This suggests some hope for what to do in the infinite-dimensional setting: instead
of trying to find a top form, we’ll try to find a divergence operator.

Suppose xo € M is the unique minimum of S and that it is a nondegenerate critical
point. Then as i — 0 the measure e~5/"1 is asymptotically supported on an infinitesimal
neighborhood of zy. In local coordinates S takes the form

where b(z) = O(]z|*) and a;; is symmetric and invertible. This lets us write down a
formal divergence operator

—hA = aymin—— Y % 0 o (14)
e i ’ag O, 06 01;0€;
acting on formal power series R[[z1, ... 24, &1, .. &y, B]], where the & are degree 1 in the

graded commutative sense (locally representing a basis of vector fields).

Example Suppose d = 1 and b = 0, so we're trying to compute a Gaussian integral, and
a;; is just a positive real number a. Formally the divergence complex is Vo = R[[z, h]], V] =
R[[z, h]][¢], and the other terms vanish. To understand our divergence operator @ : Vi — V;
it suffices to understand what it does to x™¢ for all n. This gives

Q(z"€) = ax™™ — hna" ! (15)
which tells us that in homology we have
h
2"+ = =[], (16)
a

2n+1]

This gives [z] = 0, hence [z =0 for all n, and

[ﬁ;] . (g) (2n—1)(2n—3)... (17)
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And these are the moments of the Gaussian distribution as desired; that is, we’ve suc-
cessfully computed

2
2e= 3% de
Jz — . (18)
fR e 2 rn dr

The combinatorial part (2n—1)(2n—3) ... is the number of ways to pair up 2n elements,
and this turns out not to be a coincidence.

(") =

Example Now let d be an arbitrary finite dimension, although we will continue to assume
that b = 0. We'll cleverly compute that

Q (D &0 ars) = oy — h(a™)sa (19)
and we’ll conclude that

[zazs] = hla™")gal1]. (20)

More generally, we’ll cleverly compute that

Q (Z §k(a_1)lml> = Zay oo Ty~ BY (@ Dy [] Ta (21)

others

which gives us that [z,, ... Z,,] is a certain sum over terms corresponding to pairings of
the indices. So far the combinatorics aren’t so bad, but they get worse when b # 0.

Example Now let d = 1 again, but let’s introduce a cubic term b(x) = ‘g—? We get

n+2
Q(z"¢) = ax" ™ — :C2 — hna™! (22)
and hence
" 1., hn,. .
] = o e+ ), (23)

Repeatedly applying this recurrence gives something which converges h-adically. The
result is messy to describe explicitly, which is why we’ll start introducing Feynman diagrams.

5 The universal enveloping algebra (Teichner, 2/2, 2/4)

The pFA we constructed out of a Lie algebra last time is not in general a cosheaf, except
when M = R. However, it is a homotopy cosheaf. For now let’s just observe that in
particular all of the functors we wrote down preserve weak equivalences (maps inducing
isomorphisms on homology; this makes sense for CDGAs, DGLAs, etc). For the Chevalley-
Eilenberg functor the argument involves using a filtration whose associated graded is just



the symmetric algebra on the underlying DG vector space, and then we use Kunneth and
the fact that over Q taking coinvariants with respect to the action of a finite group is exact.
We want to show that

FR) = H*(CE,(2(R) @ g)) (24)
is the universal enveloping algebra U(g). Let fy be a bump function peaked at 0 such that

[ fodz =1. Then fo — fodx gives a weak equivalence between the complex Q2(R) 4 QLR)
and the complex 0 — R, which is a DGA with the zero multiplication. This means that

F(R) = H*(CE,(g[-1]), dop)- (25)

This is concentrated in degree 0, and as a vector space it’s just S(g) because d¢g vanishes
(g has no differential, and g[—1] has no Lie bracket). In general, on M = R" we get S(g[1—n])
as a vector space (and for n > 2 we will get it as a commutative algebra equipped with a
Poisson bracket of degree n — 1). This already implies that we can’t get a cosheaf when
n > 2 (say on an annulus) because things will show up in the wrong degrees.

Now we need to compute the associative algebra structure, and in particular we need
to check that the commutator bracket agrees with the Lie bracket on elements of g. Let
fi(x) = fo(x —t) be the shift of the bump function from above to t. We’ll need a compactly
supported function h such that

dh = f1 dx — f,1 dx (26)

and such that h = —1 in a neighborhood of 0. Then we can compute that if £&,n € g,
then

dep((fodz @ §)(h@n)) = (fodz @ &)(dh @) + (fodz)h @ [€, 7). (27)
Plugging in dh = f; dx — f_; dv and using that hfy = — fy, we get

(fodr @ &) (fidr ®@n) — (fodr @ E)(f_1dr @n) — fodx[, ). (28)

Using the isomorphism

§3¢> fodz®& € H(S'(Q(R) ® g[1])) (29)

this becomes (once we settle left / right conventions)

a([§, n]) = al§)aln) — a(n)a(s). (30)

6 Some rational homotopy theory (Teichner, 2/2, 2/9)

Here everything has the correct grading (usually homological, cohomological for DGCAS).
DGLAs over Q are important in Quillen’s approach to rational homotopy theory.



Definition A relative category is a category C equipped with a collection W of morphisms
("weak equivalences”), which stisfy some axioms. Its homotopy category Ho(C') = C[W 1]
is the localization of C' at W (so we formally invert all weak equivalences).

Morphisms in the homotopy category look like zigzags where some of the legs are weak
equivalences. In general it’s difficult to tell whether two morphisms are equal. It’s also
possible that this category can fail to be locally small even if C is.

Quillen considered the localization of the category of simply connected spaces at the
rational equivalences: those maps f : X — Y inducing an isomorphism

T(X)®@Q=7m,(Y)®Q (31)

on rational homotopy. (Equivalently, on rational homology or on rational cohomology.)
Remarkably, this homotopy category is equivalent to the homotopy category of connected
(concentrated in positive homological degree) DGLAs over Q. Part of the proof involves the
Chevalley-Eilenberg functor, which sends a DGLA to a DG cocommutative coalgebra over
Q (which we want to be rational chains on a space), and which is also an equivalence of
homotopy categories (with the right connectivity assumptions).

First of all, the oo-categories of pointed connected spaces and grouplike Ej-spaces (oo-
groups) are equivalent: the equivalences are given by taking loop spaces (for best results,
maybe take Moore loops or Kan loops) and taking classifying spaces respectively. This
continues to be true rationally. Now, if X is a pointed connected rational space we can take
rational chains Co(X, Q). The right version of this is a cocommutative dg coalgebra, and
with the right connectivity assumptions this is again an equivalence of co-categories. (With
finiteness hypotheses we can take rational cochains and, using the right version of this, get
a commutative dg algebra, and this is again an equivalence.) Similarly, given a rational
grouplike Ej-space G we can take Co(X,Q), which is a dg Hopf algebra. Its primitive
elements form a dg Lie algebra, and with the right connectivity assumptions this is again an
equivalence of oco-categories. These two descriptions are related by the Chevalley-Eilenberg
functor.

If X is a pointed connected rational space, then Ho(Q2X, Q) is a graded Hopf algebra. It
is the universal enveloping algebra of its graded Lie algebra of primitive elements, which is
e (X, Q) equipped with the Samelson bracket. This is the tensor with Q of the Whitehead
bracket, which exists on m,(Q2X).

Some nice calculations are possible from here.

Example 7,(5%"1) ® Q is Q when k = 2n — 1 and 0 elsewhere, while 7,(5*") ® Q is Q in
degrees 2n and 4n — 1 and 0 elsewhere. This follows from knowing that .S™! is rationally
K(Q,n), whose homology is the free graded algebra on a generator of degree n, and hence
whose homotopy is the free graded Lie algebra on a generator of degree n.

We can also do this computation using the rational cohomology, as follows. The rational
cohomology is Q[z]/z* where degz = n. We'd like to write down a DGLA g such that
CE*(g) (which is the symmetric algebra on g*[1], with an interesting differential) has this
cohomology. This is the same thing as writing down a dg algebra whose underlying graded
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algebra is free (graded commutative) whose cohomology is the above. When n is odd we can
take Q[z] with trivial differential, and when n is even we can take Q[z, y| where degy = 2n—1
and dy = 22, dx = 0. The corresponding Lie algebras are the free graded Lie algebras on
generators of degree n — 1. (Strictly speaking we need some kind of formality result - that
various DGAs are equivalent to their cohomology - to complete this argument.)

7 Feynman diagrams and homological integration (Mazel-
Gee and 777, 2/11)

Last time we ran into combinatorial difficulties trying to write down homological integrals
when the higher-than-quadratic terms in our action functional were nonzero. Today we’ll
introduce Feynman diagrams as a way to manage this.

Definition A Feynman diagram I' consists of a set E of half-edges and a set V' of vertices,
together with a fixed-point-free involution ¢ : E — E on half-edges and amap 7 : £ — V
describing which half-edges are connected to which vertices, together with a decomposition
of V into a basepoint e, some internal vertices (at least trivalent), and some external vertices
(univalent). The underlying graph should be connected, and 71 (e) is equipped with a total
order. The indegree is the valence of the basepoint, and the outdegree is the number of
external vertices. A Feynman diagram is closed if it has no external vertices. The first Betti
number [1(I') is the number of loops in the underlying graph.

Definition Let f = ) f,2" € R[[z]] and let I" be a Feynman diagram. The evaluation
evy(l') is

. 1 intedge(T")
er(F) = zlndeg(F) (_) findeg(F) H bvalence(v) (32)

a .
intvert

where b(z) = > b, %7,
Theorem 7.1. In Hy(V,) (with respect to the differential Q), we have

[f] _ Z evf(l“)hﬂl(r) . (33)

m T closed ’AUt(FH

We can prove this by rewriting the recurrence relation we got earlier in terms of evalua-
tions of Feynman diagrams. The general recurrence relation now comes from the computation

1 - g 1
m=2
Rewriting this in terms of Feynman diagrams gives a way to relate the evaluation of a

graph I" to the evaluation of graphs obtained by adding an internal vertex next to an external
vertex or looping down the last external vertex. This gives
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KT
[xn—&-l] = €eVnt1 (F)hﬁl () (35)
r closed,izn;eg:nJrl Hintvert (Val(v) - 1)'

where kr is the number of ways I' can be constructed by either adding an internal vertex

or looping down the last external vertex. Now, consider the set of ways to cyclically order

the half-edges around the internal vertices. Aut(I") acts freely on this, and the quotient is

the set of ways to construct I', so it has size k. On the other hand, the set of cyclic orders
1

has size the product of factorials above. This gives the desired TAw(o] factor.

8 More rational homotopy (Teichner, 2/11)

Definition A CDGA is minimal if it is free as a commutative graded algebra on a graded
vector space V' (semifree) and if its differential, regarded as a map d : V' — 3 Sym*(V),
has no components landing in degree 0 or 1. A minimal model is a minimal CDGA quasi-
isomorphic to a given CDGA.

Theorem 8.1. Any CDGA has a unique (up to isomorphism!) minimal model. If M is
the minimal model of Q*(X,Q) (Sullivan forms), then M = Sym(me(X,Q)*), and d} is the
Whitehead bracket.

Last time we were really computing minimal models of formal CDGAs.

Definition A CDGA is formal if it is quasi-isomorphic to its cohomology. A rational space
X is formal if Q*(X,Q) is formal.

It follows that the rational homotopy Lie algebra of a formal space can be read off from
its cohomology, by writing down a minimal model of it. This explains the computation we
were doing for spheres, which are formal because we can write down a quasi-isomorphism
using a volume form. CP" is also formal because it’s a compact Kahler manifold, and this
computation is also nice.

The relationship between this Sullivan picture of rational homotopy and the Quillen
picture is given by taking the cohomological Chevalley-Eilenberg complex C'E*(g), which
is Sym(g*[1]) with a differential built out of the differential and the Lie bracket on g. If
we imagine modifying the differential to include further terms, this corresponds to giving
g an L. algebra rather than DGLA structure. This implies that L., structures can be
transported along quasi-isomorphisms: in particular, since any dg vector space over Q is
formal, any DGLA can be turned into an L., algebra on its homology. In this language,
being a minimal model means being the Chevalley-Eilenberg complex of an L, algebra with
trivial differential, and so the above procedure corresponds to taking minimal models. (All
of this reflects the fact that the Lie and commutative operads are Koszul dual, and can be
used to define F, algebras using certain semifree DGLAs.)

Quillen’s actual approach involves a bunch of functors. First we take singular simplicial
sets. Next we take the Kan loop group, giving a simplicial group on the nose. Next we take
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group rings, giving a simplicial Hopf algebra. Next we complete along the augmentation
ideal, giving a simplicial complete Hopf algebra. Next we take primitive elements, giving a
simplicial Lie algebra. Finally we use the Dold-Kan correspondence, giving a DGLA.

The philosophical lesson is that Chevalley-Eilenberg (co)chains of g are like (co)chains
on Bg.

9 One-parameter semigroups (Teichner, 2/11)

Last time we constructed a factorization algebra F4, on R from a pair of an algebra A and
a one-parameter semigroup a; : R, — A of elements of A. It turns out that if the oy are
invertible and we restrict our attention to bounded open subsets of R, then Fy , = F4. But
if we don’t, then we need a value o, for the unbounded open subsets, and then if Fjy o = Fa,
then ay is invertible, which implies that a; = 1 for all ¢.

In the first case, the isomorphism ¢, on the interval (s,t), sends a € A to a_saqy.

10 The main construction (Teichner, 2/16)

Let L be a sheaf of DGLAs on a smooth manifold M. This means that L is first of all (the
sheaf of smooth sections of) a levelwise finite-dimensional graded vector bundle on M. Next,
there is a morphism d : L — L of graded vector bundles of degree 1 and a bilinear morphism
[,]: L® L — L of degree 0, and these satisfy the DGLA axioms.

Example If g is a DGLA, then L(U) = Q*(U) ® g is a sheaf of DGLAs. This was the
example that led to Uf(g).

Example On a Riemann surface ¥, we can start with L(U) = 0% (U) ® g equipped with
the differential 0. This admits a central extension given by the 2-cocycle

w(a,8) = [ (2,09, (30)
U
where (-, )4 is an invariant inner product on g (the "level”).

Theorem 10.1. Any sheaf L of DGLAs gives a factorization algebra, the factorization
envelope of L, taking values in convenient vector spaces, and given by applying a completed
Chevalley-FEilenberg chain functor.

10.1 Functions on function spaces

Let E be a smooth graded vector bundle over a smooth manifold M. Imagine that the space
E(U) of smooth sections of U is the space of fields (or classical solutions) of a classical field
theory. Then the space O(U) of classical observables should be the space of functions on
E(U), for some value of ”functions.” Among these the simplest functions are linear functions.
This could mean the following:
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1. Morphisms E LU ) — R of convenient vector spaces. These are compactly supported
distributions E.(U).

2. Morphisms FE,(U) — R of convenient vector spaces, where E.(U) denotes compactly
supported sections. These are distributions E(U).

3. Smooth sections of E' = EY @ Dens(M). These are smeared distributions E'(U).

4. Compactly supported smooth sections of E'. These are compactly supported smeared
distributions E.(U).

Convenient vector spaces are a closed symmetric monoidal complete and cocomplete cat-
egory of certain topological vector spaces; they contain the spaces E(U) of sections equipped
with the Frechet topology (and more generally will include any Frechet space), as well as the
spaces E.(U). All of the above are also convenient vector spaces. Another desirable property
of CVSes is that if Fy, Fy are smooth vector bundles over smooth manifolds M, Ms, then
the space of (possibly compactly supported) sections of the box product E; X Ey on My x M,
is the tensor product of the spaces of (possibly compactly supported) sections of £y and E,.

The point of tensoring with densities above is that there is a dual pairing between E and
FE' landing in densities, which we can integrate over M with no extra structure. We’ll pick
the smallest choice, which is compactly supported smeared distributions.

After linear functions we might like to think about polynomial functions. We’ll define
homogeneous polynomial functions of degree n to be S,-coinvariants of compactly supported
sections of the box product (E!)gn.

Finally, we’ll define functions to be formal functions, so formal power series. Hence

ow) =[] (&)™ @, (37)

n

which is a commutative algebra object in CVS. (In fact the product and coproduct agree
here.)

10.2 The completed Chevalley-Eilenberg functor

We’ll modify the above construction to construct the factorization envelope. This will involve
writing down a Chevalley-Eilenberg functor C'E,(L(U)) taking values in dg CVSes. In
practice we'll have L(U) = E'(U) for some E, so we'll take

CE(LW)) = [T (L), - (38)

n

(Assuming products and coproducts agree here, this is the symmetric algebra on L[1](U)
in CVSes. But thinking in terms of box powers will make it easier to verify the Weiss
condition later.)
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10.3 Convenient vector spaces

Let V be a complete locally convex Hausdorff topological vector space. This is the same
as saying the topology is defined by a set of seminorms which are all zero only for the zero
vector, and V' is complete with respect to these. For example, if K is a compact smooth
manifold, C*°(K) has a (Frechet) topology determined by the Sobolev seminorms

k
1l =D maeer | /9 ()] (39)
=0

If K is a noncompact smooth manifold, we can exhaust it with compact subspaces, and
take the Sobolev seminorms on these.

There are many topologies we might place on the algebraic tensor product of LCTV Ses,
and completing them gives many symmetric monoidal structures. Unfortunately, none of
them are closed.

Definition A subset B C V of a LCTVS is bounded if for all open 0 € U C V, there is
A > 0 such that B C AU. A linear map is bounded if it sends bounded sets to bounded sets.
(In particular, continuous linear maps are bounded.)

Bounded sets can be axiomatized into structures called bornologies, and a bornological
vector space is a vector space with this structure. Morphisms are bounded linear maps.

11 States and vacua (777, 2/18)

The free scalar field theory on a Riemannian manifold M with mass m has fields

E(U) = [OOO(U) Akl 0°°(U>[—1]} . (40)

(This is the derived space of solutions to the differential equation (A +m?)f = 0. When
m = 0 these are just harmonic functions.) This is a chain complex of convenient vector
spaces, so we can take its CVS dual

A+m?

EY(U) = | DU)[1] 25 D(U)] (41)

where D, stands for compactly supported distributions. We can also consider smeared

distributions

[

EL(U) = [c2)h) =5 c(u)] (42)

which is chain homotopy equivalent (e.g. by the Atiyan-Bott lemma) but nicer to work
with because e.g. we can multiply smeared distributions. Now we’ll define classical observ-
ables to be the symmetric algebra on this:
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Obs”(U) = Sym(E(U)) (43)
= = NCZ(U)[2] @ Sym(C(U)) — C2(U)[1] @ Sym(Ce2(U)) — Sym(Ce (Uh)

This should look like an infinite-dimensional version of the divergence complex. It is a
PFA in a straightforward way.

The divergence complex with differential AA,-s/n,, where S is a quadratic form on R", can
be defined as the Chevalley-Eilenberg algebra of a graded Lie algebra built as a Heisenberg
algebra using a central extension determined by S. We can use this idea to define quantum
observables.

Definition Let F' be a PFA on R™. A translation equivariant structure on F' is the choice, for
every x € R", of an isomorphism o, between F' and F' translated by x such that a,4, = a,ay.

U +— C>*(U) is translation equivariant in an obvious way, and hence so is anything built
functorially out of it, including the free scalar field theory above.

Definition Let F' be a PFA on M. A state on M is a smooth linear function (-) :
H*(F(R™)) — RJ[[A]] (where R[[A]] is concentrated in degree zero, so this factors through
H?) such that (1) = 1 (where 1 € H°(F(R")) is the element corresponding to the inclusion
of F(0)). If M = R™ and F' is a translation equivariant PFA, then a state is translation
invariant if it commutes with the action of R™ (including the infinitesimal action). A state
is vacuum if it is translation invariant and, for any two observables Oy, Oy € F(M), we have

(O17,01(— (01)(O3) (45)
as r — 00, where 7, denotes translation by .

For example, consider the state in the free scalar field theory on R"™ which assigns to an
element of Obs“(R™)[[A]] its degree 0 component in R[[A]]. When m > 0 this is a vacuum.
When m = 0 this is not a vacuum for n < 2, but is a vacuum for n > 3.

12 More about convenient vector spaces , and classical
field theories (Teichner, 2/18)

Definition Let V be a LCTVS. A map p: R — V is differentiable if the derivative

50—ty 2 =00

e—0 €

eV (46)
always exists. p is smooth if all derivatives of all orders exist.

Theorem 12.1. A linear map F : V. — W between LCTVSes is smooth (in the sense that
it takes smooth paths to smooth paths) iff F' is bounded in the sense that it takes bounded
sets to bounded sets.

13



Consider the category of LCTVSes with bounded maps. (There’s another definition in the
literature involving developing the notion of bornologies.) There’s a forgetful functor from the
category of LCTVSes with continuous maps, and it has a right adjoint R : BV.S — LCTV S
which equips an LCTVS with the finest topology with the same bounded sets. It embeds
the category of LCTVSes with bounded maps as a reflective subcategory of the category of
LCTVSes with continuous maps.

Definition An LCTVS is bornological if it is in the essential image of this right adjoint
(equivalently, lies in the above reflective subcategory).

Theorem 12.2. Frechet spaces are bornological.

The convenient vector spaces are a full subcategory of LCTVSes and bounded linear
maps, although we’ll think of them as smooth maps. This inclusion will have a left adjoint
which performs a certain completion.

Definition An LCTVS V is C*®-complete if every smooth path R — V has an antideriva-
tive.

Definition Let M be a smooth manifold. A map f: M — V to an LCTVS V is smooth if
for every smooth map p: R — M, the composition fop: R — V is smooth.

Definition The category of convenient vector spaces is the category of C'*°-complete LCTV Ses
and smooth (equivalently, bounded) linear maps.

Theorem 12.3. CVS is complete, cocomplete, and closed symmetric monoidal with tensor
product the C*°-completion of the algebraic tensor product. If m; : E; — B; are smooth
vector bundles over smooth manifolds, then this tensor product satisfies E1(M;) @ FEo( Mo0 =
(El X EQ)(MI X Mg)

12.1 Free classical field theories

Definition A free classical field theory consists of the following data:
1. A smooth manifold M (”spacetime”),
2. A graded vector bundle £ — M (so sections E(U) are "fields”),
3. A differential d : E — FE of grading 1 which is a differential operator,

4. A quadratic map S(U) : E(U) — C (the "action functional”) which has the form

S = [ (o) = (o) ()
for some nondegenerate pairing (-, -) : E[1]® E — Dens(M). (Here E[1] means E[1]' =
EL)

14



These should satisfy the following properties:

1. (E,d) is an elliptic complex.
2. d is self-adjoint with respect to the pairing (-, -).

3. The pairing (-,-) is symplectic of degree —1 (antisymmetric, keeping Koszul sign rule
in mind).

Example (The free boson) Let M be an oriented Riemannian manifold and let

[eS) A+m? 00
B(U) = [c=(U) &5 c=(u)[-1]] (48)
(so the second term is concentrated in degree 1). This is the derived space of solutions

to the differential equation (A + m?)f = 0. The shriek dual is

[

i o0 A m o0
EL(U) = [c2)i) 25 c=(u)]. (49)
Taking formal functions on fields gives

Obs®(U) = Sym(E.(U), d"). (50)

The orientation trivializes the density bundle, so now we can define the pairing (-,-) as
the adjoint to the obvious identification between E[1] and E'. This induces a Poisson algebra
structure on Obs™(U). It is determined by what it does to linear obserables, as follows: if
B, B2 € E;(U), then

(81, o} — / 1(81)8 € C = Sym®. (51)

To write down quantum observables we’ll use «v to write down a Heisenberg-type (graded)
Lie algebra as a central extension

0— C[-1]h— L.(U) = E.(U) — 0. (52)

This is a DGLA in CVS, and so we can apply the Chevalley-Eilenberg functor to it,
giving

ObSq<U) = (CE.(LC(U)),dCE) (53)

The Chevalley-Eilenberg differential is a deformation of the differential on the classical
observables. Both classical and quantum observables are factorization algebras.
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13 Homotopy factorization algebras (Mazel-Gee, 2/23)

13.1 Towards homotopy (co)sheaves

In many situations it’s natural to work not with (co)sheaves of sets but with (co)sheaves of
more complicated objects such as groupoids. This modifies the sheaf condition. For example,
the assignment U +— Bung(U) can be interpreted as assigning to an open set U the set of
isomorphism classes of G-bundles. This is not a sheaf of sets. However, if it is interpreted as
assigning to an open set U the groupoid of G-bundles, then it becomes a sheaf of groupoids,
or a stack. This requires a cocycle condition on triple intersections.

More precisely, if U; is an open cover of U, then descent data for a G-bundle on U is

1. An object in [[, Bung(U;),
2. A morphism in [[;; Bung(Uy;) (where Uy; = U; N Uj), and
3. A triangle of morphisms in Hijk Bung (U jx) witnessing compatibilities.

This is a certain homotopy limit which generalizes the equalizer usually used to state the
sheaf condition. The claim that Bung is a stack is precisely the claim that the groupoid of
descent data for the cover U; of U is naturally equivalent to Bung(U).

Here is a definition of homotopy (co)limits that is good enough for our purposes. Let
(C,W) be a category with weak equivalences W. For any diagram category J, we get an
induced (pointwise) notion of weak equivalences on the diagram category [J, C]. There is a
constant diagram functor C' — [J, C] giving a constant diagram functor Ho(C') — Ho([J, C]).

Definition A homotopy colimit resp. homotopy limit is a left resp. right adjoint to
Ho(C) — Ho([J, C)).

Homotopy limits and colimits in this sense actually correspond to homotopy coherent
cones and cocones respectively. In practice we will attempt to compute homotopy limits and
colimits by resolving diagrams appropriately.

Recall that the simplex category A can be described as the category of nonempty finite
total orders and order-preserving maps. The object n € A is the total order with n + 1
elements. We can present A using special morphisms between these objects called coface
d" and codegeneracy s° maps (which either skip elements or repeat elements), which satisfy
some straightforward relations. A simplicial object in a category C' is a functor A? — C,
and a cosimplicial object is a functor A — C'. So simplicial objects are sequences of objects
related by face d; and degeneracy s; maps.

Let X, be a simplicial topological space (so a functor A% — Top). Its geometric realiza-
tion is

| X| = coeq (H Xix AN = HX" X A”) (54)

I n
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where A’ here denotes the standard i-simplex, or more abstractly the standard cosimpli-
cial object A®* : A — Top. (Abstractly it can be thought of as the functor tensor product of
X, and A® over A.) In good cases, this models the homotopy colimit of X over A%, (We
can think of A® as a ”projective resolution” of the constant cosimplicial object, so we are
computing a ”derived tensor product” using a resolution.)

13.2 The case of factorization algebras

Let F be a PFA with values in dg-CVS on X, thought of as a lax symmetric monoidal
functor on the completion Open(X ) of Open(X) with respect to disjoint unions. What is
the correct homotopy version of the Weiss cosheaf condition? If U;,i € I covers U, we get a
Cech simplicial object C'(U), the Cech nerve, with

CU)n = H Uio,...in (55)

(io,...in)61n+1

with various face and degeneracy maps.

Definition The (Cech) codescent object C'(U, F) is the homotopy colimit of the composite

Aor £, Open(X)U 5 Ch. Fisa homotopy cosheaf with respect to this cover if the
natural map C(U, F) — F(U) is a weak equivalence.

14 Wick’s lemma (Yuan, 2/25)

15 Homotopy factorization algebras IT (Mazel-Gee, 2/25)

When we considered descent for a (co)sheaf valued in groupoids, we needed to go up to
triple intersections. This is because groupoids form a 2-category. When we move to chain
complexes, they form an oo-category, so we need to go to all finite intersections. This is
what the Cech codescent object from earlier accomplishes.

We can relate the simplicial stuff we were doing earlier to chain complexes as follows.
The Dold-Kan correspondence asserts that the category sA = [A°P A] of simplicial objects in
an abelian category A is equivalent to the category Chso(A) of connective chain complexes
(or coconnective cochain complexes) in A. Actually we care about a more homotopical
statement than this. If X, is a simplicial object, the corresponding complex is the objects
X,, with differentials the alternating sum > (—1)"d; of the face maps. This functor sends
taking homotopy ”groups” (objects of A in general) to taking homology and sends weak
equivalences of simplicial objects (suitably defined) to quasi-isomorphisms, and induces an
equivalence on homotopy categories (and can even be upgraded to a Quillen equivalence
between model categories). This gives rise to the intuition that simplicial objects can be
used as "nonabelian resolutions” in categories that aren’t abelian.

We'll be looking at the case where A = Ch(C'V'S) is chain complexes of convenient vector
spaces, which itself already has an internal notion of weak equivalence. This complicates the
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story. So sA, simplicial objects in A, get related to chain complexes in Ch(CV'S), so certain
double complexes (here we mean the vertical and horizontal complexes commute). At this
point we’ll switch to cochain complexes. A weak equivalence in s Ch(CV'S) is a levelwise
weak equivalence. There should be a hocolim functor s Ch(CV'S) — Ch(CV'S) sending weak
equivalences to weak equivalences. Explicitly, thinking of objects in s Ch(C'V'S) as double
complexes C'** of CVSes, hocolim can be computed as

Tot(C)" = € C* (56)
i+j=n

with differential D : Tot™ — Tot"™ given by dyer¢ + (—1)?dpor. This is isomorphic to
tensoring over A with simplicial chains on the standard cosimplicial set in simplicial sets,
which is the Yoneda embedding of A into simplicial sets. (Simplicial chains means we take
a simplicial set, apply the free abelian group functor levelwise to get a simplicial abelian
group, and then apply Dold-Kan to get a chain complex.)

Now a homotopy cosheaf in chain complexes is a functor F': Open(X) — Ch such that
for any open cover U; of an open U, F(U) is naturally quasi-isomorphic to the totalization
of the simplicial object obtained by applying F' to the Cech simplicial object of the cover.

To show that various PFAs are homotopy factorization algebras the key input will be the
following.

Theorem 15.1. Let V' be a smooth vector bundle on M (identified with its presheaf of smooth
sections), and let V. be its presheaf of compactly supported sections.

1. V is a sheaf in CVS.

2. V is a homotopy sheaf in Ch(CV'S).
3. V. is a cosheaf in CVS.

4. Ve is a homotopy cosheaf in Ch(CV'S).

Proof. Let U; — U be an open cover, and let p; be a smooth partition of unity subordinate
to the cover. To show that V. is a cosheaf we need to show that

D vevy) = P vy = V) (57)

is a coequalizer diagram. The second map has a section p taking v € V.(U) to >_ pv €
D, Ve(Uk), so e o p = idy, ). Using this section we can write down a map from V,(U) to
the coequalizer, and to show that this map is an isomorphism it suffices to show that every
element in the image of p o e is in the image of the difference of the coequalizer maps dy, d;.

Suppose v € P, V.(U;) witih components v;. We’ll check the above for the special case
where v; = 0 for ¢ # k, where k is fixed but arbitrary. Define

v=poe(v),v; = pivg (58)

18



and

pive ifj=k
Wi = {O otherwise © 61? Ve(Ui): (59)

Then we can check that do(w) = v and d;(w) = v, which gives the desired result.

This gives that V. is a cosheaf. To check that it’s a homotopy cosheaf, we can consider
the canonical map from the Cech codescent object C'(U, V..) to V.(U) (concentrated in degree
0), and to prove that it’s a quasi-isomorphism it suffices to prove that its mapping cone is
acyclic. This is

S CULV)Y = C(U, VL) — V(U) (60)

and we’ll prove that it’s acyclic by writing down a contracting homotopy, namely a
sequence of maps K™ : C"~! — C™ such that Kd+ dK = id. This is the same as the data of
a homotopy between the identity endomorphism and the zero endomorphism. And we can
write these down using partitions of unity, in a way that generalizes the above argument.
(This is a version of the standard argument showing that partitions of unity imply that
higher sheaf cohomology vanishes.) O

Corollary 15.2. (de Rham theorem) The de Rham cohomology H3,(M) of a smooth man-
ifold is the Cech cohomology of the constant sheaf with value R on M.

Proof. Pick a finite cover U; of M. This gives a double complex given by applying Dold-Kan
to differential forms on the Cech nerve. After taking the mapping cone, the fact that taking
smooth sections of vector bundles (such as the exterior powers of the cotangent bundles) is
a homotopy sheaf implies that the rows of the augmented double complex are exact. A little
homological algebra shows that Q°*(M) is quasi-isomorphic to the total complex of this double
complex. Now, if U; is a good cover (so all finite intersections are empty or contractible),
then the Poincare lemma implies that the cohomology of the columns are concentrated in
degree 0, where they recover locally constant functions. So augmented by the Cech complex
for R, we get that Cech cohomology is also quasi-isomorphic to the total complex of this
double complex. O

Dually, compactly supported de Rham cohomology gives homology with a degree shift;
this is a version of Poincare duality.

16 The Chevalley-Eilenberg and divergence complexes
(Teichner, 3/1)
Any local DGLA gives a (homotopy) factorization algebra. Recall that a local DGLA L

consists of the data of a smooth graded vector bundle together with a differential differential
of degree 1 and a bidifferential Lie bracket in the graded sense. The space of compactly
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supported sections of such a thing is a DGLA in CVS, and the homotopy factorization
algebra takes the form

U CE(Lo(U)). (61)

For example, we could take L = 2* ® g where g is an ordinary Lie algebra. When M = R
this recovers U(g). When M is a complex manifold, we can also take a certain central
extension of Q%* ® g (where Q%* is the Dolbeault complex); this recovers generalizations of
Kac-Moody algebras. Finally, starting from a field free theory we can take a certain central
extension coming from the symplectic form. When M = R this recovers the Weyl algebra.

In the free field theory we have both classical and quantum observables, one of which is
a Sym and one of which is a CE. As graded vector spaces, we have Obs? = Obs? ®@C[[H]],
but the Chevalley-Eilenberg differential is different. In particular, it is not a derivation.
However, it reduces to the Sym differential modh, and it is a BV differential.

What does this have to do with the divergence complex? Suppose ® is an n-dimensional
manifold (later it will be the infinite-dimensional space of fields) with a volume form w €
"(®). Then we can write down a complex, the divergence complex PV*(®) by dualizing
the de Rham complex using integration against w. This takes the form

oo A2(Veet) (@) 22 Veet(@) 22X ¢(d) (62)

where Div,, is the divergence operator. A"(Vect)(®) is regarded as sitting in degree —n.
(We need some restrictions here; for example, ® should be compact, or we should consider
compactly supported sections. We’ll consider polynomial sections, which will make sense
because for us ® will be a vector space.) There’s an integration map

C*(@)> f— /fw €R (63)

continuing this complex which computes expectation values, and it also computes the
map to H°.

Example Suppose & =V is a finite-dimensional vector space. (So we are considering fields
on a point.) Let wy be Lebesgue measure, normalized so that if w = ¢5/"w, then fv w=1,
where S is a quadratic form on V for simplicity. Then, taking polynomial functions and
vector fields everywhere,

PV*(V)=A*(V)® Sym®* (V™). (64)
We can compute that

Div,, = (=) V A1 dS + Div,, . (65)

So we can consider the family of complexes with differential i Div,, = (—) vV dS + h Div,,,
depending on a parameter . When A # 0 this is quasi-isomorphic to the same complex with
differential Div,,. When h = 0 the differential becomes (—) V dS. The resulting complex
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describes the derived critical locus of S. In particular, H° is functions on the critical locus.
It deserves to be called classical observables, and correspondingly the divergence complex
deserves to be called quantum observables.

In the infinite-dimensional case it’s unclear what Div,,, ought to mean becaue there is no
Lebesgue measure. However, it turns out we can still make sense of Div,,,.

Now think of S as a symmetric bilinear form S =¢q: V @ V — C. Take E to be the
complex

E=V 23 v (66)

with differential determined by S. This gives us an isomorphism E[1] = E', which allows
us to write down a symplectic form on £ of degree —1 and a corresponding central extension
E (a Heisenberg Lie algebra). In this setting, the Chevalley-Eilenberg complex of E turns
out to be the divergence complex of S (over C|a], with differential /& Div,,). This is one way
to motivate the definition of quantum observables for a free field theory.

17 Non-free field theories (Teichner, 3/2)

Kevin’s 3 books are about perturbative QFT. This involves fixing a classical solution and
perturbing around it. Mathematically we do formal geometry in a formal neighborhood of
the classical solution. The physicists know how to do this already but Kevin is describing
it in mathematical language. Perturbatively we just get sections of some vector bundle,
with the zero section corresponding to our original classical solution, and eventually we start
from a classical solution ¢, and quantize it to get a factorization algebra F A(pg). To do
things non-perturbatively we should try to do something like turning this into a sheaf of
factorization algebras over the space of classical solutions and taking its global sections.
This involves thinking of classical solutions as a derived stack and doing everything in the
setting of derived geometry.

A classical field theory in the perturbative setting is a commutative FA (valued in com-
mutative algebras), and we want to deform it to an interesting FA (valued in chain com-
plexes). Recall that for a free field theory the action functional is quadratic and gives rise
to a (—1)-shifted symplectic form, which we turned into a Heisenberg algebra and took
Chevalley-Eilenberg chains on. In a non-free theory the action functional has an interaction
term

S(e) = (Q(e),e) + I(e) (67)

which might e.g. be cubic or higher. So what do we do?
We can express classical observables as a divergence complex. This involves writing down
the divergence of w = ¢*/"wy as (in coordinates)

. 0 1 0S of
Div,, (Z fza_xz) =7 Zfz@—%z + Bz, (68)
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and we can try to write down an infinite-dimensional version of this. On Sym™(E}(U)) ®
Ec(U)[1] and with a quadratic action functional we can take

1 - . :
e1...e, Qe —zer - enQ(e) + ; €1...6i...€p /U e(x)e;(x) € Sym(E,(U)) (69)

because of compact support. But this doesn’t generalize to interaction terms.

In finite dimensions the A — 0 limit of the divergence complex was functions on the
derived critical locus, where the differential is given by wedging with d.S. This has a Poisson
structure {-,-} given by the Schouten-Nijenhuis bracket (extending the Lie bracket of vector
fields and the Lie derivative of functions), which has degree 1 (where vector fields live in
degree —1), which lets us rewrite the differential as {S,—}. IIn the non-free case we also
need to assume the classical master equation {S, S} = 0.

Now we’d like to deform this complex. This is done in book 3 using effective quantizations
from book 1. These may not exist (due to gauge symmetry) or be unique. For each length
cutoff £ > 0 there is a propagator (using a heat kernel for @)), and we can require that these
are related by effective interactions I,, a renormalization group equation relating length
cutoffs, a quantum master equation, and a strong locality condition as ¢ — 0.

18 Geometric factorization algebras (Teichner, 3/8)

Now we’d like to talk about how a geometric factorization algebra (defined on manifolds
with geometric structure) gives rise to a twisted geometric field theory (in the Atiyah-Segal
sense of a functor on bordisms with geometric structure).

By a geometric structure on manifolds we mean e.g. a smooth structure, an orientation, a
spin structure, a Riemannian metric, a conformal metric, a complex structure (in odd dimen-
sions), etc. Whatever geometric structures are, they need to glue along open subsets. If G is
a geometric structure, then G Man, is the symmetric monoidal (under disjoint union) cate-
gory whose objects are G-manifolds (without boundary) of dimension d and morphisms are
G-embeddings, and we can define G-factorization algebras as symmetric monoidal functors
out of this category satisfying a suitable cosheaf condition.

Similarly, G Bord, is the symmetric monoidal (under disjoint union) category whose ob-
jects are G-manifolds of dimension d — 1 and whose morphisms are (isomorphism classes of)
G-manifolds of dimension d with boundary, where composition is given by gluing (although
we need to say something about how this interacts with geometric structures; we asked for
gluing along open subsets but now want gluing along boundaries). A G-field theory is a
symmetric monoidal functor out of this category. The motivating example is when d = 2
and G is a conformal structure, in which case we get Segal’s definition of conformal field
theory. Segal worked out in a nontrivial way how to glue cobordisms in this case.

Most examples of geometric field theories have anomalies in the sense that they do not
really assign vector spaces but only assign vector spaces up to scale (in the sense that the
corresponding linear maps are only well-defined up to scale). We can change the target
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to account for this but then we forget things about the anomaly that we might want to
remember. In order to prevent this we’ll upgrade our categories to bicategories.

18.1 Bicategories

Definition A bicategory consists of the following data:

1. A collection of objects

2. For each pair X,Y of objects, a category Hom(X,Y") (with objects 1-morphisms and
morphisms 2-morphisms; composition here is called vertical composition)

3. For each triple X,Y,Z of objects, a functor oxyz : Hom(X,Y) x Hom(Y,Z) —
Hom(X, Z) (horizontal composition)

4. For each triple f : X — Y,g:Y — Z h: Z — W of composable 1-morphisms, an
associator 2-morphism « : (fog)oh = fo(goh)

together with some units satisfying some unit and coherence axioms.

What we really need is a good notion of symmetric monoidal bicategory.
Below let V' be a closed monoidal category.

Example There is a nice bicategory whose objects are algebras, morphisms are bimodules,
2-morphisms are bimodule homomorphisms, and composition is tensor product of bimodules.
Equivalence in this bicategory is Morita equivalence. We can do this internal to any V.

Example Cat is a bicategory whose objects are categories, morphisms are functors, 2-
morphisms are natural transformations, and composition is composition of functors. Here
horizontal composition is strict: that is, we have an equality (f o g)oh = fo(goh), so we
can take the associators to be identities.

Example Let V' be a monoidal category. V' Cat is a bicategory whose objects are V-enriched
categories (V-categories), morphisms V-bimodules, and 2-morphisms are morphisms of V-
bimodules. In the special case of V-categories with one object we get algebras and bimodules
as above. We'll be interested in the case that V' is vector spaces or dg vector spaces.

Definition Let A, B be V-categories. An (A, B)-bimodule is a collection of objects M (a,b) €
V' (where a € A,b € B) and a collection of action maps

A(d';a) @ M(a,b) @ M(b, V') — M(d',b) (70)

satisfying the obvious compatibility conditions. Equivalently, it’s a V-functor A ® B? —
V' (or maybe the other way around).
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Bimodules have a composition given by tensor product of bimodules, which is computed
using a certain coend. If V' is an ordinary category (e.g. vector spaces), the tensor product
M ®p N of an (A, B)-bimodule M and a (B, C)-bimodule N is the coequalizer of the two
morphisms

[T M(a.b) @ B(b.V) @ N, c) = [ M(a,b) @ N(b,c) (71)
b

by EB

given by the left and right action of B respectively. If V' is a higher category (e.g. dg
vector spaces) we need to take the geometric realization of a simplicial object (a homotopy
coend, computing a derived tensor product).

19 More about geometric factorization algebras (Te-
ichner, 3/10

19.1 The topological and locally constant case

Consider locally constant geometric factorization algebras on smooth framed manifolds. By
the cosheaf condition this is the same as a locally constant factorization algebra on R
and then by a theorem (of Lurie?) these are the same as Fg-algebras (internal to some V,
say symmetric monoidal). On the other hand, by the cobordism hypothesis (Lurie) fully
dualizable objects in symmetric monoidal (oo, d)-categories give rise to fully extended TFTs
on smooth framed bordisms. There is a symmetric monoidal (0o, d)-category whose objects
are Fg-algebras, morphisms are bimodules, etc., and every object is fully dualizable, so
defines a fully extended TFT. These can be computed using factorization homology.

When d = 1 this construction takes as input a locally constant factorization algebra on R
(so an algebra A) and returns as output a TFT which takes value A, or equivalently Mod(A),
on a point. This is a categorical shift from what Atiyah-Segal had in mind, where we should
assign a vector space to a point. We can get back down a categorical level using the idea
of twists. The trivial twist T assigns the underlying ring k (or equivalently Mod(k); e.g.
Vect if k is a field) to a point, and a twisted theory in the sense of a natural transformation
To — Tp assigns to a point a (k, k)-bimodule over k, or equivalently a k-module, and assigns
linear maps to 1-morphisms.

For an example of a nontrivial twist, consider what a 2d CFT assigns to conformal tori.
It should assign to every conformal torus a number, and so should define a function on the
moduli space of conformal tori, or in other words a modular function. But in fact what
one actually finds in examples is modular forms, not modular functions. This is because
of a nontrivial twist. Here a twist T assigns to each conformal torus a vector space, and
this assignment organizes itself into a vector bundle on the moduli space. Then T-twisted
theories assign to each conformal torus an element of the corresponding vector space, and
this assignment organizes itself into a holomorphic section of the vector bundle. These give
(weak) modular forms when we take powers of the determinant line bundle. T assigns to
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a circle a modular tensor category, e.g. the category of positive energy representations of a
loop group LG at a particular level k, which is the twist relevant to the Wess-Zumino-Witten
model.

To get a twisted field theory, rather than just a twist, from an Ej-algebra we can think
about it as a left module over itself. This gives a T-twisted field theory where T assigns A
to a point.

19.2 In general

Let V' be a closed monoidal category, such as Vect or dgVect. Today the convention is that
if A, B are V-categories, then an (A, B)-bimodule is a V-functor A ® B — V', where V is
regarded as a V-category via its closed structure.

If G is a geometric structure, the bicategory G Bord, has objects which consist of pairs
of a closed (d — 1)-manifold Y. together with a G-structure on Y. x (0, ¢) for some € > 0 (the
"collar”). Eventually we hope to really take germs of such manifolds (so take ¢ — 0). If
Yo, YY) are two objects, a morphism between them is a compact d-manifold > with boundary
Yy [[ Y1 and a G-structure on the interior of ¥ (the ”core”) together with isomorphisms of the
restriction of this G-structure to small neighborhoods of Yy, Y; with the existing G-structures
on Yy, Y;. The 2-morphisms between these are G-isomorphisms of bordisms. Incoming and
outgoing objects are not treated symmetrically: the collars are always pointing the same
way. This is to allow for compositions. (Also, really we want things to vary smoothly in
some sense as we vary G-structures. One way to do this is to work fibered over smooth
manifolds. The corresponding factorization algebras are called smooth.)

20 Geometric factorization algebras and field theories
(Teichner, 3/15)

Below V is closed monoidal and cocomplete.

Suppose I’ : GMan — V is a geometric factorization algebra. We’re going to use this
to construct a twisted geometric field theory. The objects of our G-bordism category are
thickened compact d — 1-manifolds Y = Y, x (0,1) equipped with G-structure. The object
we’ll assign to these is

F(Y; X (tl,t0> if to > t1

. 72

Ay (t1,t0) = {
which is a V-algebra.
New conventions for the bordism category: for the bordisms, all of Y, x (0, 1) needs to
appear.
Now if 3 is a bordism between Y; and Y, and t, > t;, let X(¢4,ty) denote the portion of
Y. between Y7 X {t1} and Y; x {to}. Then we assign
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F(S(tto)  ifto >t

. 73
0 ift0<t1 ( )

Ms(t,t0) = {

which is an (Ay,, Ay, )-bimodule using the factorization structure.
The main lemma is that composition of bimodules works out: we have an equivalence or
weak equivalence

My, ®AY1 QMs,, ~ Ms,,. (74)

of (Ay,, Ay, )-bimodules. This requires using the sheaf condition.
The problem with this is that we really only want germs of geometries of Y, near Y, x {0}.
We can do this by inverting certain morphisms. Or we can do the following.

Definition An Ay-module is germlike if the natural map

M/Aye ®AY5 Ay ~ M (75)

is an equivalence for all € € (0, 1).

Lemma 20.1. There is an adjunction

res : Modi’fy <o Modifye (—)® A. (76)

Definition The twist T is
T(Y;) = Mod, (77)
T(%): Mod%, 3 M = M ®,,, My € Modf, . (78)

This is a contravariant functor to V-categories but this turns out not to matter.
Next we’ll start defining the T-twisted theory F.

Definition My € Modify is the Ay-module whose objects are the points in [0, 1) and where
Ay acts via the factorization structure on Y x [0, 1) the right. (Checking that this is germlike
involves the sheaf condition again, with the Weiss cover ¥; =Y \ (Y. x {t}).)

Definition E(Y): Ty(Y) =V — T3(Y) = Mod?, is the functor

X = X® M. (79)
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21 Overview of factorization homology (Mazel-Gee, 3/17)

Recall that a homology theory for spaces can be described as a functor

F : Space’™ — Ch (80)

from finite CW complexes to chain complexes which is additive in the sense that it sends
disjoint unions to direct sums and which satisfies excision in the sense that a (homotopy)
pushout square

X— Y (81)

|

—g | 4

gets sent to a (homotopy) pushout of chain complexes.

We can replace Space’™ with smooth or topological manifolds and all maps, and we get
the same theories in that they all factor through spaces. Let H(Space/™, Ch) denote the
oo-category of homology theories.

Theorem 21.1. (FEilenberg-Steenrod) The functor

H(Space’™ Ch) 5 F +— F(e) € Ch (82)

is an equivalence (of co-categories). The inverse is

ChoV e Co(—, V)= C(—,Z)®V € H(Space!™, Ch). (83)

To get a more refined theory we’ll instead look at Man,,, the category of manifolds of a
fixed dimension n and embeddings (rather than all maps). This has a symmetric monoidal
structure given by disjoint union, which is no longer the coproduct. We can now define
a homology theory for manifolds valued in an arbitrary symmetric monoidal oo-category
(C,®) to be a functor

F :Man, — C (84)

which is symmetric monoidal (sending disjoint unions to tensor products) and satisfies
excision in the following sense: if

M =M, [T M (85)
then
F(Mo) ®pvxr) F(My) = F(M) (86)

where F'(N x R) has an algebra structure coming from the R factor, and the tensor
product above is (derived) tensor product of modules over this algebra.
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The point appeared in Eilenberg-Steenrod because spaces are built up from points (by ho-
motopy colimits). Similarly, manifolds are built up from R™. Here the analogue of Eilenberg-
Steenrod is the following. We'll state it for manifolds equipped with the following more gen-
eral kind of tangential data. Any topological n-manifold has a tangent microbundle, classi-
fied by a map M — B Top(n), where Top(n) is the group of homeomorphisms R” — R™. If
B — B Top(n) is any map, then a B-framed manifold is a (homotopy) lift of the classifying
map to B. For example, we can take B to be a point, in which case we get topologically
framed manifolds. And if n # 4 and B = BO(n), then we get smooth manifolds.

Let Man” denote the oo-category of B-framed n-manifolds and embeddings and let
H(Man? ) denote the oco-category of homology theories in the above sense for B-framed
manifolds valued in a symmetric monoidal co-category C'.

Theorem 21.2. (Ayala-Francis) The functor evaluating a homology theory Man? — C on
disjoint unions of copies of B-framed R™ induces an equivalence of oo-categories

H(Manf, C) = AlgDiskf} (€) (87)

where Algpigr(C) (B-framed n-disk algebras) denotes functors from disjoint unions of
copies of B-framed R™ to C' satisfying the above axioms.

For example, for B = e, we get E,-algebras. For B = B Top(n) we get n-disk algebras,
which are F,-algebras with homotopy fixed point data for the action of Top(n).

Definition Let A be a B-framed n-disk algebra. Then it determines a homology theory for
B-framed n-manifolds M. Evaluating this homology theory on M gives the factorization
homology [,, A of M with coefficients in A.

It’s also possible to give a more explicit description as a homotopy colimit.

21.1 Relation to QFT

Suppose we have a notion of fields F' given by a functor from the opposite of the category
of Riemannian n-manifolds to vector spaces of some sort (e.g. convenient vector spaces). In
addition, for each manifold M we're given an action functional S : F(M) — R. We'd like to
take solutions to the Euler-Lagrange equations, which means taking the intersection of dS
with the zero section in T*F(M). Sometimes, we can quantize by replacing this intersection
with a derived intersection, then taking quantum observables Obs? to be functions on this.

In good cases, Obs? will satisfy the Weiss cosheaf condition. In no interesting cases does
Obs? factor through Man,. But if both of these conditions hold, then restricting Obs? to
disjoint unions of R"s, we get an F,-algebra A such that

Obs?(M) = / A (88)

is factorization homology.
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21.2 Nonabelian Poincaré duality

Suppose M is a closed oriented n-manifold and A is an abelian group. Most simply, Poincaré
duality asserts that the orientation gives an isomorphism

Hy(M,A) = H" (M, A). (89)

for all k. We'd like to relate this to factorization homology in some way.

First, the LHS is m,Co(M, A). We can think about C,(M, A) as a space (via Dold-Kan)
which can be modeled as the configuration space of points on M labeled by A. Meanwhile,
H" %M, A) is m,[M, B"A] where [—, —] denotes mapping spaces and B"A = K(A,n) is the
Eilenberg-MacLane space classifying n'* cohomology with coefficients in A.

Poincaré duality asserts that these spaces have the same homotopy groups. It’s reasonable
to expect that there’s in fact a natural map between them which is a weak equivalence. So we
want to relate A-labeled configurations in M with maps M — B"A. In fact this configuration
space is [, A, and (at least if M is framed) we can restate Poincaré duality as the weak
equivalence

/ A= (M, B"A| (90)

More generally, if X is an n-connected pointed space, then Q"X is an FE,-algebra in
spaces, so we can consider factorization homology with coefficients in it.

Theorem 21.3. (Nonabelian Poincaré duality) (Salvatore, Segal, Lurie) We have a weak
equivalence

/ O"X =~ M, X]. (91)

This will in fact follow from the classification theorem for homology theories: we just
need to check that [M, X| comes from a homology theory on manifolds, which will in general
be given by compactly supported maps, which has value Q"X on R"™.

21.3 Poincaré-Koszul duality

Nonabelian Poincaré duality concerns factorization homology with values in spaces. What
can we say in general?
Take n = 1. Suppose A is an E; algebra. Its factorization algebra over a circle

/ A= HH(A) (92)

is the Hochschild homology of A. We might guess that Poincaré duality in this setting
will say something to the effect that the dual of HH (A) is HH(B) for some other B. This is
usually false. However, working in chain complexes (so A is a dg algebra), if A is sufficiently
connected, then
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HH(A)Y =~ HH(DA) (93)

where DA is the Koszul dual of A, which is another F; algebra.
More generally, suppose A is an E,, algebra in chain complexes. Then it has an F,,-Koszul
dual D™ A, which is another E,, algebra. There is a Poincaré duality map

[ oas(f A>V (94)

but it is generally not an equivalence unless A is very connected.

To fix this, we can define a notion of E, formal moduli problems given by functors of
some sort from artinian F,-algebras to spaces. For example, if A is an augmented F,,-algebra
(so equipped with a map A — 1, 1 the unit) then it defines a moduli problem MCy (Maurer-
Cartan) describing the formal neighborhood of the point Spec1 — Spec A. The key fact is
that global sections of M C4 are given by the Koszul dual D" A. However, in general MC'y
is not affine: that is, it is not Spec D" A.

We can define factorization homology with coefficients in M C'4, which turns out to be
the correct replacement for [, D™A. More generally, if X is a formal moduli problem, then

/MX:F(X,/MOX). (95)

That is, X has some structure sheaf of F, algebras, and we take the factorization ho-
mology of this and then global sections. (Physically these correspond to observables in a
non-perturbative QFT.)

Theorem 21.4. (Poincaré-Koszul duality) (Ayala, Francis) The duality map [,, D"A —
(fM A)v factors through an equivalence

/MM(JAg(/MA)v. (96)

This is supposed to be an avatar of S-duality in QFT, which exchanges perturbative and
non-perturbative phenomena.

22 oo-categories (Mazel-Gee, 3/29)

22.1 Simplicial sets

Recall that the simplex category A is the category of finite nonempty total orders, with
morphisms order-preserving maps. We'll write [n] to denote the ordered set {0 <1 < -+ <
n}. The category sSet = [A°, Set] of simplicial sets behaves like a category of spaces. Most
basically, there are the representable functors A" = Hom(—, [n]) which we can think of as
n-simplices. When n = 0, the object [0] is the terminal object, so A is the terminal functor.
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If X is a simplicial set, we’ll write X, = X ([n]), and think of it as the set of ”n-simplices in
X.” So A has a single (usually ”degenerate”) n-simplex for each n. We should think of it
as a point.

Al is supposed to look like an interval. Explicitly, (A')y = Hom([0], [1]) has 2 elements,
corresponding to the endpoints. (A'); = Hom([1],[1]) has 3 elements, corresponding to
the endpoints and the interval between them (two of these 1-simplices are ”degenerate”).
(A')y = Hom([2], [1]) has 4 elements, corresponding to the endpoints (which are completely
degenerate 2-simplices) and two other partially degenerate 2-simplices. This pattern contin-
ues, with various levels of degeneracy.

One reason to keep track of degeneracies is that it makes products nicer. Simplicial
sets have a pointwise product (which is the categorical product), meaning that (X x Y, =
X, xY,, and this turns out to model the product of spaces. In particular, looking at Al x Al
whose 2-simplices are pairs of 2-simplices in A and A', we’re supposed to get something
that looks like a square. This is because some of the degenerate 2-simplices in A! become
nondegenerate in A! x A! once we take products.

Recall that there’s a functor called geometric realization

sSet 3 X — | X| € Top (97)

from simplicial sets to topological spaces given by

| X| = coeq (]_[ Xix N =[] X % A”) (98)
Jj—t n
where the two maps are given by either applying face and degeneracy maps to X, or to
A°®, where now A" denotes the topological n-simplex in Top; these organize into a functor
A — Top (a cosimplicial object). Geometric realization can also be described as the left
adjoint of the singular simplicial set functor Top — sSet, which explicitly is the restricted
Yoneda embedding

Sing : Top 3 X — ([n] — Hom(A", X) € sSet (99)
where again A" denotes the topological n-simplex.

Theorem 22.1. (Quillen) Define a (Kan-Quillen) weak equivalence of simplicial sets f :
X =Y to be a map whose geometric realization |f| : | X| — |Y| is a weak equivalence. Then
the adjunction between geometric realization and Sing induces an equivalence on homotopy
categories (inverting weak equivalences).

Not all simplicial sets behave like spaces. The ones coming from singular simplicial sets
are special in the following way.

The ™" horn A7 is the subobject of A" given by "removing the i top face”: there are
n + 1 of them, and they all include into A™.

Definition A simplicial set X, is a Kan complex if every map A} — X extends to a map
A" — X.
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In particular, the singular simplicial set always takes values in Kan complexes. (With
suitable model structures, every topological space is fibrant, and the Kan complexes are the
fibrant simplicial sets.)

The horns A} themselves are examples of simplicial sets which are not Kan complexes:
the identity map does not admit an extension, meaning that A} is not a retract of A”".
However, |A?| is a retract of |A"| in Top, which is why singular simplicial sets are Kan
complexes.

Theorem 22.2. Let X be a simplicial set and Y be a Kan complex. Then the natural map
from Homgget(X,Y') to Homuosser)(X,Y) is surjective.

This is not true in general. For example, if X =Y = A!'/9A! then |X| = |Y| = S,
so homotopy classes of maps between them is Z, but there are only two endomorphisms of
A'/OA. The problem is that we cannot compose loops, which is the sort of thing that
being a Kan complex lets us do (up to homotopy); the extensions (fillers of horns) describe
compositions up to homotopy.

22.2 Nerves

In addition to describing spaces, simplicial sets can also be used to describe categories. There
is a cosimplicial object A — Cat given by taking each n-simplex to the corresponding poset,
regarded as a category. This gives us a restricted Yoneda embedding called the nerve

N : Cat 5 C — ([n] = Hom([n],C)) € sSet. (100)

Explicitly, Hom([n], C) is n-tuples of composable morphisms in C. It has a left adjoint
71 : sSet — Cat.

In Kan complexes, it doesn’t matter what direction edges are going. But it certainly
matters in nerves.

Theorem 22.3. A simplicial set X is isomorphic to the nerve of a category iff for all inner
horns A" (meaning that 0 < i < n), maps A" — X have unique extensions to A" (fill
uniquely).

These unique extensions describe compositions.

22.3 The homotopy hypothesis

Taking the fundamental groupoid Il<; of a topological space gives an equivalence between
groupoids and homotopy 1-types (spaces with no homotopy above 71 in any of their con-
nected components). Grothendieck wanted to generalize this to homotopy n-types (spaces
with no homotopy above 7, in any of their connected components). He suggested that ho-
motopy n-types should be modeled by certain n-categories called n-groupoids. There should
be a fundamental n-groupoid functor Il<, from spaces to n-groupoids implementing this
equivalence. This functor should have a left adjoint in a homotopical sense.
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It’s tempting to define n-categories inductively as categories enriched over n—1-categories.
This gives strict n-categories. But strict n-groupoids don’t model all homotopy n-types
starting when n = 3.

To model all spaces, we need to talk about oo-categories and oo-groupoids. But how
should we describe these explicitly? The idea is to describe corresponding simplicial sets.

Definition (Joyal, Boardmann-Vogt) A quasicategory or weak Kan complez is a simplicial
set in which every inner horn has a filling (not necessarily unique).

Restricting to inner horns corresponds to allowing directed compositions (so categories,
with morphisms that aren’t necessarily invertible), while not asking for uniqueness corre-
sponds to allowing Kan complexes (compositions up to homotopy). These are supposed to
model (0o, 1)-categories, which are categories enriched (in a suitable homotopical sense) over
oo-groupoids (spaces up to weak equivalence).

Two other models for (oo, 1)-categories are categories enriched over Top and over sSet.
There’s a functor from the former to the latter given by taking singular simplicial sets, and
a functor from sSet-enriched categories to sSet called the homotopy coherent nerve. This is
again a restricted Yoneda embedding along a cosimplicial object

A — Catyger (101)

23 More about oo-categories (Mazel-Gee, 3/31)

Let C be a quasicategory. We can think of Cj as the objects and C as the 1-morphisms.
Given two objects x,y € Cy, we can define the hom space Homg(x, y) as the pullback of the
diagram (in simplicial sets)

AL, C] (102)

|

{(z,y)} —[0A},C]

(where [—, —] is the internal hom in simplicial sets) which turns out to be a Kan complex,
hence we can think of it as an oco-groupoid.
Now we can start doing category theory.

Definition An object ¢ € C is an initial object if Home(c,d) is weakly equivalent to A°
for all d € C,.

Definition If J is a category, a diagram in C' of shape J is a map N(J) — C of simplicial

sets. A colimit of a diagram F' : N(J) — C is an initial object of the quasicategory of
extensions of F' to the right cone N(J) * A® (where % denotes the join).
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Definition Given a quasicategory C' and a subcategory W, the quasicategorical localiza-
tion C[[W1]] is a pushout, in N"*¢(QCat) (the homotopy coherent nerve of quasicategories,
regarded as enriched over Kan complexes), of the diagram

W——C (103)

|

Wapd

where W9? is the Kan complex completion of W (inverting all morphisms homotopy
coherently).

Definition An oco-category is an object in the quasicategory Cat,, which is the localization
of N"(QCat) (as a quasicategory, in the above sense) at maps which are fully faithful and
essentially surjective (meaning surjective on isomorphism classes and weak equivalences on
hom spaces).

23.1 Manifolds

Definition Man,, is the oo-category underlying the topologically enriched category whose
objects are n-manifolds admitting finite good covers (a finite cover by open sets all of whose
intersections are contractible or empty) and whose morphisms are embeddings (with the
compact-open topology).

Man,, is symmetric monoidal under disjoint union LI, which is not the coproduct [ [ (which
doesn’t exist). Write Euc, for the full subcategory of Man,, on R™ (so R"” and embeddings).

Theorem 23.1. (Kister-Mazur) Euc,, is equivalent (as an oco-category) to the co-groupoid
B Top(n), where Top(n) is the topological group of homeomorphisms R" — R".

Definition The tangent microbundle functor is the composite
7 : Man, =% Fun(Euc)?, Space) = Fun(B Top(n), Space) = Space, () - (104)

Here the first map is the restricted Yoneda embedding, where we send a manifold M to the
functor R” — Hom(R™, M). The last equivalence is given by the Grothendieck construction,
which is an equivalence between functors X — Space and spaces over X, for X a space
(given by taking the colimit over the functor, regarded as a diagram). We end up with a
map from the fundamental co-groupoid 1<, (M) to B Top(n), which is the classifying map
of the tangent microbundle.

Definition If B is a space equipped with a map to B Top(n), the oco-category Manf of
B-framed n-manifolds is the pullback

Man?” X Space 5 Top(n) Space, 3 . (105)

Its objects are n-manifolds M together with lifts of the tangent microbundle I« (M) —
BTop(n) to B (up to homotopy).
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The action of O(n) on R™ gives a map BO(n) — B Top(n), and typical examples of B
are given by maps into BO(n), e.g. BSO(n), B Spin(n), which correspond to orientations
and spin structures respectively.

Theorem 23.2. (Kirby-Siebemann) BO(n)-framings give smooth structures when n # 4.

In fact, the oo-category Man;™ of smooth n-manifolds is equivalent to the oco-category
of BO(n)-framings when n # 4.

If M, N are B-framed n-manifolds, then the space of morphisms between them ( B-framed
embeddings) fits into a (homotopy) pullback square

HomManf (M7 N) — HomSpace/B <M7 N) (106)

l l

HomMann <M7 N) I Homspace/s Top(n) (M’ N>

so can be understood in terms of homotopy-theoretic data and ordinary embeddings.
Write Diskf for the full subcategory of Man® on disjoint unions of B-framed R"s, and
(Diskf ) M for the oo-category of B-framed R"s together with B-framed maps into M.

Definition Let C' be a symmetric monoidal co-category. A Disk”-algebra in C' is a sym-
metric monoidal functor Disk? — C.

For example, when n = 1 and B = BO(1), a Disk?-algebra is an E; algebra (associative
algebra, in a homotopy coherent sense) in C'.

Definition Let A be a Diskf -algebra in C' and let M € MannB . The factorization homology
Jiy A of M with coefficients in A is the colimit of the diagram

(Disk?) . — Disk? & C (107)

/
in C.

Loosely speaking, this looks like a configuration space of points (really, disks) in M
labeled by A, which are "multiplied” using the structure maps of A when they collide.

24 More about factorization homology (Mazel-Gee, 4/5)

Previously we defined factorization homology for B-framed manifolds with coefficients in a
Diskf algebra. For example, a Disk‘ft algebra is an associative algebra, and a Disk?* algebra
is an F, algebra. We'll call a Diskf S0(n) algebra a ribbon FE, algebra. When n = 1 this
reproduces a version of *-algebras. (The orientation-reversing map from R! to R! gives an
isomorphism from the algebra to its opposite.)
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For example, take C' = Space (equipped with product). Examples of E, algebras are
n-fold based loop spaces Q"X of pointed spaces X. As a Disk? algebra, the corresponding
functor assigns to a disjoint union of framed disks M the space Maps.(M, X) of compactly
supported maps M — X, where compactly supported means that they take value the base-
point outside of a compact subspace. In particular, Maps.(R", X) = Q"X. Compactly
supported maps are covariantly functorial (in M) with respect to embeddings: we take the
extension by zero, where if M; — M is an embedding, then everything in Ms not in M,
gets sent to the basepoint.

In fact we can replace M with an arbitrary framed manifold, and this is the factorization
homology [,, "X (’nonabelian Poincaré duality”).

For spaces we can think about the colimit defining factorization homology by first talking
about its points. A point in the colimit describing [ A where A is an E, algebra in spaces,
is a list of k disks in M which are labeled by elements of A. These are glued together by
structure maps where these disks collide and the E,, algebra structure of A is used to relabel
the resulting disks. It turns out ("nonabelian Poincaré duality”) that

/ 0" X = Maps, (M, X). (108)
M

We’ll prove this by checking that both the LHS and the RHS satisfy some properties
characterizing factorization homology.

As a variation, instead of manifolds we might talk about manifolds with boundary and
disks with boundary (R" or half spaces). When n = 1, and with framings, a Disk?’m-algebra
(oriented / framed 1-disks with boundary) is a tuple consisting of an algebra A, a right
module M, and a left module N. We’d like to compute the factorization homology of this
thing on a closed interval [—1, 1] (not a disk with boundary).

Definition A functor F': I — J is final if for all diagrams G : J — D admitting a colimit,

the composite [ 5 7 5% D admits a colimit, and the natural map between them is an
isomorphism.

For example, the inclusion of a terminal (final) object is final. A complete character-
ization (Quillen’s Theorem A) of final functors is known. There is a functor from A to

<Disk?’0r>/[ } (oriented disks with boundary in [—1,1]) sending [n] to n + 2 intervals in
~11

[—1,1] including the endpoints, and this functor is final. We can use this to compute the
factorization homology of the tuple (A, M, N) above, and what we get is the geometric real-
ization of the two-sided bar construction describing the (derived) tensor product M ®4 N.
Symbolically,

/ (M~ A~ N) = [Bar(M, A, N)| = M @4 N. (109)
[7171]
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25 Towards excision (Mazel-Gee, 4/7)

Definition Let M € Man®. A collar gluing of M is a continuous map f : M — [—1,1]
such that the pullback to (—1,1) is a fiber bundle of manifolds.

Write
Mo = [71(0), My = f7([-1,1)), M_ = [~ (-1, 1)). (110)
The B-framing on M induces B-framings on My x R, M, M_. We have
M=M_ J] M (111)
MOX(*l,l)

as B-framed manifolds. f~! organizes into a functor

-1 . . 1.00r B
[ (Dls.k1 )/[171] — (Mann)/M. (112)
It F: Manf — (' is a symmetric monoidal functor, it gives us a functor
(Manf)/M — C/F(M)- (113)

=1 uniquely extends to a symmetric monoidal functor Disk?’or — Man®, and the com-

n

posite with F'is a Disk?’or—algebra in C, so a triple (M, A, N) of an algebra, a left module,

and a right module over it. This means we can contemplate its factorization homology over
[—1, 1], which is

[, P = O @ty FOML) (114)

The reason this deserves to be called a tensor product is that My x R is an algebra in
Man?, and F(M_) and F(M,) are left and right modules over it respectively. This comes
equipped with a natural map to F(M).

Definition A symmetric monoidal functor F : Man? — C'is a homology theory if it satisfies
tensor excision: for all collar gluings on all M € Man?, the natural map

F(M-) @p(aoxry F(My) — F(M) (115)

is an equivalence.

Theorem 25.1. (Ayala-Francis) If C is tensor presentable, the pullback from Fun®(Man?, C)
to Fun®(Diskf, C) has a left adjoint called factorization homology

/ (—) : Fun®(Disk?, C') — Fun®(ManZ, C) (116)
=)
which induces an equivalence from Diskf -algebras in C' to homology theories.

37



This is a version of the Eilenberg-Steenrod classification of homology theories for spaces.

Presentable means a category is generated under colimits by a small set of compact
objects (whatever that means). Tensor presentable means presentable, and ® distributes
over colimits in both variables. (Given presentability, this is equivalent to admitting an
internal hom.)

Proof. Step 0: using tensor presentability, we get that the left adjoint exists and takes values
in symmetric monoidal functors.

Step 1: we want to show that factorization homology is a homology theory. Let A
be a DiskZ-algebra, M € Man? and f : M — [~1,1] a collar gluing. The idea is that

factorization homology [,, A can be computed by taking the pushforward of A to a point,
and we can factor this map through f. This gives an equivalence

aspn [ ax [ gas [ .
| Asp o A=) gas | (117)

which is the desired excision property.

Step 2: the inclusion 4 : Disk? — Man® is fully faithful, hence so is the left adjoint to
pullback (left Kan extension iy). It remains to show that if F' is a homology theory, it’s
computed by the factorization homology of F' restricted to Diskf . O

26 Excision (Mazel-Gee, 4/12)

26.1 Strictness

There is a strict version of this whole story where we take a 1-categorical version of Man,, (so
homs are sets of embeddings), and Disk,,, and with B-framings, etc. It’s a difficult statement
that the map from the 1-categorical version of (Diskf ) a0 (Diskf ) hY; is an oo-categorical

localization (at every map that becomes an equivalence). This has the effect of identifying
Disk”-algebras with strict (1-categorical) Disk”-algebras which are locally constant in a
suitable sense. Localizations are also final, so we can compute factorization homology as a

colimit over the 1-categorical version of (Diskf ) Y (which is a poset) for locally constant

strict Disk”-algebras.

26.2 Pushforwards

Suppose M is a B-framed m-manifold, N is a B-framed n-manifold with boundary, and
f M — N is continuous. Taking preimages gives a functor
£ (Diskd?) . — (Man})

2% (Man®) (118)

/N /M /M
where the first two things are strict and the third one is co-categorical. If f restricts to
a bundle of manifolds on the interior and the boundary of N, then f~! takes isotopies to

equivalences. This strict construction allows us to take the pushforward of a factorization
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algebra on M to a factorization algebra on N, which we used above, in such a way that taking
factorization homology is given by pushforward to a point, and pushforward is functorial (this
is hard).

This allows us to justify pushing forward to [—1, 1] to show that factorization homology
satisfies excision.

26.3 Excision

What'’s left in the proof of the equivalence between Diskf -algebras and homology theories
is to show that if F': Man? — C' is a homology theory, then the natural map

/ F(R™) — F(M) (119)

is an equivalence. As functors in M, this is an equivalence on M = R". Both sides satisfy
excision, so by induction, it’s an equivalence on handles S* x R"~*. If M admits a handle
decomposition, then by excision again and induction on handles, it’s an equivalence on M.
Every manifold admits a handle decomposition except when n = 4. If M is a connected
4-manifold, then M \ {m} admits a handle decomposition, and we can write

M= (M\{m}) [] R*. (120)

S3xR

This gives the result by excision again.

27 Applications of excision (Mazel-Gee, 4/14)

27.1 Commutative coefficients

How do we write down Disk”-algebras, anyway?

Let Com = FinSet be the symmetric monoidal category of finite sets under disjoint
union. If C' is another symmetric monoidal category (or oo-category, if we set things up
properly), then the category of symmetric monoidal functors Fun®(Com, C) is equivalent to
the category of commutative algebras in C'. Com can be thought of as the terminal operad,
so any other operad admits a map to it. Diskf , in particular, can be thought of as an operad,
and the corresponding map

Disk” — Com (121)

is given by taking my. This gives a map

Algeom (C) = Algpigs (C) (122)

from commutative algebras to Diskf -algebras. Hence any commutative algebra gives a
Diskf -algebra and can be taken as coefficients for factorization homology.
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Theorem 27.1. Let M € Man® be a B-framed n-manifold and let A be a commutative
algebra in C. If C' admits finite colimits, then the factorization homology fMA s given by

the tensoring / copowering <. (M) ® A (computed in commutative algebras, then forgotten
down to C').

In particular, [ o A only sees the homotopy type of M, and is insensitive to any further
information like its framing.

For an object ¢ in an oco-category and a space X, the tensoring / copowering X ® ¢, if it
exists, is the space fitting into an adjunction

Hom(X ® ¢,d) = Hom(X, Hom(c, d)) (123)

(recall that Hom(—, —) takes values in spaces). Equivalently, it is the colimit of the
constant diagram with shape X and constant value c.

Example When X is discrete, this is the coproduct of X copies of c.

Example When X = BG and ¢ is a chain complex, this is the group homology of G with
trivial coefficients in c.

Example When M = S! and A is a commutative algebra (e.g. a DGCA, so C' is DG vector
spaces), [ g A= S ® A is the Hochschild homology of A. If we present S!' as a suitable
pushout, we get that Hochschild homology is similarly a pushout

S'@ A ARpa A (124)

which recovers the more familiar description of Hochschild homology.

One way to think about tensoring / copowering is that Space is the free cocomplete oo-
category on a point. This means that the oo-category of cocontinuous functors Space — C'
from Space into a cocomplete co-category C' is equivalent to C, with the equivalence given
by evaluating the functor on a point. Given ¢ € C, the corresponding cocontinuous functor
is X — X ®c, which is uniquely determined by the condition that it takes value ¢ on a point
and is cocontinuous in X. (This is an oo version of a corresponding story for Set: it is the
free cocomplete category on a point.)

Now let’s prove the theorem.

Proof. 1t suffices to check that II<. (M) ® A is symmetric monoidal and satisfies excision.
Symmetric monoidality is just the observation that disjoint union of manifolds gets sent to co-
products of spaces, which gets sent to coproducts of commutative algebras (by compatibility
with colimits); but this is just the tensor product in C'. (We really need commutativity here.)
Excision follows from compatibility with pushouts (collar gluings give homotopy pushouts
because the relevant maps are (Hurewicz) cofibrations) together with the observation that
pushouts of commutative algebras are also computed by (balanced) tensor products. O
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Example Suppose the symmetric monoidal structure on C' is the coproduct. Then every
object is canonically a commutative algebra, where the multiplication is the fold / codiagonal
map c¢[[ ¢ — ¢. Hence fM ¢ = M ® c for any object ¢ € C'. In particular, C' could be chain
complexes under direct sum; this reproduces ordinary homology.

Example There is an adjunction between commutative algebras in C' and C' where the right
adjoint is the forgetful functor; we’ll call the left adjoint Sym. It takes coproducts to tensor
products, and we can use this to show that

/M Sym(c) = Sym (M ® c). (125)

27.2 (Topological) Hochschild homology

Definition Let A be an algebra / associative algebra / A, algebra / E; algebra / Disk]"-
algebra. Its (topological) Hochschild homology is

HH(A) = / A (126)

We can relate this to usual Hochschlid homology if A is an algebra over a field by writing
down a final functor from A to (Disk{") s, using this to compute the colimit defining
Jg1 A (in chain complexes), and then taking normalized chains to get the usual Hochschild
complex.

If A is a commutative algebra corresponding to an affine scheme X = Spec A, we can
think of Spec [, A as a (homotopy) limit in (derived) affine schemes (the cotensor / power
(ST, Spec A]), or equivalently in all (derived) schemes, which computes the (derived) free loop
space

[S', X] = LX = Spec HH(A). (127)

Explicitly, the limit is given by the pullback of the diagonal X A X xX along itself, so
computes the (derived) self-intersection of the diagonal.

28 Poincaré-Koszul duality (Mazel-Gee, 4/19)

Let X be a grouplike E,-algebra in spaces and let M be a framed n-manifold.
Theorem 28.1. (Nonabelian Poincaré duality) There is a natural equivalence
/ X = Maps“(M, B"X) (128)
M

where B"X is the n-fold delooping and Maps® is compactly supported maps (maps which
are the basepoint of B"X outside of a compact subspace).
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For example, when X = A is an abelian group we have B"A = K(A,n), so taking m
gives an isomorphism

Hp(M,A) = H" (M, A) (129)

between homology and compactly supported cohomology with coefficients in A; this is
ordinary Poincaré duality (for framed manifolds). Moreover, the LHS describes a computa-
tion of homology / cohomology given by configurations of disks in M labeled by elements
of A. This is related to the Dold-Thom theorem (in the case A = 7Z) and some classical
material around scanning maps.

Poincaré duality is strange because the LHS is a covariant functor of the manifold M but
the RHS is contravariant. We can write down an oo-category of manifolds which describes
both of these kinds of functoriality.

28.1 Zero-pointed manifolds

Definition The oco-category of zero-pointed n-manifolds ZMan,, is the underlying co-category
of the Top-enriched category whose objects are locally compact Hausdorff based spaces M,

such that M = M, \ {*} is a topological n-manifold, and whose spaces of morphisms are

based continuous maps f : M, — N, such that the restriction of f to f _1(N ) is an embedding

of topological n-manifolds.

Zero-pointed manifolds are symmetric monoidal via wedge sum and have a zero object,
namely the point. A large class of examples is given by quotienting a manifold M with
boundary by its boundary OM (so identifying all of the boundary to a point).

An important class of morphisms in ZMan,, is given by Pontryagin-Thom collapse maps.
If R® — M is an embedding, we get an induced collapse map

M, — (R™)* (130)

which collapses the complement of the embedding to the basepoint of (R™)* = S™.
Zero-pointed manifolds have a contravariant "negation” involution given by

(=) Mo (M)7\ {*} (131)

where (—)* denotes one-point compactification. On maps, it performs a version of
Pontryagin-Thom collapse. There are two natural functors Man,, — ZMan, given by ei-
ther adding a disjoint basepoint M + M, or taking the one-point compactification M,
and negation defines a contravariant equivalence between the full subcategories given by the
images of these constructions:

(=)= : (Man,, ) = Man,' . (132)

For example, = intertwines the inclusion R"UR"™ — R” of two disks (after applying (—))
into a bigger disk and the based map S™ — S™ V S™ corepresenting the addition on .
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In Man,, , and Man," there are subcategories given by the images of Disk,, € Man,, which
are sent to each other under negation. Explicitly, Disk, ; is given by disjoint unions of
disks with a disjoint basepoint, and Disk; is given by wedges of spheres. Disk, , algebras
(symmetric monoidal functors out) end up being augmented E, algebras: there is an extra
map collapsing everything to the basepoint, giving a corresponding map from an F,, algebra
to the unit of (', regarded as a constant F), algebra.

An augmented E,, coalgebra in C is similarly a symmetric monoidal functor from (Disk,, )
to C, which by negation is the same as a Disk; algebra. Explicitly, when n = 1, we get
that Disk] consists of wedges of circles, and various maps between wedges of circles give the
augmentation and the comultiplication.

28.2 Factorization cohomology and homology

Definition Factorization homology |, v, A of an augmented E,, algebra is, when it exists,
the left adjoint of the forgetful functor

Fun®(ZMan,,, C) — Fun®(Disk,, ., C) (133)

and similarly, factorization cohomology [ M4 of an augmented F, coalgebra is the left
adjoint of the forgetful functor

Fun®(ZMan,,, C') — Fun®(Disk;", C). (134)

Example Every space X has a canonical augmented F,, coalgebra structure where the
augmentation is the terminal map X — pt and the comultiplication is the diagonal A :
X — X x X. Factorization cohomology (with the = above removed) takes the form

My
X = Maps, (M., X). (135)

The two adjunctions above, when they both exist, give a composite adjunction between
augmented F), algebras and augmented F),, coalgebras. This is the Koszul duality adjunction.
If Ais an augmented F,, algebra then on objects this adjunction gives the Disk!-algebra

(L R™ T — A. (136)
(UpR™)*
We'll call this the n-fold bar construction B™A. This reproduces the usual n-fold bar
construction for spaces. For example, when n = 1, we get

Al—>1®A1g/ A (137)

R+
where 1 is the unit. The augmented coalgebra structure on this comes from the augmented
coalgebra structure on R in ZMan;. We might want to iterate this construction, which
corresponds to doing the same thing for augmented FE,, algebras over
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(R™)*" = (RY)™ (138)

where (—)¥" denotes iterated smash product.
Dually, the n-fold cobar construction sends an augmented F,, coalgebra D to

Qn:Dr—>/(R1> D. (139)

This adjunction gives rise to a unit map for any augmented E,, algebra A, the Poincaré

duality map
(=)
/ Ao / BA. (140)
(=)

We'd like to know when this is an equivalence. In spaces, this unit map is X — Q"B"X
(given by evaluation on R ), which is an equivalence iff X is grouplike.

Theorem 28.2. [f C 1is either an oco-topos or a stable co-category and ® is the categorical
product, then the Poincaré duality map is an equivalence iff the unit map A — Q"B"™A is an
equivalence.

It turns out that factorization cohomology of B™A is always the analytification, in the
sense of Goodwillie calculus, of factorization homology of A. So Poincaré duality fails in
this setting iff factorization homology of A fails to be analytic. Later we’ll see how to fix
this failure of Poincaré duality by replacing B" A with a Maurer-Cartan functor, which is a
non-affine object.

29 Fixing Poincaré-Koszul duality (Mazel-Gee, 4/21)

How do we fix Poincaré-Koszul duality in general?

29.1 Formal geometry

First we need to say something about formal completions. If A is a commutative k-algebra
(k a field), the corresponding affine scheme Spec A has functor of points

CAlg(k) > R — Homy(A, R). (141)

If I is an ideal of A, the quotient map A — A/I induces a map Spec A/I — Spec A of
affine schemes; the correspnoding map on functors of points is the natural map Homy(A/I, R) —
Homy (A, R) given by pulling back along the quotient map. For example, if A = k[z,y], then
Spec A is the affine plane: its functor of points sends R to the set R?, and the ideal I = (y—x?)
is the parabola inside the affine plane: its functor of points, as a subfunctor of the affine
plane, sends R to the set of points (r,7%),r € R.
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Definition The formal neighborhood of Spec A/I in Spec A is the [-adic completion
A} 2 lim A/T" (142)

(regarded as an object in the category of commutative pro-k-algebras, or possibly its
opposite).

The idea is that this describes geometry infinitesimally close to Spec A/I inside Spec A.

Definition A commutative k-algebra A is Artin if it is finite-dimensional and local, with a
unique maximal ideal m such that R/m = k.

A typical example is A = k[x]/x?. This algebra has the property that a map R — A, or
equivalently a map Spec A — Spec R, is the same thing as a pair consisting of a k-point of
Spec A and a Zariski tangent vector to it.

What kind of object is the formal neighborhood, exactly? One way to say it is that it
has a functor of points defined, not only arbitrary k-algebras, but only on Artin k-algebras.

Definition The formal spectrum of AY is the functor of points

Spf(A}) : Artin(k) > R + colim,, Hom(A/I", R) € Set. (143)

29.2 Derived deformation theory

If k£ has characteristic 0, we’ll take CAlg(k) in the derived sense to mean the oco-category
given by localizing CDGAs over k at quasi-isomorphisms. In general we want to consider F.,
algebras in Mod(k), which in the derived sense means the oo-category persented by Ch(k).

Definition An object A € CAlg(k) is Artin if it is connective (meaning m-o(A) = 0), perfect
as an object of Mod(k) (equivalently, because k is a field, me(A) is finite-dimensional), and
mo(A) has a unique maximal ideal m such that mo(A)/m = k.

Loosely speaking, Spec of an Artin algebra is a thickened version of Spec k.
Definition A moduli problem is a functor

X : CAlg(k) — Space (144)

Definition Given a moduli problem X and a point z € X (k), the formal completion of X
at z is the functor

X Artin(k) 3 R — lim (pt 5 X (k) « X(R)) € Space. (145)
We can axiomatize the sort of object we get this way.
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Definition A formal moduli problem is a functor Y : Artin(k) — Space, such that

Y (k) = pt (146)
and Y takes fiber products to fiber products.

We'll call this Moduli(k).

A formal moduli problem has a notion of tangent complex in Mod(k) which, in the
classical case, produces the dual of the cotangent complex. In the smooth case, the cotangent
complex is concentrated in degree 0 and gives Kahler differentials; in general, it’s a ”derived
functor” of this.

Theorem 29.1. (Lurie) If k has characteristic 0, the tangent complez functor gives rise to
an equivalence

Moduli(k) > Y + STy € Lie(k) (147)

where Lie(k) denotes the co-category of Lo, algebras over k, presented by DGLAs over k.
(The Lie bracket is, loosely speaking, the bracket of vector fields.) The inverse sends a Lie
algebra g € Lie(k) (so we really mean a DGLA or Ly, algebra) to a formal moduli problem,
the Maurer-Cartan functor

MC(g) : Artin(k) > R—~ {r € mp® g : dv = [z, |} € Space. (148)

29.3 FE, formal geometry

Now we can repeat all of the above definitions but with E., algebras replaced with F,
algebras, giving us F, formal moduli problems Moduli, defined in terms of functors out
of Artinian FE, algebras Artin,, as well as formal Specs of augmented FE, algebras. The
forgetful functor from E., algebras to E, algebras induces a map Moduli,, — Moduli, but
E,, formal moduli problems have more structure since they can be tested on a wider class of
algebras.

Theorem 29.2. For k any field, there is an equivalence
Moduli, (k) 3 Y = &, (Y) € Algy? (k) (149)
with inverse given by a Maurer-Cartan functor MC(—).
Define the Koszul duality functor
D" : (Algl)” 2 (CoAlgl?)™ 5 Algas (150)

Then the Maurer-Cartan functor is
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MC(A) : Artin(k) SR+ HOmAlgaug (k’, A® DnR) . (151)

In general this is a non-affine object with affinization D" A. ®,, can be interpreted as the
sheafification of Koszul duality. On Artin algebras, it is (some version, up to linear duality,
of) Koszul duality D™. If R = lim R, is a pro-Artin algebra, then Spf R makes sense as a
formal moduli problem, and

®,,(Spf R) = colim,, ®,,(Spec R,,). (152)

Generally, ®,, is determined by this condition using descent along smooth hypercovers.
There is a shifted tangent complex functor X + X" 'Tx from formal moduli problems
to k-modules, and the corresponding Koszul dual functor sends A to the maximal ideal m 4.

30 Poincaré-Koszul duality via formal moduli prob-
lems (Mazel-Gee, 4/28)

The Maurer-Cartan functor M C(A) has an affinization, (the formal Spec of) O(MC(A)),
which we claimed above is (the formal Spec of) the Koszul dual D™A. Let’s see this. By
definition, if Z is an augmented E,, algebra, then the space of maps from Z to O(MC(A)) is

; Hom g (2, 153
RGArtinn,f:III-Inom(DnRA) OIMAjgn g( ) ) ( )

We’d like to set R = D™ A, but unfortunately this need not be Artin. But we can take a
cofinal / initial part of this diagram approximating D™ A.

Now we want a notion of factorization homology (on zero-pointed manifolds) with coef-
ficients in an object X € Moduli,,. This is

/ X=  lim / R, (154)
M, ReArting, f:Spf R—X M,

On an affine thing, this produces usual factorization homology. There’s an affinization
map

/ MCy— [ SpfDmA (155)
* M*
which is in general not an equivalence. MC'4 usually fails to be affine for stacky reasons.

Theorem 30.1. (Poincaré-Koszul duality) For any A € Alg,? and any M, € ZMan,,, we

have an equivalence
\%
(/ A) ~ [ e, (156)
* M;
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Proof. (Sketch) We can resolve A by finitely presented and (—n)-coconnective algebras. If
F' is such an algebra, MCr turns out to be affine, and we have Poincaré-Koszul duality

between F' and D"F. Koszul duality swaps these finitely presented algebras with Artin
algebras. This gives the result. O]
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