PROBLEM 4.4.77

PEYAM RYAN TABRIZIAN

Problem:

If an initial amount A_{0} of money is invested at an interest rate r compounded n times a year, the value of the investment after t years is:

$$
A=A_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

If we let $n \rightarrow \infty$, we refer to the continuous compounding of interest. Use l'Hopital's rule to show that if interest is compounded continuously, then the amount after t years is:

$$
A=A_{0} e^{r t}
$$

Solution: All you gotta do is show that:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}=e^{r t}
$$

1) Let $y=\left(1+\frac{r}{n}\right)^{n t}$
2) $\ln (y)=n t \ln \left(1+\frac{r}{n}\right)$
3) The important thing to realize is that you're taking the limit as n goes to ∞, which means that r and t are constants!
$\lim _{n \rightarrow \infty} \ln (y)=\lim _{n \rightarrow \infty} n t \ln \left(1+\frac{r}{n}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{r}{n}\right)}{\frac{1}{n t}}=\lim _{n \rightarrow \infty} \frac{\frac{\frac{-r}{n^{2}}}{1+\frac{r}{n}}}{-\frac{1}{n^{2} t}}=\lim _{n \rightarrow \infty} \frac{\frac{r n^{2} t}{n^{2}}}{1+\frac{r}{n}}=\lim _{n \rightarrow \infty} \frac{r t}{1+\frac{r}{n}}=\frac{r t}{1+0}=r t$
4) So $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}=e^{r t}$, and hence $\lim _{n \rightarrow \infty} A_{0}\left(1+\frac{r}{n}\right)^{n t}=A_{0} e^{r t}$
[^0]
[^0]: Date: Friday, November 1st, 2013.

