# A cool proof of the Cauchy-Schwarz inequality 

Peyam Ryan Tabrizian

Friday, April 12th, 2013

Here's a cool and slick proof of the Cauchy-Schwarz inequality. It starts out like the usual proof of C-S, but the end is very cute! This proof is taken from Pugh's Intro to Real Analysis-book.

NOTE: This proof works ONLY for $\mathbb{F}=\mathbb{R}$. Do NOT memorize it, it's purely for your math-enjoyment!

Note: In this document, $(u, v)$ stands for 'inner product of $u$ and $v$ ' (the author uses $\langle u, v\rangle$ instead)

Theorem: [Cauchy-Schwarz inequality]

$$
|(u, v)| \leq\|u\|^{2}\|v\|^{2}
$$

Proof: Consider the following function from $\mathbb{R}$ to $\mathbb{R}$ :
$f(t)=(u+t v, u+t v)=(u, u)+t(u, v)+t(v, u)+(v, v) t^{2}=a t^{2}+b t+c$
Where:

$$
\begin{aligned}
a & =(v, v)=\|v\|^{2} \geq 0 \\
b & =(u, v)+(v, u)=2(u, v) \quad \text { Remember } \mathbb{F}=\mathbb{R} \\
c & =(u, u)=\|u\|^{2} \geq 0
\end{aligned}
$$

However, since $f(t)=(u+t v, u+t v) \geq 0$, we know that $a t^{2}+b t+c \geq 0$.
However, this implies that the discriminant $\Delta=b^{2}-4 a c$ of $f$ has to be $\leq 0^{1}$ But then, we get:

[^0]\[

$$
\begin{aligned}
\Delta & \leq 0 \\
b^{2}-4 a c & \leq 0 \\
b^{2} & \leq 4 a c \\
\sqrt{b^{2}} & \leq 2 \sqrt{a} \sqrt{c} \\
|b| & \leq 2 \sqrt{a} \sqrt{c} \\
|2(u, v)| & \leq 2\|u\|\|v\| \\
|(u, v)| & \leq\|u\|\|v\|
\end{aligned}
$$
\]

And we're done!


[^0]:    ${ }^{1}$ Proof: If $\Delta>0$, then $f$ has two distinct roots $x_{1}<x_{2}$ by the quadratic formula, but then either $f<0$ on $\left[x_{1}, x_{2}\right]$ or $f<0$ on $\left(-\infty, x_{1}\right) \cup\left(x_{2}, \infty\right)$

