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Abstract. Let G be a locally compact group with modular func- 

tion & and left regular representation JX . We define the LP 

Fourier transform of a function f € LP(G) , 1 <p<2, tobe 

essentially the operator A(f)a/d on L(G) (where > 2 = 1) 

and show that a generalized Hausdorff-Young theorem holds. To do 

this, we first treat in detail the spatial LY spaces LP (4) ’ 

1 <p <=, associated with the von Neumann algebra M = A(G)" | 

on L“(G) and the canonical weight ¢, on its commutant. In par- 

ticular, we discuss isometric isomorphisms of L(g) onto 1? (6) 

- 1. | oo 
and of L(y) onto the Fourier algebra A(G) . Also, we give 

a characterization of positive definite functions belonging to 

A(G) among all continuous positive definite functions.
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| Introduction. oo 

Suppose that G is an abelian locally compact group with dual 

group G . Then the Hausdorff-Young theorem states that if 

£f € LPG) , where 1 <p < 2 , then its Fourier transform 

Ff) belongs to 195) , where 2 + 5 - 1 (cf. [23, p. 1171). 

In the case of Fourier series, i.e. when G is the circle group 

and G the integers, this is a classical result due to F. Haus- 

dorff and W. H. Young [24, p. 101]. An extension of this theorem 

to all unimodular locally compact groups was given by R. A. Kunze 

[14]. In this paper we shall treat the case of a general, i.e. 

not necessarily unimodular, locally compact group. 

In order to describe our results, we first briefly recall those 

of [14]. Suppose that f is an integrable function on a unimodular 

group G . Then we consider the Fourier transform FT (f) to be 

the operator A(f) of left convolution by f on L(G) . (As 

pointed out by Kunze [14], this point of view is justified by the 

fact that in the abelian case A(f) is anitarily equivalent to 

the operator on 128) of multiplication by the (ordinary) Fou- 

rier transform £ .) The Fourier transformation maps L(G) into 

the space L7(G') , defined as the von Neumann algebra M gene- | 

rated by A (L(G) . More generally, one can define A(f) as an 

(unbounded) operator on L(G) even for functions f not in 

Lc) . It then turns out that \ maps each LF(G) , 1 <p <2, 

norm-decreasingly into a certain space 196") of closed densely 

defined operators on L” (G) {where S + 5 = 1) . This is the 

Hausdorff-Young theorem. Kunze introduced the spaces L%(G') as spaces
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of measurable operators (in the sense of [21]) with respect to 

the canonical gage on M (14, p. 533] . An equivalent but simpler 

way of introducing the L3G") is to consider the trace ¢, on 

M characterized by 9, (A(B) *A (h)) = hi for certain functions 

h , and then take LI(G') to be L%(K,p,) as defined by 

E. Nelson [15], viewing it as a space of "gy measurable” operators 

[15, Theorem 5]. (In either case, the 14 spaces obtained are 

isomorphic to the abstract 149 spaces of J. Dixmier [5] associ- 

ated with a trace on a von Neumann algebra.) 

In the general (non-unimodular) case, © is no longer a 

trace, and the lack of adequate spaces LY into which the LP (G) 

‘were to be mapped for a long time prevented the formulation of 

a Hausdorff-Young theorem, except for some special cases ([7, §8], 

[20, Proposition 151). In [10], however. U. Haagerup constructed 

abstract LF spaces corresponding to an arbitrary von Neumann 

algebra, and combining methods from [10] with the recent 

theory of spatial derivatives by A. Connes [2], M. Hilsum has 

developed a spatial theory of LP spaces [12]. If M is a von 

Neumann algebra acting on a Hilbert space H and yy 1s a weight 

on its commutant M' , then the elements of LP (M,H,¢) are {in 

general unbounded) operators on H satisfying a certain homoge- 

neity property with respect to  . We shall see that when using 

these spaces (in the particular case of M = AG)" , H = L%(G) , 

and y = the canonical weight on M') and when defining the Lt 

Fourier transform of an LF function f to be the operator 

fp fry’ 9p on L2G) where A is the modular function of the 

group), one gets a nice LY Fourier transformation theory and in 

particular a Hausacorif-Young theorem. oo
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~The paper is organized as follows. In Section 1 we fix the 

notations and describe our set-up. In Section 2, we study the 

LP spaces of [12] in our particular case; we give a reformulation 

of the a-homogeneity property appearing in [2] that does not | 

involve modular automorphism groups and we characterize LP (py) - 

operators among all (-1) ~homogeneous operators. In Section 3, we 

treat the case p = 2 and obtain explicit expressions for the a 

1.2 Fourier transformation ¥, =P, called the Plancherel | 

transformation, as well as for its inverse. a 

: Next, in Section 4, we deal with the case of a general 

p€ [1,2] ; we define the LP Fourier transformation a. ; 

and using interpolation (specifically, the three lines theorem) | 

we prove our version of the Hausdorff-Young theorem. | 

Finally, in Section 5, we define an LP Fourier cotransfor- 

mation F, taking LP (9) , 1 <p <2, into L3(G) and we | 

investigate the relations between cotransformation and Fourier 

inversion. A detailed study of the p= 1 case gives a new 

characterization of AG) functions among all continuous posi- 

tive definite functions on G . N | | | 

1. Preliminaries and notation. | | | 

Let G be a locally compact group with left Haar measure dx . 

We denote by XI(G) the set of continuous functions on 8 with 

compact support and by LPG) , 1 <p<ew , the ordinary | 

Lebcessue spaces with respect to dx -. The modular function A 

on G 1s given by | |
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| [xa ax = Ala) [£0 ax | 

for all f € K(G) and a € G. Por functions If ‘on G we put 

v _ _ —7 

oo f(x) = E(x) , E00 = f(x) 

| -1 -1, _ Ak ~1 
f(x) =a (f(x 1) , (JH X) =a (xX)Ex ) , 

for all x € G . More generally, for each p € [1,2] , we define 

| (3,£) (x) = 2” VPs) , X € G . | 

Then in particular J,f = f*, Jf = Jf , J_f = £ . Note that 

for each p € [1,=] , the operation Is is a conjugate linear 

isometric involution of LP (6) . | 

We shall often make use of the following non-unimodular version 

of Young's inequalities for convolution: 

Lemma 1.1. (Young's convolution inequalities.) Let 

PqrPyrP E [1,o] and 1 + = 4 . Assume that 

1 11 Fr Py Py 
— + — = — = 1 . Then for all f, € L (G) and ff, € L “(G) 
Py Pp OP 1/q, | 2 
the convolution product f.xa te, exists and belongs to 

LP (G) , and | | | 

| va, a 
: HE, +a PLES < Walp Maly . 

This theorem is well-known in the unimodular case as well as in 

the special cases py rPyeP) = (Pq rdq r=) (where it follows from 

Holder's inequality’, (Py PoP) = (1,p,p) or (Py ePpeP) = (p,1,p) 

(11, (20.1437. The general case has also been noted [13, Remark 

2.2]. It can be proved by modifying the provf of [11, (20.18)] | 

or by interpolation from the special cases mentioned above. |
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For operators T on the Hilbert space L(G) we use the nota- 

tion D(T) (domain of T) , R(T) (range cf T) , N(T) {kernel 

of TY) . If T is preclosed, we denote by [T] the closure of 

T If T is a positive self-adjoint operator and P. the projec- 

tion onto N(T)t » then by definition rit , £t € IR, is the par- 

tial isometry coinciding with the unitary (Tp) **t on N(T)*+ and 

"0 on N(T) . By convention,when speaking of operators, "bounded" 

always means "bounded and everywhere defined”. 

We denote by A and p the left and right regular represen- 

tations of G on L%(G) , i.e. the unitary representations given 

by | 

aH wm = fx ty, | | 

(p(X) E) (y) = 8% (x) E(yx) , | 

for all x,y € G and ff € L2G) . The corresponding representa- 

tions of the algebra L' (6) (as in [4, 13.3]) are given by | 

A(h)f = hxf Cr 

oh) = £xa” 2, | 

for all he L'(G) and f € L9G) . | 

We denote by M the von Neumann algebra of operators on L?{c) 

generated by A(G) {or A(K(G)) , or Aint (G))) . In other 

words, M is the left von Neumann algebra of X}(G) , where 

Kw) is considered as a left Hilbert algebra [3, Definition 2.1] 

with convolution, involution * , and the ordinary inner product 

1 1240) ~The commutant M' of M is the von Neumann algebra 

generated by p(G), and M' = JMJ .
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A function § € L(G) is called left (resp. right) bounded 

if left (resp. right) convolution with £ on K(G) extends to 

a bounded operator on L? (Gc) , i.e. if there exists a bounded 

operator A(£) (resp. A'{§)) such that vk € X(G) : MEYKk = E=xk 

(resp. A'{£)k = k#f) . The set of left (resp. right) bounded 

12 (G) -functions is denoted OL, (resp. a.) . Obviously, 

Kw) c a, , Ki) < x, , and for £ € K(G) we have )\'(E) = 

INE £) . Note that § & L? (G) is left bounded if and only if 

the operator n+ A'{(n)&: (A, + L(G) extends to a bounded one 

rator on L(G) ; 1f this is the case, we have A(E)n = A'(n)¢ 

for all n € QL, . (Our definition of left-boundedness therefore 

agrees with {1, Définiticn 2.1]). If §& € a, and T € M , 

then Tf € (, and A(TE) = TA(E) . 

We denote by ©, the canonical weight on M [1, Définition 

2.12]. Then the weight ¢, on M' given by Vo (Y) = 5 (JyJ) 

for all vy € (M") is called the canonical weight on M' . The 

corresponding modular automorphism groups are given by 

or Ox) = atta, xem, 

| op Cy) = a7 att, y €mM 

for all tt € R . Here, A denctes the multiplication operator 

on L? (G) by the function A (note that we shall not distinguish 

in our notation between the function A and the corresponding 

multiplication operator). With toils definition, ao is in fact the 

modular operator of K (G) (as aerfined in (3, Lemma 2.2]). |
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It follows from the defining property of 9g (1, Théoreme 

2.11] that for all y € M' we have = oo 

| init? if vy = X'(n) for some nn € a_ , 
« _ r | 

| © otherwise . 

We identify the Hilbert space completion H, of ny, = 

{y eM" | yp, (y*y) <=} with L2G) via ne A'() . 

Now recall that by definition [2, Definition 1], DIL? (6), 4) 

is the set of £ € L°(G) such that y & yE: n, L%(G) extends 
y 0 

to a bounded operator R Oey: H, - L?(G) ;, 1l1.e., in view of the 

| 0 . 
identification of H, with 1%) , such that n+ A'(n)é: | 0 | | | 

0 - L% (6) extends to a bounded operator on L? (G) . Thus 

D(LZ(G) , yy) = a, » and for all Ef € D{L%(G) ,u,) we have 

Yo : 

R "(&) = A(g) . 

If ¢ is a normal semi-finite weight on M , then by defi- | 

‘nition [2], Fd is the unique positive self-adjoint operator 

| 0 oo 

T satisfying | | oo 

| | ~ Tg I if I € D(T?) 
| VE € A: wA(E)A(E)*) - { | 

| oo © ~ otherwise | 

and | | | | 

oo Tt = [T y ] . h 

oo | A.nD(T*) | 

In particular, we have | | | 

| | deo oo | DE 
av, ~° | 

| 0 | 

(cf. (2, Lemma 10 (b)] together with the proof of [2, Lemma 10 (a)]).
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. ) ‘ | : Tm Emit c ay . 
1f ¢ is a functional, then by the definition ori ETA we 

5. a \ 0 
dic \? . Coy [ Neth lh 

have ja o( (2 ) and ———— = | a) . 

a; - 30) CEN { dv Hy | 

| Finally, we note that the predual space M, of the von Neu- 

mann algebra M may be viewed as a space of functions on the 

group in the following manner: for each ¢ € M, , define 

uu: G =» ¢ by 

. u(x) = @(i({x)) , x € G . 

Then wu is a continuous function on the group determining ¢ 

completely. The linear space of such functions, normed by 

Hull = Hell, is exactly the Fourier algebra A(G) of G intro- 

duced by P. Eymard [6] (this follows from [6, Théoreme (3.10)]). 

The identification of A(G) with M, is such that | | 

: | <p, A({f)> = joi) £0 dx 

for all ¢ € M, ~ A{G) and all f € tte) . | 

~~ Recall that by [4, 13.4.4] a continuous function ¢ on © 

is positive definite if and only if 

Vi € K(G): [ox (gag) (x) ax > 0 

i.e., 1f and only if | | 

Ce sim 1 — | 
: vi € KG): Jers PEAY) IixX)dy dx > 0 

If @ € A(G) , then ¢ is positive definite if and only if the 

corresponding functional ¢ € My, is positive. We denote by 

ALG) | the set of positive definite © € AgsY Lo
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2. Homogeneous operators on 14 (6; and the spaces LY) 

Definition. Let a € IR. An operator T on L°(G) 1s called 

a-homogeneous if 

| VX € G: p(x)T < a 1 (x)Tp ix) . | 

Rerarks. (1) The O-homogeneous operators are precisely the ope- 

rators affiliated with M . | oo | 

(2) If T is o-homogeneous, then actually ¢(x)T = 

AY (x) Tp (x) for all x € G (to see this, replace X by x) 

in the definition). oo | | 

(3) If T and S are both a-homogeneous, then T+S is 

a-homogeneous. If T is a-homogeneous and § is B-homogeneous, 

then TS is (a+B)-homogeneous. If T is censely defined and 

a-nomogeneous, then T* is also a-homogenecus. If T 1s positive 

self-adjoint and a-nomogenecus and Bg € KR, then T° is (ap) - | 

homogeneous (use o(x)TPo (x7 = (0 (x)Tp ix" MP) 

(4) If T is a-homogeneous for some a € IRR, then the projec- 

tion onto N(T)* belongs to M (since NT! is invariant under 

all p(x) , Xx € G) . | 

(>) If a preclosed operator T is g-homogeneous, then its 

closure [T] is also a-homogeneous. 

(6) For each a € R, a © is a-homogenacus. 

Lemma 2.1. Let T be a closed densely defined cperator on L7G) 

with polar decomposition T = UIT] “Les aE RL. Then Tis 

a-homoaenecus if and only if U € NM and ITH 1s a-homecenecus. :
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Proof. If T is a-homogeneous, then, by Remark (3), ITI = (T*T) 

1s also o-homogeneous. Then for all x € G and ¢§ € D(IT!) we 

have £(X)UITIE = ¢(X)TE = 4 0 (x)Tp(x)E = A" (X)BITIp(x)E = 
Uo(x)ITIE , i.e. p{(x)U < Up(x) on RIT) . Since the projec- 

tion onto RIT!) = NotT1)t belongs to M , we conclude that U 

commutes with all c¢(x) ; thus U € M . 

The "if"-part follows directly from Remarks (3) and (1). @ 

Lemma 2.2. Let T be a closed densely defined operator on L(G) ’ 

and let ao € ¢ . Suppose that 

vx € G: p(x)T c< a (x)To (x) . | 

Then | | 

I vE € KG): A (f)T « Tat (a%F) 

Proof. Let f € K(G) and ££ € D(T) . Then for all n € D(T*) 

we have 

| (0 (£f)TEIn) = [£00 oTeinax | 

= [£0187 (x) (To (x) gin) ax 

| | = [87% 0 £00) (p Go £172) ax 

= (pa THIIT*n) : 

This shows that ca Ys € D{(T**) = D({T) and Toa Pf) ¢ = 

2 (£)TZ for all £ € D(T) , i.e. 

| S(E)T © Toa” %f) 

Hence for all f € K (3G) we have | 

| Cv CL 

AUT = oA ey < Toa “a YE) = Tr (a%f) a
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Lemma 2.3. Let T be a closed densely defined operator on 

L2G) , a~-homogeneous for some a € R . Let ¢ € 0, . Then 

for all t € R we have Tite € a and | 

| ATi er < iver. 

Proof. By Lemma 2.1, we have p(X) 1TIp (x) = A" % (x) IT for all 

x € 6G, whence p(x) ITI ox") = 27% x) 17i'% for all x € G 

and all t € IR. Then, applying the preceding lemma to pT tt , 

we obtain for all n € K(G) that : 

m1 en = atm mite = mth ame = mit) atoty 

and thus | | . | 

| DIT gent, < Tt on 18M 5, <a ani 

‘We conclude that Tit; is left bounded and that 

Co it ny | aT an <mver 0 #8 | 

Remark. In particular, att: e QL, with aaron < FAs) | 

for all ££ ¢€ a, and t € IR. oo 3 = 

~ Qur next lemma shows that a-homogeneity as defined here is 

equivalent to homogeneity of degree oa with respect to Vo as 

defined in [2, Definition 17]. oo | a 

Lemma Led. Lec SG © IR SRE lew om be 2a clozed densely defined 

operator on L(G) with polar decomposition T = U|T| . Then the
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following conditions are equivalent: 

(i} T is a-homogeneous, 
| Vo 

0 it it 
(ii) U € M and Vy € M' Yt € R: c_.  (y) IT] = [TI 7y . 

Proof. By Lemma 2.1, we may assume that T is positive self-adijoi 

| Denote by P the projection onto N(T)? . If either (i) or 

. 7 

(ii) holds, then P is in M , and thus the subspace P L"{(G) 

is invariant under all operators considered. Therefore, we may 

suppose that P € M, and the lemma is proved when we have shown 

the equivalence of | 

(1) oo VX € G: 0 (x) Tp (x 1p =a %(x)T P 

and Co 
| a | ~ | 

(2) vt € IR vy € M': 0p (YIP = tyr tp . | 

Now for all x € G we have E 

¢g Co . | | | | oo -jiat opr (P(X) = a7 0a" = A p00 
since 

 ~iat E (a7 (x) aE) (2) | 

-it i | 
| = A (z)a¥ (x) att (zx) £ (zx) | 

| | -it | = A TU (x)(p(x)£) (2) 

for all ff ¢ L% (G) and all x,z € G . Then, since M' is gene- 

rated by the p(x) , tne condition (2) is equivalent to 

Cvx eG vee R: ahammar = rit rite
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"or (changing t into ~-t) oo | oo 

VX EG vt € FB: o(x)T cp = aT rite 

which in turn is equivalent to (1). @ | | 

~~ Now, by [2, Theorem 13] a positive self-adjoint operator on 

L2G) is (-1)-homogeneous if and only if it has the form Tr | 
| 0 

for a (necessarily unique) normal semi-finite weight ¢ on M . 

~ We define the "integral with respect to vo of a positive 

self-adjoint (-1)-homogeneous operator T as | 

| dg . : . 
where T = av. If |T dy, <eo , i.e. if ¢ is a functional, 

dy, | 

we shall say that T is integrable. (These definitions agree 

with those given in [2, remarks following Corollary 18].) 

For each p¢€ [1,[ , we denote by LP (Lg) the set of closed 

densely defined (-5) ~homogeneous operators T on 1? (G6) satisfy- 

ing | 

Pa. _ | | 
| [11 dy, < . | 

(Note that [TIP is (-1)-homogeneous, so that [171 dy, is 

defined.) We put L™ (yy) = M . 

: The spaces LP (4) introduced here are special cases of the 

spatial LF-spaces of M. Hilsum [12]. We recall their main proper- 

ties (note, however, that our notation differs from that of [12] 

in that we maintain throughout the distinction between operators 

and their closures): | |
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If T,5 € LP (4g) , then T+S is densely defined and pre- 

closed, and the closure [T+S] belongs to L7(yy) . With the 

obvious scalar multiplication and the sum (T,S) = [T+S5] , 

L” (yy) is a linear space, and even a Banach space with the norm 

1, defined by IT0_ = (JiT1P av) '/P if p € [1,o[ and | 
HTH, = ITI (operator norm) if p = « . The operation T T* 

is an isometry of LP (,) onto. LP (44) . Ve denote LP (4), 

the set of positive self-adjoint operators belonging to LP (yy) . 

| ‘By linearity, T += [T dy, defined on L yy), extends to a 

linear form on the whole of Ll, satisfying JT*dy, = |T dy, 

and | JT dgyl < ITH for all T e 11 (yy) . 

1 1 1 
— + — = = If Let PqrPy/P € [1,o] such that 5. b D | 

Py Py | Co 
T € L (Vy) and S € L (Vg) , then the operator TS is densely 

defined and preclosed, its closure [TS] belongs to Fg) 

and | 

| HITS < NTH _ Wis 

es Co D ~ .q 1 1 _ 
In particular, if T € L¥ (yg) and S € L (by) where D + 3 = 1 , 

‘then [TS] € L' (yy) and I[TS]h, =< ITE, Ist (Holder's inequalit 

furthermore, jirsiay, = JlsT]dy, . oo 

If pe [1,= and : ; ! = 1, then we identify LI(y)) wit 

the dual space of P(g) by means of the form (T,S) » jrrsiay, 

T € LP (y,) , SE LA (g,) . In particular, LY (yy) is the pre- 

on 7 
dual of M = L (vp) . The space L7 ty) is a Hilbert space with 

~ the inner product (TIS) = J1S*T dy . : 
| 2 0 

L (ey) 

Remark. Suvpose that G is unimodular. Then the a-homogeneous 

operators for any a are simply the operators affiliated with M
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and the canonical weight ©, on M is a trace. We claim that 

fT dig = 0, (T) for all positive self-adjoint operators T - 

affiliated with M , where we have written ©, (T) for the | 

‘value of ¢ = @ (T+) at 1 (with oy (T+) defined as in [17, 
| do, 

Section 4]). To see this, recall that Tn = A = 1 , so that 
: oo oo 0 

using [2, Theorem 9, (2)], we have : 

| Tito (DeiDe.). = (fo) (S20) _ (4 )e | 

| 07t  \dy, dy, dy, | 

for all t € R. Thus T = A and JT dy, = (1) = @,(T) . 
| Yo 0 0 

: _ do , Co. . 
(When proving T = av. we implicitly assumed that T is 

0 | 

injective so that ¢ = © (T+) is faithful. In the general case, 

denote by Q €M the projection onto N(T) , note that T+Q 

is positive self-adjoint, affiliated with M , and injective, 

and verify that oo EE | 

| dg ((T+Q) -) doy (T+) | dep, (Q-) 
T+Q = ——gr—— = gr MR: ) : 

| Yo Yo Yo — 
dw, (T+) deg (Q+) | 

Since the supports of -—-—sf—— and —s—— are 1-Q and Q , | a dyg dy, : | 

respectively, we conclude that T = av. as desired.) It 
| | | | Yo | 

follows that in this case the spaces LP (y,) reduce to the ordi- 

nary LP (M, 0) (discussed in the introduction). | 

Returning to the general case, we now proceed to a more 

detailed scuay of the spaces LP (4) . For this, we shall need 

the following slightly generalized version of [12, II, Proposition 

2): | |
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| | | Co | 2, A 
Lemma 2.5. Let T be a positive self-adjoint operator on L(G) 

a-homogeneous for some oo € IR. Let = € a. . Then there | 

exist £E on, nn p(T?) , n € IN, such that 
n x €R E 

. : 3 B + 

| (1) vn € NN: IX(E DN < IA(ENN 

| (ii) &n + { as n = ow , 

(iii) Pg » mg as n -» «= whenever § and  € R, 

satisfy £ € p(T") . | | | 

Proof. For each n € N, define £5 [0,e[ TC by | 

| 1 © yp? it VE | 
ed | eX dt if x > 0 

f(x) = { ~~ . 
: 1 | if x =0 

: | 1 (®t? 
Since for all x € [0,o[ we have [f_(xX)| < —+&= | e dt = 1 , n = Vn oj_ 

the operators £(T) are bounded. For each n € IN, put 

En = £,(TIE + oo | 

To prove that the 2 belong to a, and satisfy (i), 

denote by P the projection onto N(T)T and observe that for 

all n € K (6) we have | | 

CE (TIPExn = 2 (Mf (T)PE | | 

| = Ne | e At (n)T™ cdt 
| : —co 

C1 [® -tf it/vA iat/VE oo 
= TE e T=" "A (AT nls dt 

| 1 (®t? it/VvA iat/VA 
| = Ne | e TT" (Cap nydt , | 

where we have used Lerma 2.2. It follows that |
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IE (T)PExnll 5 < — "tI (£11 1239 VELL Ge < ue) inl 

On the other hand, oo 

| I (1-P) E*nl < Bx((1-P)E) I init, < HACE Init, 

since P € M . | oo | | 

© Inall, f (T)f =f (T)PE + (1-P){ belongs to Ol, and 

HACE (TYE < HACE) I. | 

Now, to see that En € p (TB) for all B ¢€ R, , note that 

f (x) = = | e te (it/Vn)log x 4, . 

i _1 2 i 2 CW a; (log Xx) L [ BR log x) at 

mn | oo 

| oo 1 2 
“3p (109 xX) 

=e 

oo 1 C2 
CB (B log x = g5 (log x) 7) | 

for all x>0. Then x & X £ (x) = e is 

bounded, so that ®t _(1) is a bounded operator, and thus 

£f (T)E € D(TP) . | | | 
n | 

Since f_ = is bounded and f (x) »1 as n =» for all 

x € [0,o] , we have | 

| fF »¢ as n - co 

for all © . From this, we immediately get (ii) and (iii). 

Indeed, &_ =f (T)E » £ , and if £ € D(TP) , then 

Br _ oB co Bo .B, | Tg, = TE (TS = £ {T)T"S - T7¢ . |
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| Proposition 2.1. Let T be a closed densely defined (-1)-homogene- 

ous operator on L(G) . Then the following conditions are equiva- 

lent: | . 

| (1) T € L! (yg) , | 

(ii) there exists a constant C > 0 such that 

VE € nL n D(T) wn € a: F(TEIn) lb < CRACEDN HAC) 

(iii) there exists a constant C > 0 such that 

ve € OL, n DOTTIE): HITE? < cla)? | 

(iv) there exists an approximate identity (£5) seq in : 

Kw, such that all ¢, € DIT) and 

oo Lim inf ITI?E I < o . | 

If T € L' (yy) , then a, < DUITI?Y) and for any approximate 

identity (€.) eq in Ke, we have : 

a x 2 
: HT, = limjl IT gd . : 

Furthermore, Til, is the smallest CC satisfying (ii) and the 

smallest C satisfying (iii). | 

Proof. Let T = UITI be the polar decomposition of T . 

First, suppose that T e Ll (gy) . Then IT] e L' (vy), and 

therefore ITI = Ae for some vositive functional ¢ on HM . 

oo Yo | 

Recall that aL < DIT]? . Thus for ail § € A, Nn D(T) and 

n € Ob, we have oo oo | 

hat — 1 Ye 8 )- 3 | (TS In) = TOIT AED IT) *U*n) | 

| = QA (E)A(U*n)) I | | - 

B | < dell Hah byron | 

ENS EA ETAT ACPI A 

1.¢., (11) holds. I :
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a Next, suppose that T satisfies (ii). Then for all 

£€ Ol, Nn DUITI) we have oo | oo 

| nme? = (reve) | | | 
oo So < CIA(E)D  HA(UE)N 

| < can? . oo 

Now if ££ € a, n D(IT| / there exist (by Lemma 2.5) oo 

£, € a, Nn D(ITI) such that aT -> IT] %¢ and HA (E < 

IA(E)N . Since | | | 

| Tien? < cae)? < ane? 

we conclude that niTiien? < cli (g) 1? . Thus (iii) is proved. 

Now suppose that T satisfies (iii). First we show that this 

implies a, - D(IT|?) . Let £ € 0, . Then by Lemma 2.5 there 

Co % 
exist tn € a, n DOITI*) such that ¢&, -+ £ and WA (gi < 

IME) . Then for all n € D(ITI?) we have oo | 

Came im <0 ATE nl 
| © < cHAE DN dnl oo 

| < CAEN nl 
and | | | oo oo oo | 

| (IT1%_In) = (&, EIR = (£ | ITI *n) . | B 

We conclude that oo 

| vn € DOUITI® : 1S 1 ITI) | < CAE Hin. 

Thus s  plim] hy ae wanted. | . |
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Now, still assuming (iii), let us prove (iv). Let a | 

be any approximate identity in Ky, . Then automatically all 

6; € Kc) c a, c DIT!) » and BKA(g I < igh = 1 so that 

| | 2 2 | 
| | EIRENE < Chg Hl < C | 

whence lim inflITIYE < c* < oo , 

Finally, suppose that T satisfies (iv) for some (E10 5¢1 . 

| a i . 
Note that since Je xg *)(x)dx = 1, (+6; jer 1s again an 

‘approximate identity in Ki), . Therefore, AE AE) = 

ACE *E:%) converges strongly, and hence weakly, to 1 in M . 

Since all IA(g;)A(g,)*l <1 , this convergence is also g-weak, 

and by the g-weak lower semicontinuity of ¢ , this implies 

© 91) < lim inf @(A(E)A(E;)*) | 

a oo = lim infil iT) 1° | 
| | oo | 

~~ < C lim infla(g,)l oo 

< C < wo . | 

Since (1) = fiTidy, < © , we have T € L (vy) , 1.e. (i) holds 

Note that once w(1) < » is established, ¢ is known to be 

o-weakly lower continuous and thus | 

| Ce (1) = lim © (A (£ JA(D VY *) = Limi IT %¢ 12 54 =i > 3 

R ~ Ll a 3 Ie . , - . 

for any avproximate identity CE) er , 1l.e. 

| Ly = inl {TLC 0° . 
1 . 

In the course of the proof we observed that iTh, may be used as
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‘the constant C in (ii), that every constant CC satisfying (11) 

also satisfies (iii), and that any C satisfying (iii) is bigger 

than Limi ITI 2g, 01° » 1l.e. bigger than IT, . This proves the 

remarks that end Proposition 2.1. @ 

As an immediate corollary, we have: 

Proposition 2.2. Let T be a closed densely defined (-%)-homoge- 

neous operator on L? (G) - Then the fecllowing conditions are 

equivalent: | 

2 | | | | 
(i) T € L (Wg) ) So ol 

(ii) there exists a constant C > 0 such that | 

VE € x, Nn D(T): UTE < COA(ENN 

(iii) there exists an approximate identity (E) jer 1m Ki), 

| | such that all Ei € D(T) and | | 

| lim infil TE. < oo . | | 

If 7T e L(y) , then 0, < D(T) , and for any approximate 

identity (€5) jer in. Kc), we have 

oo NTH, = Limi TE ;1i ; | | 

furthermore, Th, is the smallest constant C satisfying (ii). 

We now come to the case of a general p € [1,o[ . Suppose that 

T € LP (yy) and S € Iw, where : + 3 = 1 . Then by [12, II, 

Proposition 5,1)], we have : | 

| (TL16n) = <[S¥T), M{E)X(n)*> | |
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for all £E € a, N D(T) and n € a, n D(S) . (Here, <--> 

| 1 . 
denotes the form giving the duality of L (vg) and M .) Using 

Holder's inequality, we get | | 

{(TElsn) | < his*Tli, HACE) An) *ll < J Sh, HACE TEA (n) Il | 

‘for all such £ and n . This kind of inequality in fact charac- 

terizes LP (y,) -operators among all (~3) ~homogeneous operators: 

Proposition 2.3. Let p € [1,e0] ‘and define gq by = + : = 1 . 

Let T be a closed densely defined (-5) ~homogeneous operator on 

L(G) . Then the following conditions are equivalent: 

(1) Te Py , | 
(ii) there exists a constant C > 0 such that 

VS € L(y) ve € OL, nD(T) vn € OL n D(S): 

| | I (TElsSy) | < CUSlg IE) IAT | 

If T € L(y) , then LL is the smallest C satisfying (ii). 

Proof. In view of the remarks preceding this proposition, we just 

have to show that if T satisfies (ii) for some constant C , : 

then T € LP(y,) and ITH, <C. | oo 

Therefore suppose that T with polar decomposition T = U|T| 

satisfies (ii). Then also 

| POITIZESH) | = 1 (TEIU*Sn) | | | 

SE CC < Chro*sing HACE x (ml 

| | < csi, BACH HAN) 

for all s., ¢ , "and n chosen as in (ii). Thus we may assume 

that T is positive self-adjoint.
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Let S € LY (yy) and n € 0, nN D(T?S) . We claim that for 

all ££ e€ A, n p(T?) we have 

(1) (TIT sn) |< Casi TAGE Dm | 

If ¢& € 0, Nn D(T) , this follows directly from the hypothesis. 

In case of a general E € a, Nn D(T?) , choose (by Lemma 2.5) 

£, € a, nN D(T) such that TH Tig and HACE i < Ix(e)t 

Then (1) follows by passing to the limit. | 

Now since T is (1) ~homogeneous, there exist T. € LP (py), 

satisfying TP < TP and JrPay, = sup Jr Pay, . (To see this, 

recall that TP = $= for some normal semi-finite weight © on | 
0 oo | - 

| dw, 1/p | | : : 
M ; put Ts = (72) where the $, are positive normal func- 

dy, 

tionals such that ¢, A ¢ ; then —= < de by [2, Proposition 8], 
re dby = dv | | 

and JTPay, = (1) = sup ¢, (1) = sup Jr Pay, J) 

~ Since the function t = 1/p is operator monotone on [0,0 

(by [16, Proposition 1.3.8]), we have T, <T, i.e. p(T, *) =] 

p(T?) and | | | 

| © vee D(TH: IT El < ITYEN, 

for each i € I (cf. also the remark following this proof). | 

For each i , let B, be the bounded operator characterized by 

B,7% = T.%; for all £ € D(T?) and Bf =0 for all £¢€ R(T". 

Then WB; <1 . Since BT" c T,* , and since T ‘and T,* 

are (-5) -homogeneous, B., is O-homogeneous, i.e. B, € M . Put | 

A, = B,% . Then A, €M _ WAN <1 , and | 

T.¥ c TUA, . 
i =" Ti |
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Using this, the fact that 

p-1 _  P/9g q,. . ym P= _ p-1 
| Ty T, € L (vy) with IT, pe IT; ' 

and (1), we find that for all §£ € a, Nn n p(r,®) , Wwe have 

a | | | BER, 

ow P/2,02 _ on hn hn Pe 
| | IT,° Ell | (T; EIT, T. £) | 

DE Co 5 Yo op-1 
| = (T AEIT AT, | £) 

| oo <cria, TP nase) nae 
- i'1 qg i 

; < CIA Hi ir. PY Hall IA (E12 . = i i tg fi 

| = SUIS EA CEN . | | 

By means of Lemma 2.5, we conclude that the estimate 

| oo P/2,2 P=1 a 2 | HT, I < CT SHAE) 

holds for all £ € ar, n p(T, P/?) . Thus by Proposition 2.1, 

P _ p pl | HT | IT, i, < CIT; ‘ 

i.e. | | | | | 

| oo NT, ih <C. | | 

‘Since this holds for all 1 , we have | 

| ' } [on Pp oh | p wo ° 

Te LP ol «Co thus T € L"(¢,) and LEU <c. § | 

Remark. We have used the fact that if a continuous function f 

on [0,~[ is operator monotone in the sense that R < § implies | 

f(R) < £(8) for all positive bounded operators R and § , then
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the same is true for all - possibly unbounded - positive self-ad- 

joint R and S . To see this, suppose that R < S . Then for 

all ¢ € R,, we have R(1+ecR) | < S(1+eS) | by [17, Section 4], 

and hence £(R(1+eR)™1) < £(S(1+eS)” 1) . Now if E € D(E(S)%) , 

we have by spectral theory | | 

-1, “1, 
| (E(R(1+eR) )EIE) < (£(5(1+eS) )Eglg) 

RE | ~ HES) Fel? as £0. 

Again by spectral theory, we conclude that § € D(£(R) ¥) and that 

LE (R) ZEN? = Lim(E(R(1+eR)EIE) < HE(S) Ten? | 
| e-0 | | . 

In all, we have proved that f(R) < £(5) . | 

Recall from [12, §1, Théoreéme 4, 1)], that if T, and T, 

belong to some LP (y,) » 1 <p < wo , and if T, c T, ' then 

T, = T, . ‘Actually, a stronger result holds: 

Lemma 2.6. Let p € [1,=] . Let T, € LP(y,) and let T, be a 

closed densely defined (-I)rhomogeneous operator on L? (6) . 

Suppose that | oo oo 

oo T, c Ty or Ty cT, . | 

Then Ty = T, . | | | | 

Proof. 1) First suppose that T, < T, . If p= ow, the result 

is well-known (a closed densely defined operator having a bounded 

and everywhere defined extension is equal to that extension). If
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p € [1,o] , we conclude by Proposition 2.3 that also T, € LP (y 

and thus by [12, §1, Théoréme 4, 1)1, T, =T, . (Alternatively, 

this can be proved directly, i.e. without using Proposition 2.3, 

by the methods of the proof of [12, §1, Théoreme 4, 1)1.) 

If T, © T, . apply the first part of the proof to 

* * B T, c Ts . & - 

| A specific form of this lemma will be crucial to much of the 

following: 
: 

Proposition 2.4. Let p € [T,=] . | 

| 1) "Let T and S be closed densely defined (~3) ~homogeneou 

operators on 1?(G) with X(G) p(T) and X(G) c D(S 

Suppose that 

oo | VE € K(G): TE = SE . 

| Then if one of the operators, say T , belongs to 

LP (yy) , we may conclude that T = § . | 

2) 1f Te LP a G D(T) , then T = ) © (by) an KX (GY < DI » then = [T| (6)! 

Proof (of both parts) . Suppose that T € LP (yy) . Then T| % 6) 

being a restriction of a (~3) ~homogeneous operator to a right inv: 

riant subspace, is itself (~3) ~homogeneous . Therefore also 

: . 1 
CL 

[T| 5 (6)! is | 5) homogeneous. Since [T] 3 (5)! cT , we conc Lud 

by the above lemma that T = [T| 3c)! - This proves 2). - As 

for 1), note that ©S > S| % (G) = T| 5c) , and thus 

S D (T) % (6)? = T . Again we conclude S$ =T . § |
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Finally, for later reference, ‘we summarize in a lemma some | 

remarks of Hilsum [12]: : | 

Lemma 2.7. Let gq € [2,o[ . Let T € L(y) . Then OL c D(T) , 

and for all ¢§ € a, ‘we have 

| | Tel < ami mend ante | 

Proof. Since |719/2 € L(y) , we have OL, c p(1T19/%) . Now 

let £€ 0, . Then by spectral theory § € D(ITI|) and 

| Hiren? < nm 20%) 2/9 0 gen?) 2/4 | 

Ce < arimi naen?) Fe. gg 2-2/9) oo 

| . = am end e920 g 

3. The Plancherel transformation. | | 

Given any functions f € L2G) and ¢g e 1.26) , the convolution 

product Fxnte exists and belongs to L”(G) . Thus the following 

definition makes sense: | 

Definition. Let ff € 1? (G) . The Plancherel transform Ps) of 

f is the operator on L(G) given by | | | 

oo Peery g = Fras, S$ € p( Py) | B 

where : | | | | 
: - 2 ah 2 Co | DLP) = {Le Loe | 20% € L7(@)) -
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Theorem 3.1. (Plancherel). | | 

1) Let f € 12 (G) . Then Pg) belongs to L? (v,) , and 

NPE, =u, . | ) 

} : ] | : P . 2 2 , 2) The Plancherel transformation : L7(G) =» L 7 is a 

unitary transformation of L?(G) onto L% (yy) . oo 

Proof. 1) First note that Pe) is (-%)~homogeneous: for all 

x,y €G and £ € D(P(f)) , we have - 

p(x) (PIE) (y) = 8% (x) (£287€) (yx) oo 

= 2% (x) [fata yee yn a 

- ah [t@eteTy) me ya 

- Co | = AT (x) (F200 (0)E) (y) 

ie. p(x) Pf) atx) Pif)pix) | 

We next show that Pf) is closed. Suppose that En + £ in 

L(G) and Pif)g_ »n in L°(G) , where all the £_€ D(P(£)) 

‘Then SINT - fants uniformly (by a simple case of Lemma 1.1). 

Since Fxp?g = nin 1% (G) , we conclude that n = Fang . 

Thus £ € D(P(f)) and P(f)g =n, so that P(f) is closed. 

~~ Obviously, XK (G) c p( Pf) . In all, we have shown that 

Pf) is closed, densely defined, and (-%) ~homogeneous, so that we 

are now in a position to apply Proposition 2.2. | 

Let (6) 5¢q be an approximate identity in KG), - Then | 

Pog = fray ~ f in L(G) . |
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Thus PF Peoyed -» FEL, . By Proposition 2.2 we conclude that | 

Pf) € L?(y,) and that | | | 

| WP, = neh, | | | 

2) The map P is linear: if f,, f, € L°(G) , then 

[PE)+ PE] and P(£+£,) obviously agree on K(G) , and 

therefore by Proposition 2.4, we have | | 

| Pf,+£,) = [FED+ PE, ] 

| Do. Co | 2 | 
Now, to prove that is surjective, let T € L (¥g) . We 

- shall show that there exists a function f € L? (6) such that 

T= P(f) . Let (E;) je; De an approximate identity in Kw), 

Then for all n,z € X(G) we have | | 

| | I. a | y | 

| (n¥A “CITE.) = (nl (TE, )*a7C) 

| | | = (nIT(g;*T)) 

| | = (T*nlg) = (nlTg) | - | 

(where we have used the (-%) homogeneity of T and the fact that 

K(G) < D(T*) since T* € 1% (yo) . Thus we can define a linear 

functional F on the dense subspace KX (G) = X(G) of 1% (G) by 

| | | F(g) = Lim (g1TE,) . | 
i | 

Since 

LEITE 01 < Wei TG {¥ 9 = net ETE ACs on = #TH nen, . : 

this functional is bounded and therefore is given by some f € 1% (6) :
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vi € X(G)«K(G): F(g) = (elf) 

In particular, we have | oo 

| oo oo (172) = Fin*a 7) = (m+n TIE) 

for all n,C € KX (G) . since oo : 

a (ne6™16) = (nifwste) = (nl P(o)D) - 

this implies : | . - | | 

oo | vee KG): Tr = pire oo 

and we conclude by Proposition 2.4 that T = Pf) : |] | 

Proposition 3.1. 1) For all 7 €E M and all f € 1.2 (G) , We have 

| P (rf) = [TPE] . | | 

| 2) For all tf € 1% (6) , we have | | 

| | Pag) = Por. 

Proof. 1) Let f€ 12 (6) and T EM . | Then [T P(f)] and 

P(TE) both belong to L% (4) , and for all £ € K(G) we have 

E | Pf)E = (TE) enc = T(£xn%E) = Peele, 

since T commutes with right convolution. By Proposition 2.4 we | 

conclude that HP (Tf) = (rf) . | 

© 2) Let fe 1?(G) . Then for all &,n € X(G) we have
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CS (PWH)EIn) = (Jfxa’Eln) 

oo oo = (Ifinxa” 7) | 

| | = (T(x) 18) | 

| | C= (xa RIE) | oo 
N | 

= (Elfxatn) = (£1 P(E), | 

} 0) x = * _ . so that P (Jf) | 4g, € (PE) | 4 6)) [PEN | 3006) P(£) 

(since P(f) = [PE] 36) D . We conclude by Proposition 2.4 

that Pf) = PH)y* . Hi | | : 

Proposition 3.2. Let f£ € L°(G) . Then P(f) > 0 if and only if 

| [£000 (Era) 00 ax > 0 

for all Ee € KG) . | | 

Proof. For all £ € XK (G) we have oo 

oo | | -Lv C= = | —- = 
[£00 (rae) ra = (£1T*a *E) = (£xE£1%) = (P(HeI1z) . 

since P(f) = [P| xq)! , we have 7 (f) > 0 if and only if 

(P(finin) > 0 for all. n € XG) , and the result follows. é a 

By [10, Theorem 1.21, (3)] (or, to be precise, its spatial ana- 

logue obtained by the methods of [12, §1] connecting abstract [10] 

and spatial [12] LP spaces), L(y), is a selfdual cone in 

L% (vg) . By Proposition 3.2 and the unitarity of F we conclude 

that } | ‘ | 

| | Py = {f € L°(G) | ve € KG): [£000 (5238) (x) > 0} |
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is a selfdual cone in L°(G) . Denote by P the ordinary self- 

dual cone in L% (G) associated with the achieved left Hilbert 

algebra a, n Qo, * , i.e. let P be the closure in 1? (G) of 

the set {A(E) (JE) | £ € 0, n au *} (see [8, Section 1]). Since 

P is selfdual, we have | | 

P={fer’G) | vee 0, n OL*: (£1A(E)(JE)) > 0} . 

Thus Pc P, . Since Pp and P, ‘are both selfdual, this implie 

that P = P, . We have proved oo N | 

Corollary. A function fe L? (G) belongs to the positive self- 

dual cone of L(G) if and only if | 

| | vi € KG): £00 (£208) (ra > 0 . oo 

Remark. This result is similar to the characterization of the 

cone pb given in [18, p. 392] and proved in general in [9, 

Corollary 8]. The methods of [9] would also apply for our result. 

Our proof is based on the fact that = P(f) = [ Pr) | %(G) . 

Note. We have proved that Po. 1? (6) -» L% (vy) carries the left 

regular representation on L? (G) into left multiplication on 

L% (y,) » takes J into * , and maps the positive selfdual co | 

of 1% (G) onto L(y), . That a unitary transformation 

12 (G) = L% (vy) having these properties exists (and is unique) a. 

follows from [8, Theorem 2.3], since both representations of M 

are standard (by the spatial analogue of [10, Theorem 1.21, (3)] 

‘In our approach, we have given a simple and direct definition of
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~~ We can give an explicit description of the inverse of PP : 

Proposition 3.3. Let T € L% (yg) , and let (Ei) jer be an appro- 

‘ximate identity in KG), - Then | 

So -1 a. | | 
PT) = lim Tg, - 

| a ier * | EE 

Proof. Let f = P11) . Then | oo 

Te, = PE), = fxatE, » f | | i - i i | 

2 | | | 
in L(G) . B | 

Remark. From Proposition 2.2 we already knew that for any appro- 

ximate identity (E53) 5¢1 , the NTE, N tend to a limit and that 

this limit is independent of the choice of (£5) je . Now, using 

that L(y) = PL?) we have proved that the same holds for 

the Tg; themselves. | | | 

As a corollary, we have the following characterization of the 

inner product in 1% (y,) ’ generalizing the formula for ITH, 

given in Proposition 2.2: | | | a 

Corollary. Let T,S € L% (yg) . Then | | oo 

| © (TIS) , = lim(TE, IS:.) 
| Lf, ier tt oo 

for any approximate identity (85) ie1 in XK, . - 

Proof. Since P is unitary, we have : | 

(TIS) 5 =P tmp sn = lim(Tg, 1S.) , . 8 
| L™ (vy) L™(G) i€1 L™(G)
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4. The LP Fourier transformations. 

Let p € [1,2] and define qg € [2,o] by 5 + 5" 1. 

Definition. Let f € LP) . The LP Fourier transform of f 

is the operator Fh, on 1.2(G) ‘given by 

Fone = Fant 9g yr OE D(F,(£)) ' 

where DF, (£)) = {f € 1% (6) | Fen t/ dg € L%(G)} . 

Note that by Lemma 1.1 the convolution product Fxal/9g exist 

“and belongs to L* (G) , Where r € [2,2] is given by 

: + : - z = 1, whenever f € LP(G) and £ € L(G) » 80 that 

the definition of DF, (£)) makes sense. | 

Remark. For p=1, we write ¥, = F ; we have F (fg = 

fx and D(F(f)) = L°(G) , so that F (f) is simply A(f) . 

For p = 2 , we have Ff) = Pf) . | oo | 

Now again let pe€e [1,2] . Let ff € tP(G) . Then the opera- 

tor + (6) is closed. To see this, suppose that £4 € DCF (£)) 

converges in 1? (G) to some { € L%(G) and Fog converges 

in L(G) to some n € L(G) . Now by Lemma 1.1 we have 

PIR V4 Va, | x ror 1 oo Fog, = fxp £3 - +a E in L™(G) (where 5 +t 3 ll 1) | 

Therefore Feat /9¢ =n , So that fap t/q € 1? (G) , l.e. : 

£ € D(F (£)) and Fohe = n as wanted. oo 

Next we show that F (6) is (=) ~homogeneous. For all - | 

£€ DY Fen and all x,y € G we have
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Ce (FOE) (y) = atx) (£289) (yx) | 

| = A% (x) [£89 yg yx az : 

| = a9) [£21898 xg yx az 

| = 2900 [£@a"96T me ya | 

=a" enV 

oo = AVI (Frome v) oo 

i.e. | | | 

o(x) F_(£) c a9 x) F (£)p (x) | 
Pp P 

for all x € G as wanted. | | I 

Finally, note that if £ € L?(G) n L5(G) where s € [1,2] 
Co 1,1 _ 1 | | | is given by 5 Ss -35=1, then £ € Df F580) by Lemma 1.1. 

In particular, KX (G) < D({ FE) . | | 

In all, we have proved that for all f € LP() , F (f) 

is closed, densely defined, and (-3)-homogeneous. We shall see, 

using the criterion from Proposition 2.3, that actually 

Fo (6) € L(y) . The proof is based on interpolation from the 

special cases oo | | 

a CF she» | - 
and oo | oo | | | 

oo . Po: rf) - Lig) oo | 

First we restrict our attention to f € X(G) . |
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Lemma 4.1. Let p € [1,2] . Denote by A the closed strip 

{a € ¢ 5 < Re a <1} . Let ff € K(G) and E e @, . Then: 

: (1) for each a € A , the convolution product 

£ = sg(£) IE1P% « a1 7% oo 

exists, and § € L(G) ; | 

(ii) the function | 

with values in L®(G) is bounded; | 

(iii) for each nn € L? (G) , the scalar function 

| am (E 0m) , a €a, 

~ is continuous on A and analytic in the interior of A 

Proof. Write g = A 1/pg . Then | 

| . va € A: sg(f) 1£1P% = A7%sg(g9) 1g1PHY 

Note that g as well as all sg (g) Ig IP? , @ € A , belong to 

Kw) . Co | : | 

For each n € KG) , we define | | | 

(1) H (a) = [e0 (s3(g) 1g1P%aT 7%) (x) dx , & € A 

i.e. | SE 

(2) H (a) = [Jee saa ia mat i on To ay dx 

(later we shall recoanize Ho (0) as simply (E417)



oo - 38 - - 

Note that | | oo | | 

| Va € A: H15g(9) 1g1P% 1a Onn, : 

(3) < 1igi® RE Sy walTRE Syn, 

oo | <K<eo | - 

where K is a constant independent of a € A. In particular, 

this allows us to apply Fubini's theorem to the double integral 

(2) . We find oo | 

a H (a) = [Jeo sat@1191P% Ha" ym ya vray dx 

_ -1_ pa, , =1,  1-a, ~1,.\ 
| = J16y x) (sgl(g)Igi™)(y Ja" “(x)n(x)a "(y)dx dy 

EE pa 1-a, -1 -1 | | | = (sg(E)YI£15 7) (y)a “(y x)E(y "x)n(x)dy dx ; 

it also follows that the convolution integral 

a pa 1-a, -1 -1 | 
| Eq (%) = {(sg(E)IE1% 7) (y)a (y x)g(y x)dy | 

exists, so that we can write EEE 

| H (a) = 6g xin (x) ax . | 

~ Now we shall prove that there exists a constant C > 0 inde- 

pendent of « such that 

(4) vn € KG): gg on ax) < Cinll, 

This will imply that each 99 , € A , is in L(G) with 

gl, <C, i.e. (i) and (ii) will be proved. |
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Let us prove (4). Without loss of generality, we may assume 

that het = 1 . We want to show then that 

(5) Covne X(©: 1H (0 = UAEIHEN) InN, 

To do this, we shall apply the Phragmen-Lindeldf principle [24, p 

931. | EE | 

: Fix n € XG) . By (2), Ho is continuous on A and analy 

tic in the interior of A (the integrand in (2) can be majorized 

by an integrable function that is independent of a) . Further- 

more, H_ is bounded (use (3) and (1)). Finally, we shall 

estimate Ho on the boundaries of A . | 

Let t € R. Then 4 “ge (, and Ux 0) < UAE) . 

Now | | | | 

P (sq) 1£1PEFLE)) (471t 

| _ p (kit) 1-(5+it), _ 
sg(f) 1 £1% *4 ~ = Sarit / 

so that Serit € L(G) with | 

| | oo | : p(%+it) ~it, Ey sely < I Plsg(e)y 1£1P 300 in a™ Fp) 

| <isg(1elPF nen 

| | = 1£1P7 20, ae | I 

| = xen : | | 

(where we have used Proposition 2.2, the fact that 7 is unita: 

and the hypothesis fl, = 1) . Similarly, |
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| F (sg) £1 PHIL) (mite | 

| = 5 p1+it)  1-(1+it), _ , | 
sg(f) If] *A : = - *1+1it r 

: | 2 
so that Eirit € L(G) with | | 

| | p(1+it) -it | CME, = HF (sg f) IE] i, 1a” | 

| Co ocsgey re PTE yy 

TEE, ei, Co 

| = lel, oo 

(where we have used that F : 1! (q) -» L™ (vg) is norm-decreasing). 

It follows that | 

| vt € R: IH (rit) = Heyy ie Om axs | | 

< Hey, i¢lls nll, < HACE lini, 

and | | | 

| vt € IR: TH (+it) | = eqs one ax | 

| < Heri lini, < nen, lint, . 

Then by the Phragmen-Lindeldf principle, we have established (5) 

and thus (i) and (ii). | | 

Finally, (1ii) is easy. Indeed, since a + Eo is bounded, 

each a» (51m) , where n € Lf) , can be uniformly approxi- 

mated by functions a =» (Eq 13) with ¢ € X(G) , so we just have 

to prove (iii) in the case of n € Ki{G) . This is already done 

since (L In) = H-(0) . :
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Lemma 4.2. Let p € [1,2] . Let f e€ X(G and s € LP(y,) . 

Then for all € € Ol, and n € a. n D(S) we have 

CF (f Sr < If 5 ACEH IA) | CFE E ISn) 1 < HED, NSH, HACE) Ian) 

Note that £ € D( FE) by Lemma 4.1. 

Proof. We may assume that ew, = 1 and Si, = 1 . Furthermore 

by Lemma 2.5, we need only consider n € a, Nn D(ISIP) . 

Let £ € (A, and n € a, n D(IS|P) . For each « in the 

closed strip A = {a € C | % < Re a < 1} , put 

Ey = sg (£) 1£1P%a 17% as in Lemma 4.1. Note that for all ao € A 

we have (by spectral theory) n € D(ulsiPY) and 

| 1u1s1P%an 2 < 1ist®/ 200% + nisi? 
| 2 - 2 2 

where s = U|S| is the polar decomposition of S . For each 

a € A, put | | 

| | CC _ uys|P@ | Ng vuisi®¥ n . | 

Then the function ao + Ng with values in 1? (G) is bounded on 

A . Furthermore, by [22, 9.15], it is continuous on A and analy 

tic in the interior of A . | | | 

~~ Now for each a € A , let 

: Ha) = ($40ng) . : | 

Then obviously H is bounded on A (by Lemma 4.1 (ii), ao oo | 

is bounded). Furthermore, " H is continuous on A . To see this, 

note that oo | |
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Vo, a, € Ar (E. Ins) = (E. Ine) = (§ In—=n= ) + (5 =E_ Inc ) ; 
| 0 a ay ay a a ag a Ca, ag 

the continuity follows since a w Ex 1S bounded and weakly conti- 

nuous (Lemma 4.1 (iii)). Finally, we claim that H is analytic in 

the interior of A. First note that for each x: L%(G) the 

‘function ow (zInz) , being equal to Er k (nglg) , is analytic. 

Next, recall that a wv &o is actually analytic as a function with 

values is L? (G) (by Lemma 4.1 (iii) and [19, Theorem 3.31]). Then, 

writing | | | 

(E Ing) —(E, Ins ) (Eq Ing) -(&, In ) 
0 0  _ ( 1 _(E_~E Vine) + 0 0 0 

| a-a, ad a %’ a a-a, | 

we find that H has a derivative at each point ay in the interior 

of A. | | oo | 

Now suppose that | 

(1) Yt € TR: JH(EHIE) DT < XE) BX) 

“and | | | | 

(2) vt € R: IJH(1+it) | < IA(EMN HA (ml oo 

Then by the Phragmen-Lindelof principle [24, p. 93] we infer that 

Va € A: [H(a)l < BA(EXN NIA) | oo | 

in particular, | | 

LCF EEIsn) 1 < UAE) IA (il | 

‘as desired, since 

ne = (£va) VPs iuisin = ( F_(£)1Isn) . | 
| p | p | 

So we just have to prove (1) and (2). | |
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Since S € LP (yy) ‘with isi, = 1 we have 

C3 wisiP’? ee tfyy) with gcisiPA, = | 

and | | | 

(4) uisiP erly with grisiPiy =. 

Now let t € RR. Then by Lemma 2.3, we have 

(5) 1si”P*me with maasi TP mn <nmamn 

Using this, Proposition 2.2, the estimate Hey piel) < WACEI give 

in the proof of Lemma 4.1, and (3), we get | 

| | ey = | p/2 . -pit | | Hie) = 10g, 1018174151 7P En) 

| HE, 0, Huis? 21s Pity | Weisel nts 

| < Tae) 1uis1®/2y, PYIETIE SAT 

| < HAGE BAI, 

i.e., (1) is proved. To prove (2), note that | 

| | _ p{1+it) 1-(1+it) | Sapp = SOD IFIP g 

oo | = Asg(n) 1 £1PUTE AT 0 eg 
and | oo | | 

oo oo p(1+it) ~it. | CEO < IA (sg UE) IE] nA a" Ee) Co 

| < sg (6) (Er PUT ace | 

since Bsa tf) EP ie P = 1. Using this together 
with (5), Proposition 2.1, and (4), we find | Co
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: oo Ase _ p “pit 

IH(1+1it) | F(E4,;¢1UISI 1S ay : | 

Pp . -pit_ N | 
| < HACE, fuls| iy, Hr (1S ol! 

- <A E mn | | 

so that (2) is proved. @ | 

In the formulation of the following theorem we include the 

case p = 2 . Note however that the proof is based on the results 

for this special case (they were used for the preceding lemmas). 

Theorem 4.1. (Hausdorff-Young). Let p € 11,2] and : + 1 = 1 . 

1) Let f € LP(G) . Then FE) € L(y, and 

| | | nF Ean < WEN. | | | | FE < HEN | oo 

2) The mapping | | | 

oo | F . 1P q | : For tP(@) = Ly) | 

is linear, norm-decreasing, injective, and has dense range. 

© 3) For all he 1l(G) and f € LP(G) , we have oo 

| | CF (ef) = hh) Foo). | b [A (h) Fp £)] | 

4) For all f € LF(G) , we have 

F af) = F (H)* . | | | CFD = Fae 
Proof. 1) First suppose that I € X(G) . Tnen, using Proposition 

2.3, we conclude from Lemma 4.2 that Foo € Lhe) with
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li Fo < hen, . Thus we have defined a norm-decreasing mappin 

oo v p —p 9 . 
| Fol xe) : L (G) (Yq) | 

x ~— R . . . , G d 

Furthermore ry wc) ® linear: for all f£,,f, € X(G) an 

all g € K(G) we have | 

(£.+f) 589 = £ +019 4 £oanl/9g 
1 72 1 2 

so that Fo lEy+E)) = [ Fo (Eq) FET by Proposition 2.4. 

© Now CF % (G) extends by continuity to a norm-decreasing 

linear mapping oo 

| v. (Poy Lo 1d | | 
| | F, : LY (6) L¥ (gy) - 

We claim that for all f € LPG) , we have : 

| WE) = FE). | ¥, (£) ol | 

This will prove 1). 

Let f € LP(G) . Then Fr) e L(y, and Ke) < | 

D( F' (£)) by Lemma 2.7. On the other hand, by the remarks at tl 

beginning of this section, Fo is closed, densely defined, 

and (-3) ~homogeneous, and KG) Cc DCF (£)) . Thus by Lemma 2.: 

to conclude that Es (f£) = Ff) we just have to show that 

| ve € Kc): Fhe = F (Hg . 
| oo | p p | 

Now, take ER € K(G) such that f_~ f in LP(G) . Then for 

all ¢ € KG) , we have | oo 

ea V/q | 
| oo FEE =f +a "9g | | | 

| NTIS Fone in LP) . Co
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‘On the other hand, since Fr 1s continuous, | oo 

oo | FEE =F, (£06 = F 1 (f)e in L7(G) | 

by Lemma 2.7. We conclude that Foe = Fore as desired. - 

Thus 1) is proved. | ) 

2) By the proof of 1), we just have to show that 35 is 

| injective and has ‘dense range. The injectivity is evident: if 

F 6) = 0 for some f € LP(G) , then f£+4'/% = 0 for all | 

e€ KG , and thus f£=0 . That JF (LP(G)) is dense will be 

proved later. | | oo 

3) For all h € L(g) , £ € LP) , and ¢ € K(G) we have 

| | he (£+a7/9g) = (hxg)*a'/9% | 

(in LP (6)) . Thus by Proposition 2.4, | 

| Ath) F(£)1 = F_(hxf) . | | [A (h) b ) 1 pt ) | 

IE 4) Let f e Ko) . Then for ¢§,n e Kc) we have | 

| ( F (I _£)gln) = J £281/9c | n) SE 
PP p | a 

oo oo = (aga (3 6) en) 

oo » a. | 
= (E1894 WWW Peery) | | 

| 1/q. : 
. | = (E£]fx*A n) | | | 

| = (g] Form) | | 

¥ | | x i ti 5. | so that p95 E) | % (6) = CFE) | 116)! By Proposition 2.4, 

We conclude that | |
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By the continuity of Io p x , and * , this holds for all 

fel . oo | | | | 

Finally, let us show that Fhe) is dense in L(y) 

By the duality between L(y) and LP (yy) » this is equivalen 

to proving that if T € LP (yg) satisfies JULI (£)T dy, = 0 fc 

all fe LP(G) , then T = 0 . - | 

‘Suppose that T € LP (yy) is such that 

| Ce Pior: [rT mya. = vi € LF (G): JU Fp (0) T1dy, 0 . 

Let f € LP(G) . Then for all h € VG) we have 

oo | J Fo (hf) T]dy, =0 . | 

‘Alternatively stated, since | #, (h*£)T] = [[A(h) F,(£)]T] = 

(AM) LF (H)TI] , we have oo | | 

| : | 

vh € L(G): [ome F oTiay, = 0 . | 

We conclude that the normal functional on M defined by 

{ FEIT) € L' (vy) is 0, so that | 

| FF (£)T) = 0 . | | [ ptf) ] 

Changing f into It and using 4) this gives 

| vf € PG): | Fe] = 0. | 

Now let £ € D(T) . Then using [12, II, Proposition 5, 1)], we 

find that | | : oo |
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| vE,n € KG): (reifsn/%y oo 

oo = (Tg! FE _(£)n) | = eh Fg In) | 

| oo = <UL FLUO)*T), (x ()*> = 0 a. 

Thus TE = 0 . This proves that T = 0 as wanted. § 

Proposition 4.1. Let p € [1,2] . Let f£ ¢ LP(G) . Then 

Fo (£) 2 0 if and only if | 

VE € KI(G): [£00 (5236) 0 ax >0 . | 

Proof. We have | | | oo - | 

| ( Freie) = [ (xa?) 0) TTRTax | 

oo oo y | 

| = [£000 (E2071/PE) (x) ax | 

for all £ € X(G) . The result follows by changing £ into ¢£ 

and recalling that F, 6) = [ 7,6) x(G) . B | | 

The LP Fourier transformations are well-behaved with respect 

to convolution as the following proposition shows. The result | 

generalizes 3) of the theorem. oo | : | 

Ce | a n 1 1 1 
Prop tion 4.2. Let p,..,p,:p € [1,2 such that — + — - — = 1 | Lo 051C10n | Py Py pt ] P, P- p 

oo Coq | Py ) | 
Define gq, € [2,0)}] by — + — =1 . Let ff, € L (G) and 

p 1 Py aq, : 1 

f, € L “(G) . Then | | | 
| ira Co | . 

| Tess fy =0F uF oul. | 
por 2 py BL, — |
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Proof. By Lemma 1.1, we have £,*0 £5 e LPg) , and 

(£4,£5) + ENEIRE ‘f,) maps L (G) x L “(G) continuously 

; yy 1,1 " into L7(y,) (where + 3 = 1) . Also [ To, 1) Tp, 112)] 15 

continuous as a function of (£,,£,) € L (G) x L “(G) with 

values in fy ‘Thus we need only prove the statement for 

fi0f, € Hc) . since | 

oo 1/9 | 1/9 1/9 oo 1 1 . 1 2 
| : : (£,*8 | £5) %4 79 = £,*xa (£,*48 £) 

(where — + AL. 1) for all £08508 e XG) , the result fol- 
Py 9 | | 

lows by Proposition 2.4 as usual. @§ | | 

| We conclude this section by the following characterization of 

the image of LP(G) under Fo: | oo 

Proposition 4.3. Let p € 11,2] and : + g=1. Let Tein 

1) If T = 3, (£) for some ff € LP (G) , then for any appre 

ximate identity (g£;);., in K ©), ‘we have 

oo mE, + £ in PG) | 

I rticular, 1limliTE., = jf < co, n pa i ular imi Eig i US | | 

2) Conversely, suppose that for some approximate identity 

3 p : (8); in KG), we have TE; € LY(G) for all i € | 

and | oo Co 

RE © lim infITE Nl < w . | 
: | SER Ta ©! 

Then T € FP ©) . . | | |
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Proof. The first part is obvious since TE, = SINAN - f in 

LP(G) and therefore ITE hy -» HEN . Now suppose that the | 

hypothesis of 2) holds for some (€.)ie1 . We then proceed as in 

the proof of the surjectivity of PP (Theorem 3.1). For all 

"n,t € X(G) we have a | | | 

ea” 1TE) = (nice) +n" 9p) | 

| oo = (MITE; *T)) oo 

| | ~~ (T*alo) = (nlTo) | 

Thus we can define a linear functional F on K(G) * K(G) by | 

| F(g) = lim [go aE TTR ax Co oo 
i 

Since | SE | oo | 

| | He eo @E Tm ax < ely ITE 0, oo | 

we have | | | 

IF(E)1 < (lim infl Tg, . Ce £ < i FL LRA 

Now since KX(G) x K(G) is dense in 19g) , F extends to a 

bounded functional on L9G) and therefore is given by some : 

fel): | oo oo 

Co : | F(g) = [emTmax | 

In partieuvlar, | | | |



CniTg) = Fra” 9) = | (nea™9%) (0 Fl) ax 

for all n,; € K(G) . Since | | 

| J tne” 79%) (0 FT) ax = [noo een’) (x) ax = (nl F610) 

this implies that | oo | 

Cove Ee Ki: Te = Fic, | 

and we conclude by Proposition 2.4 that T = Ff) . | 

Remark. For Pp = 1, part 2) of the above proposition fails. 

(For a counter-example, take T = A(x), x €6G .) 

5. The IP Fourier cotransformations. | 

Definition. Let p € [1,2] and : + 5 = 1 . For each T € LP (y 

denote by Fm the unique function in 19(G) such that 

| [noo Fp 1 (x)dx = J Fp (TIA, 

for all h € LP(G) (or just he X(G) , or he K(G=*K(©G) . 

‘The mapping | | 

N S————. . P - g . 

EN Li (by) CLE(G) 

thus defined will be called the LP Fourier cotransformation. 

For p=1, we write F =F, . N
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Note that if 1 < p < 2 , then F, is simply the transpose 

of ¥ LPG) - L(y) when we identify the dual spaces cf 

Ps) and L(y) with L9G) and LP (v4) , respectively. | 

The mapping F takes an element T € Ly) into the unique 

function ¢ € A(G) that defines the same element of M, as T 

does; in particular, oo | | oo | 

| | = dy : | (Le) - 6 | 
| dbo | 

+ ' . 
for all wo © (My) ~ AG), . | 

In view of these remarks, we obviously have : 

Theorem 5.1. SE oo | | 

1) Let p € 11,2] and 1 + Lg 1 . Then Co | 
| p dg | | 

FF. [Py L 1d | Fp L (vg) L=(G) | | 

is linear, norm-decreasing, injective, and has dense range. 

2) The mapping Co | | | | 

| F: 1) ~ AG) | | 

is an isometry of L(y) onto A(G) . : | 

Remark. With our definition of the cotransformations, F. is 

‘not exactly the inverse of Po; they are related by the formula 

| | , IB —— | | 

| CVT € LU): Fm) = PTT 

(since for all h € L?(G) we nave [no @ (1) eddy = 

JLF Tay, = (FIT = wr PV re) , = | 
- B L7 (vy) | L™(G) -
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NE ER : . . CF 2, 2 Ce 
Jhix)P (T*) (x)dx) . It follows that ¥ L (vg) - L(G) 1s 

unitary. oo oo | 

The classical Hausdorff-Young theorem [24, p. 101] has a second 

part, stating that with each c¢ € 1,(Z) , 1 <p <2, we can asso- 

ciate a function f € L9(T) with WEL <del, such that cis 

the sequence of Fourier coefficients of f . Theorem 5.1 is a 

generalization of this result. Indeed, let T € LP (y,) and put 

| -1/q9 += Vv oo q, | yn AE | = A T)  . Then € L(G) and gl =F (TT) _ < IT Fp 7 ©) Tq pg = 
Il, , and we shall see that T is close to being the "LY Fou- 

rier transform” of g in the sense that Tg = g*al/Pg for certai 

'& (note that we do not in general define L? Fourier transforms 

qg> 2) . | | | | 

Proposition 5.1. Let p € [1,2] and : + 5 = 1 . Then for all 

T € LP (44) , we have : | 

| oo F (T*) =I (F_(T)) . | . - Fol ) gq Fplt) | | 

Proof. For all h € LP (6) we have 

CT 1 , 5 - 4 ; 

| fn 0F ) (x)dx [tF mr Jay, | | 

- | = IT Fomy*la, = lor | oo | Ji pb! )*1dy, jt Fog) lay, | 

= | Fon 0a” Poon x ) dx | | 

| EE PE UE NCS ERNE | =o (x) F(T) (x )hx)dx . B§
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mma 5.1. Let h,k € K(G) and put p= hey Then | 

L(p)al € L' (py) and : 

oo [EYTIISEN = ple) . | 

roof. Since So | 

oo | AF) AEA | | | 
A{w)a = A(h)A(k)a“a | 

| CC camath Ti Rate Poy Pur, 

the closure [A(g)al exists and [x(p)al [ Ph) Px)*1 . One 

easily checks that for all x € G we have [ x)ja{p,;a c oo 

A(x) A (@) Ap (x) , i.e. that A(@)a is (-1) ~homogeneous. Then also 

[A(p)Aa]l is (-1)-homogeneous, and we conclude by Proposition 2.4 

that [A(p)a] = [ P(h) Px)*] , so that [A(w)al € L(y) and 

| IEXTSES = (Pm) Px) 9 oo 
| | LS (v2) | 

"0 | 

| = [nox ax = (hxkK) (e) = v(e) . B 

| Pr Ps 
Suppose that £, € L (G) and £, € L "{(G) , where 

Pq/P, € [1,2] . In Proposition 4.2, a formula relating | 

f.*xA f and [ F_ (£f,) F (f,)] was given in the case where 1 2 p 1 p 2 
1 2 

3 | | 
1 + 1 > 5 (under this assumption, p € [1,2] satisfving : 
Py Pr 2 - - 

1 1 1 ~ | oo 
Sy oo - 5] exists). The following proposition takes care of 
21 2 | | 
the case where —— + —— «< 2 : oo 

: Py Py Toe oo



Proposition 5.2. Let p,.p, € [1,2] and = € [2,=] sucn that 

1 1 1 Eq : Py 
— + — ~- ==1. Let ££, €L (Gi and £f, € L "(G) . Then 
Fi Pp, 4 L | 

| : | 1/9 — -1/9 1 Vv 
| (f (£501) = a (f£.%xA ft.) 

11 | EE 
h -— + = =1 and —'4+ — = 1 | where = J 5 a; oo | 

Proof. Both expressions exist, belong to L? (6) , and are continu- 

| : | oo Pp | P oo 
ous as functions of (£4.55) € L Ya) x L 2c) Thus we need 

only prove the formula for £05, € KG) . .In this case, for all 

h € KG) and ££ € K(G) we have | | | oo 

| | 1/9 1/9, | 1/49 | 
| hea/Te a Tera Pe) = nea Sema ME wae 

where + + = 1 . We conclude by Proposition 2.4 that 
| 2 92 | 

vhoe XK): [FE ml F (5) F (£011 = xen 95)a) 
| p Py 1 Py 

| | 1/q, | 
where we have written f = £,xa £, . Using this and Lemma 5.1, 

we find | | 

| vh € X(G): | nmi ¥ £,) £.)]11d | Ki EF m 0, (1 Fo, ,)11dy, | 

oo | = [0x hes 9) a1ay, | 

= mea ge | | 

| = [nia] Tx hee hax 

We conclude that | 

- 3 OTF if ) Four) = RULE | | op Py 1 SR | : 

as desired. § | | | Co
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Corollary. Let £f£,g € L (G) - Then oo oo 

| fg =FUP@® PE | | 

Proof. Letting Py = Py = 2 and gq = « in Proposition 5.2, we 

obtain | i 

CC FUP@ PE =FUF,@ Fon 

: | = (G+a23E)Y = fxg . B | 

Remark. Since A(G) = Fwy) and since every T € L' (4) | 

can be written T = [RS*] where R,S € L% (4) = P(L%(G)) (just 

put R = ulTl® and §* = IT , where T = UIT| is the polar 

decomposition of T) , we have reproved the fact [6, Théoreme, 

p. 218] that A(G) = {f*3 | £,9 € L°(G)} . It also follows that 
| | ~ 2 oo 

hol 2g) < El, hal whenever ¢ = fxg , frg € L(G) (since | 

it Pe PE, <vP@u, t PE, ), and that, given 

© € A(G) , there exist f,g € L?(G) with ¢ = fxg such that 

= | - 3 % | NTS = Upd halt, (use that Ti , = |UlTi Ih HiT ih for 

| 1 | | 
T €L (yg))- . - | | 

Propositon 5.3. Let p € [1,2] and EATER € [2,0] such that 

1 += = LE Let T € Lt ) and § ¢ J i) Then 

| | (T&1Sn) = [F521 1) (203m) 1x) ax | 

for all §&,n € Ky . a.



. | - 20 

Proof. By Lemma 2.7, the left hand side of the equation to be 

proved is a continuous function of T and § . The same is true 

Of the right hand side. Therefore it is enough to prove the state- 

ment for T and S belonging to the (dense) sets F (X(G)) 

and F ( Kc) (where, as usual, 1 + = 1 , 1 + 1 = 1) . 
Ps | oo Py dy Py qd, 

Now suppose that T = F (h) and 5 = F (k) where 

h,k € Ki) . Then | 

~ (TElsn) = (h=a Elk=A nl | 

| oo = (A  Exa "nia hek) oo 

| oo -1/q9,-1/q9,, ~1/p, ~1/4q, 
| | = (ExA nla h*a k) 

| | n “1/pyv ~V/q,_ 
| = (exam 0 ca “hea k) (x)dx . 

Since So | | 

F_s*T]) = F (UF. 3k) (h) 1) 

| oo | N 1/9 | 
oo =a" ken 2n)Y 

: Pp | 

0 iets Voy eas Ap, | oo 2 VST 2¥ atte Pep 

=a The K | 
we have proved the formula. § | Co | | 

Proposition 5.4. Let p € [1,2] and Sto =1. Let T € Fup : 

with polar decomposition T = UITI . Put ag = ATV aE (7). 

Then SE oo | | 

ER - Ly 1/p — ; 

oo CETTE 00 (Ti 70%) = | (gea EX {xInix)dx | 

for all i,m € KG) . | | | - oo
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»of., Put 9d, = g, = 2p . Then tT] g Ly) and 

Cy 9 CL | | 
Ure L "(y,) » and by Proposition 5.3 we get 

yo | | | oo (ITE ITI Buen) oo 

: | Fm 0 (53m ax 

_ - \ a a ' 

= [7m 0 HY aVPra 7am (x) ax | 

| — =1/py. | | = |g) (Fra PY) (xyax | 

oo Co 1/o. . | | = [(gea"®e) (xX)nix)dx . BB | 

roposition 5.5. Let p € [1,2] and T ¢€ LV) . Put 

y= TET im . Let I € K{(G) . Then 5 € D(T) if and only 

x: gen Pr € 12 (G) + and if this is the case, we have 

| / oo | 
TE = gen Pp | 

roof. First suppose that ¢& € D(T) . Then for all n € X{(G) 

~€e have | | | 

| | [rer ont as = (Tgin) | 

| | | = (IT121 (Ti? U*n) N 

or De. 

= jlaxa S)ixXYnix)dx . 

lence geal Ps = T{ and thus gen VF: € L™ 13) . | oo 

Conversely, if gxa'’Pg € L(G) , then oo |



| 5 5 | | (ITI*€L (TI U*n) I | | 

oo = | tga P2) 070 axl 

| | : oo 

| | < Iga Pei, 1 | 

for all n € K(G) . Wwe conclude that (T{2z € D(LITI?U* | 5, gy 1%) . 

Cy ) x | | 
dre ® = y= = U | - r t ‘Now [ITU | 16) [IT] *U=*] IT * sc tha 

L BU | . 
IT] “¢ € DUT?) , whence £E € D(T) . | 

Theorem 5.2. Let p € [1,2] and T € LP (gq) . Put 

_ 1/9 7 v . | 2, | : g =a Fo . Suppose that g € L(G) . Then T is the 

closure of the operator a : 

| | gm gea Fe, fe KG). 

CL 2 | /p. 2, 
Proof. When g € L(G) , we have gx*»a $ € L7(G) for all 

t € K(G) . Thus, by Proposition 5.5, XK (G) < D(T) , and oo 

[— 1/P; 3 : T = - TE = g*A ‘Ff for all & € N}(G) . Since T = [T| x (c) by Propo- 

sition 2.4, the theorem is proved. 8 | | 

As a corollary, we have | 

Theorem 5.3. (Fourier inversiont. Let p € [1,2) and : + Lg 1 
EE a aa ‘ CG 

| r - TE. | , -1/q T= ey V . | 
| 1Y Let T ¢€ LY (wy) . Put g = 4A oo F(T) It | 

g € LY\G) for some vr ¢€ [1,2), then Figaro | 

oo is closavle, and | | 

~ .or=1a. | 
| . E i pond [ F. NORIN I a i . - |
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2) Let f € LP(gy . If for scme =r € [1,2) , the closure 
| _ 1/r=1/g | CL EE 

s = | Feral" 79; exists and belongs to Ly , then 

| | | £=2"VS TF isi" | | | | | r | | | 

where — + — = 1 . : 
r Ss 

r dn | 2 | 
roof. 1) Since g € L7(G) n L°(G) , we also nave g € L(G} . 

hen by Theorem 5.2 we have | | 

) . | | : . ~1+ + \ | . _ 

mg = gea/Pe = gua SATII VBE LF (gq) a1 ET 

1/1 | | or all € € K(6) . Thus T| c Fiona /T VE | as is 
| KG) = Jr 

: SU | 1/r=1/ LR X 
asily seen F. (9) /x=1/q is {=g) -nomegeneous. It ir also clos-~- 

ple, since its adjoint is densely defined (indeed, | 

ey , 1/xr-1/q a T . i" J CL | 

sp tgla )* | | *(G) so that | 

4 1 -1/ es . Co — Fr-1,C 

F lg)a /x ’9)% = T%) . We conclude that T = [ Foghat ie, | 
A. . 

I . : 1/r-1 are . . ’ | 

since Tc [ F (ga ’" EN. . | 

2) For all E € XK(G) , we have £ € D(S) and by Proposition 

oo 1/r, 1/r=-1/9. “1/5 = oo 
fed Te = F(H)alt V8: 2 gr = 371s 7 (S) Vwi . 

| Pp : I ” 

“he result follows. @§ | 

Putting p =r = 1 in the first part of Theoren >.. and recall- 

= dw | | | oo 
(na that F (2) = ¢ for o € AG) we obtain 

wlrollary., Let ¢ € Aw). It ¢ te Low), then 

| . Jd¢ \Y a E 
er csAa—— on A ~ N . . dv, INTHE |
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| Finally we shall give some results on positive operators | 

Te LP (yg) valid without any restriction on Fm . 

© Note that for all f € 19(G) and £.,n € K(G) we have | 

| [£00 (g2am) x0 ax | 

= [[eoewr a Py omy ay dx 

| = [[eamema™Punooax ay 

oo | = [Jee ewan ax dy . | 

TT . 1.1 _ | 
Proposition 5.6. Let p € [1,2] and pt a = 1 . Let 

P 2 TF T € L S70 . Put f£ F(T . Let 

| gle) = [£00 (g23,0) (ra | 

h = [Jew ha dmemEmay dx 

for all ¢ € K(G) . Then gq is a closable positive quadratic 

form, and the positive self-adjoint operator associated with its 

closure is T . oo | oo 

Proof. By (the proof of) Proposition 5.4, we have 

Yr ime) = |g Cad 1 (x) dx = c 
(TEITE) f(x) (gad & (x)dx = q(g) 

for all ¢ € Ke) », and T° = [T°] +] +. Thus gq is a clos- ai CH AG) HES | 

able positive quadratic form with closure corresponding to T . 8 

Corollary. Let Ce € ALG) . Then i 1s the positive self-adjoint 

operator associated with the closure of the positive quadratic form
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given by SE 

| | g(t) = [ox (even) (x) ax : 

| | ow (FTE Gv do | 
: = jo lyx ) L(y) E (x)dy dx | 

for all £ € KI(G) . IE | | | 

Remark. This result also follows directly from the definition cf 

29 . Indeed, | | | 
Baw : 

0 | oo 

I =7 gl * = @(A(EYX(E)*) = Jo(x) (£*E£*) (x) dx 
dy, : : : 

| oo to TE | 
se we have [(Se)\® _ [({de | ror all £ € K(G) , and we have (£2) (&) KG) by 

Proposition 2.4 (or, alternatively, by an application of [9, Theo- 
| | x Loh SE 

rem] together with the fact that (fe) = (22) | | ) oo 
| | 9% L\dvq/ TO; 

Actually, the property of defining closable quadratic forms | 

on XK (G) characterizes A(G) -functions among all positive defi- 

nite continuous functions. The precise statement is as follows: 

Theorem 5.4. Let ¢ be a positive definite continuous function. 

Define qg on KX(G) by - oo 

gig) = Jot (gag) ix) ax | | 

| EE Bl I Pt WU ~ = pelyx Ds ¥)EIX)dy ax, & € XG oo 

Then g 1s a positive quadratic form on Ko) , and gg is | 

closable If and only if oo € AG) . oo I
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Proof. That gq is a quadratic form is obvious, and since «¢ is 

positive definite, gq is positive. | | 

Now suppose that g is closable. Denote by T the positive 

self-adjoint operator associated with its closure; then T is 

characterized by the properties KG) < p(T?) v 

7? = [T | J | and oo | | | | | x! 

ve € KG): HTL” = q(&) . | 

| Let us show that T is (-1) homogeneous. Let x € G . Then 

T, = 2" (x) p (0) Tp (x71) is positive self-adjoint and 

T = AE x p(x) Top (x 1) . ‘Therefore KH (G) c p(T, *) and 

2 _ 00% | | T, [T%) ®%) - Furthermore, for all ¢ € K(G) we have 

IT, en = {IA * (x) p (x) Tp (x Yen? 

| | a _ , | | 

=a wm are Ya | 

SR _ 1 -1 | | | 
=a (x)alp(x )E) 

_ -1, 1 BRIE BU 
=a (X)]jelyz px IE) (y) (p(x jE) (2)dy dz 

oo oo -1 - - -1, k, 1, —=T. oo = [Ja mez hat oT Yer hat hE ex Day a 

= a7 0 [Joya gw sex Day dz | 

| _ -1 = x | 
= [[otvz YE(y){(z)dz dy 

=q(§) . | | - 

We conclude from the characterization of T that T, =T, so 

that oo | |
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-1 oo -1, | - | Vx € G: & (xX)p(X)Te(x '}) =T , 

le. T is (-1) ~homogeneous. | | | 

Now let (€5) eq be an approximate identity in KG), . Then 

x 2 : | oo | 

| < sup{ 10(x) | | x € supp (£;et;*)} We; *8; I, 

x sup{ 19 (x) | | x € supp (££, } | oo 

ince ¢ 1s continuous and the supports of the FE tend to 

2} , we get oo | | 

SE Co XY, 2 
: | lim inf TE. 17 < wile) . 
Co 71 —- | | 

: ied 

¥ Proposition 2.1, this shows that T € L(y) . | 

Put © = F(T) € A(G) . Then 

veg € KG): Jor G0) (gag) (x ax = Tey 2 = gf) 

| - oo = Joo (gag) (x) ax . 

2 conclude that ¢ = wy, and thus ¢ € AG) . | | | 
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