PROBLEM 2.3.64

PEYAM RYAN TABRIZIAN

Problem: The figure shows a fixed circle C_{1} with equation $(x-1)^{2}+y^{2}=1$ and a shrinking circle C_{2} with radius r and center the origin. P is the point $(0, r), Q$ is the upper point of intersection of the two circles, and R is the point of intersection of the line $P Q$ and the x-axis. What happens to R as C_{2} shrinks, that is, as $r \rightarrow 0^{+}$?

Picture:

Hints: Use the following steps:
(a) Find the coordinates of Q. For this, solve for x and y in the system of equations:

$$
\left\{\begin{aligned}
(x-1)^{2}+y^{2} & =1 \\
x^{2}+y^{2} & =r^{2}
\end{aligned}\right.
$$

For this, plug in $y^{2}=r^{2}-x^{2}$ in the first equation and solve for x, then solve for y in $y^{2}=r^{2}-x^{2}$; remember that you want $x>0$ and $y>0$, according to the picture). The answer gives you the coordinates of Q
(b) Now that you know the coordinates of P and Q, find the equation of the line going through P and Q

[^0](c) Find the x-intercept of that line (set $y=0$ and solve for x)
(d) Finally, take the limit as $r \rightarrow 0^{+}$of the answer you found in (c). To do this, multiply as usual by the conjugate form.

Answers:

(a) $Q=\left(\frac{r^{2}}{2}, r \sqrt{1-\frac{r^{2}}{4}}\right)$
(b) $y=\frac{2}{r}\left(\sqrt{1-\frac{r^{2}}{4}}-1\right) x+r$
(c) x - intercept $=\frac{r^{2}}{2\left(1-\sqrt{1-\frac{r^{2}}{4}}\right)}$
(d) 4

[^0]: Date: Monday, September 16th, 2013.

