Qualifying Exam Syllabus

Saad Qadeer

April 29, 2015

Committee: Alexandre Bayen, Lior Pachter, John Strain (Chair), Jon Wilkening.

1 Numerical Solutions of Differential Equations

Ordinary Differential Equations:

- Basic notions: Convergence, consistency, A-, $A(\alpha)$ -, B- and L-stability, region of absolute stability, local truncation error, implicit and explicit schemes.
- Runge-Kutta methods: Order conditions, stability, collocation and implicit methods, Gaussian quadrature.
- Multistep methods: Order conditions, stability, collocation and implicit methods, Adam-Bashforth and Adam-Moulton, backward differentiation formula.
- Error estimation and stepsize control: Embedded Runge-Kutta, paired Adam-Bashforth/Adam-Moulton methods.

Partial Differential Equations:

- Finite differences: Stability, consistency, convergence, local truncation error, CFL condition, von Neumann stability analysis; basic schemes (leapfrog, Crank-Nicholson, Lax-Friedrichs, Lax-Wendroff, upwinding).
- Finite elements: Definition, Galerkin methods, weak formulation, existence of solutions, error analysis.
- Meshes: Definition, Delaunay triangulation and refinement, advancing fronts, structured mesh generation.

References: (i) Randall LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems, and (ii) Arieh Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd edition.

2 Computational Biology

- Graphical and statistical models: Linear models, toric models, Birch's theorem, Markov models, hidden Markov models, implicitization, directed and undirected Hammersley-Clifford.
- Inference: EM algorithm, Baum-Welsch algorithm, maximum likelihood estimation, tropical arithmetic, MAP inference, tree-joining algorithm, iterative proportional fitting.
- Trees: Phylogenetic trees, neighbour-joining algorithm, splits equivalence theorem, four-point condition, cherry-picking theorem.
- Sequence alignment: Needleman-Wunsch algorithm.
- Evolutionary models: Statistical models for mutation, Jukes-Cantor model.

Reference: Lior Pachter & Bernd Sturmfels, Algebraic Statistics for Computational Biology, Chap. 1-4.

3 Minor Topic: Functional Analysis

- Banach spaces: Open mapping theorem, closed graph theorem, uniform boundedness principle, dual spaces, Hahn-Banach theorem, weak and weak-* topologies, Alaoglu's theorem.
- **Hilbert spaces:** Inner products, Cauchy-Schwarz Inequality, orthonormal bases, weak topology.
- Riesz representation theorems: Dual of a Hilbert space, positive linear functionals on C_c , dual of C_0 .
- Operators on Hilbert spaces: Polar decomposition, compact operators, Fredholm theory, trace-class operators, Hilbert-Schmidt operators, spectral theorem.
- Examples: Function spaces L^p , C, C_c , C_0 ; sequence spaces ℓ^p , c, c_0 .

References: (i) Gerald Folland, Real Analysis: Modern Techniques and Their Applications, Chap. 5-7, and (ii) Michael Reed & Barry Simon, Functional Analysis: Vol. 1.