Math 1A - Graphing

Peyam Ryan Tabrizian

Wednesday, October 30th, 2013

There is a systematic method with which you can graph a function without using your calculator, called the 'DISAIC'-method, which is outlined below! Here are my two favorite mnemonics to remember that method: 'Downloading Illegal Songs Always Infringes Copyright (laws)' and 'Dunkin (donuts) Is Serving Amazing Iced Coffee':)

1. Domain: First find the domain of your function (section 1.1)
2. Intercepts: To find the y-intercept, calculate $f(0)$, to find the x-intercept, solve for $f(x)=0$ (section 1.1)
3. Symmetry: There are 3 types of symmetries a function can have (section 1.1):

- If $f(-x)=f(x)$, then f is an even function, and its graph is symmetric about the y-axis. This saves you half of your work, because all you need to know is what the graph looks like for $x \geq 0$, and you can deduce what the graph looks like for $x \leq 0$ just by reflecting your graph about the y-axis
- If $f(-x)=-f(x)$, then f is an odd function, and its graph is symmetric about the origin. This also saves you half of your work.
- If $f(x+K)=f(x)$ for all x, then f is periodic of period K. This saves you a lot of work, because you only need to know what your graph looks like on $[0, K]$, the rest of the graph is just a repetition of that portion! Trigonometric functions will always be periodic

4. Asymptotes: There are 3 types of asymptotes:

- Horizontal Asymptotes (section 2.6): Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. If either of those limits is finite, then you have a H.A. at ∞ or $-\infty$.
- Vertical Asymptotes (section 2.6): For every point a where f is not defined, calculate $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$. If either of those limits is infinite, then you have a V.A. at a.
- Slant Asymptotes (section 4.5): Check out the 'slant asymptotes'-handout for more info! If $y=a x+b$ is a S.A. at ∞, then $a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ and $b=\lim _{x \rightarrow \infty} f(x)-a x$, and similarly for $-\infty$.
Also, periodic functions don't have S.A., and if you already have a H.A. at ∞, then you cannot also have a S.A. at ∞ (and similarly for $-\infty$)

5. Increasing/Decreasing: Just use the I/D test (section 4.3). Calculate $f^{\prime}(x)$, solve for $f^{\prime}(x)=0$, and then draw a sign table. Also, determine local maxima and minima of f.
6. Concavity: Use the concavity test (section 4.3). Calculate $f^{\prime \prime}(x)$, solve for $f^{\prime \prime}(x)=0$, and then draw a sign table. Also, find the inflection points!

And finally, to draw your graph, first label the intercepts, then the asymptotes, and then the local maxima/minima and inflection points. Then using your sign tables and intuition, draw your graph!

