If you think something's supposed to hurt, you're less likely to notice if you're doing it wrong.

Name and section: \qquad

1. (3 points) Solve $y^{\prime \prime}-4 y^{\prime}+3 y=e^{2 x}$ using undetermined coefficients.

Solution: The homogeneous (complementary) equation is $y^{\prime \prime}-4 y^{\prime}+3 y=0$, with characteristic equation $r^{2}-4 r+3=(r-1)(r-3)$, so the homogeneous solution is

$$
\begin{equation*}
y_{h}=A e^{x}+B e^{3 x} \tag{1}
\end{equation*}
$$

$e^{2 x}$ is not a homogeneous solution, so for undetermined coefficients we can take $y_{p}=C e^{2 x}$ as a trial solution. This gives $y_{p}^{\prime}=2 C e^{2 x}, y_{p}^{\prime \prime}=4 C e^{2 x}$, so

$$
\begin{equation*}
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+3 y_{p}=-C e^{2 x}=e^{2 x} \tag{2}
\end{equation*}
$$

so $C=-1$, giving our final answer

$$
\begin{equation*}
y=y_{p}+y_{h}=-e^{2 x}+A e^{x}+B e^{3 x} . \tag{3}
\end{equation*}
$$

2. (3 points) Solve $y^{\prime \prime}+9 y=\cos 3 x$ using undetermined coefficients.

Solution: The homogeneous equation is $y^{\prime \prime}+9 y=0$, with characteristic equation $r^{2}+9=(r+$ $3 i)(r-3 i)$, so the homogeneous solution is

$$
\begin{equation*}
y_{h}=A \cos 3 x+B \sin 3 x . \tag{4}
\end{equation*}
$$

$\cos 3 x$ is a homogeneous solution, so for undetermined coefficients we need to multiply by x; we can take $y_{p}=C x \cos 3 x+D x \sin 3 x$ as a trial solution. This gives

$$
\begin{align*}
y_{p}^{\prime} & =C \cos 3 x-3 C x \sin 3 x+D \sin 3 x+3 D x \cos 3 x \tag{5}\\
y_{p}^{\prime \prime} & =-3 C \sin 3 x-3 C \sin 3 x-9 C x \cos 3 x+3 D \cos 3 x+3 D \cos 3 x-9 D x \sin 3 x \tag{6}\\
y_{p}^{\prime \prime}+9 y_{p} & =-6 C \sin 3 x+6 D \cos 3 x=\cos 3 x \tag{7}
\end{align*}
$$

so $C=0, D=\frac{1}{6}$, giving our final answer

$$
\begin{equation*}
y=y_{p}+y_{h}=\frac{1}{6} x \sin 3 x+A \cos 3 x+B \sin 3 x \tag{8}
\end{equation*}
$$

3. (4 points) Solve $y^{\prime \prime}+y=\sec x$ using variation of parameters.

Solution: The homogeneous equation is $y^{\prime \prime}+y=0$, with characteristic equation $r^{2}+1=(r+i)(r-$ $i)=0$, so for two linearly independent homogeneous solutions we can take $y_{1}=\cos x, y_{2}=\sin x$. Variation of parameters tells us to write the general solution as

$$
\begin{equation*}
y=f(x) \cos x+g(x) \sin x \tag{9}
\end{equation*}
$$

and then tells us that we get a system of equations

$$
\begin{align*}
f^{\prime}(x) \cos x+g^{\prime}(x) \sin x & =0 \tag{10}\\
-f^{\prime}(x) \sin x+g^{\prime}(x) \cos x & =\sec x \tag{11}
\end{align*}
$$

To solve the system, we can first multiply the first equation by $\sin x$ and the first equation by $\cos x$, getting

$$
\begin{align*}
f^{\prime}(x) \sin x \cos x+g^{\prime}(x) \sin ^{2} x & =0 \tag{12}\\
-f^{\prime}(x) \sin x \cos x+g^{\prime}(x) \cos ^{2} x & =1 \tag{13}
\end{align*}
$$

Adding these gives

$$
\begin{equation*}
g^{\prime}(x)=1 \Rightarrow g(x)=x+C_{2} \tag{14}
\end{equation*}
$$

Next, we can multiply the first equation by $\cos x$ and the second equation by $\sin x$, getting

$$
\begin{align*}
f^{\prime}(x) \cos ^{2} x \cos x+g^{\prime}(x) \sin x \cos x & =0 \tag{15}\\
-f^{\prime}(x) \sin ^{2} x+g^{\prime}(x) \sin x \cos x & =\tan x \tag{16}
\end{align*}
$$

Subtracting these gives

$$
\begin{equation*}
f^{\prime}(x)=-\tan x \Rightarrow f(x)=-\ln \sec x+C_{1} \tag{17}
\end{equation*}
$$

Altogether, we get

$$
\begin{equation*}
y=\left(-\ln \sec x+C_{1}\right) \cos x+\left(x+C_{2}\right) \sin x \tag{18}
\end{equation*}
$$

We could also write $-\ln \sec x=\ln \cos x$.

