L^P Fourier transformation on

non-unimodular locally compact groups

by

Marianne Terp

Matematisk Institut, H.C. Ørstedinstitutet, Universitetsparken 5, DK-2100 København Ø.

<u>Abstract</u>. Let G be a locally compact group with modular function Δ and left regular representation λ . We define the \mathbf{L}^{P} Fourier transform of a function $\mathbf{f} \in \mathbf{L}^{\mathrm{P}}(\mathrm{G})$, $1 \leq p \leq 2$, to be essentially the operator $\lambda(\mathbf{f})\Delta^{1/\mathrm{q}}$ on $\mathbf{L}^2(\mathrm{G})$ (where $\frac{1}{\mathrm{p}} + \frac{1}{\mathrm{q}} = 1$) and show that a generalized Hausdorff-Young theorem holds. To do this, we first treat in detail the spatial \mathbf{L}^{P} spaces $\mathbf{L}^{\mathrm{P}}(\psi_0)$, $1 \leq p \leq \infty$, associated with the von Neumann algebra $\mathbf{M} = \lambda(\mathrm{G})^*$ on $\mathbf{L}^2(\mathrm{G})$ and the canonical weight ψ_0 on its commutant. In particular, we discuss isometric isomorphisms of $\mathbf{L}^2(\psi_0)$ onto $\mathbf{L}^2(\mathrm{G})$ and of $\mathbf{L}^1(\psi_0)$ onto the Fourier algebra $\Lambda(\mathrm{G})$. Also, we give a characterization of positive definite functions belonging to $\Lambda(\mathrm{G})$ among all continuous positive definite functions.

Introduction.

Suppose that G is an abelian locally compact group with dual group \hat{G} . Then the Hausdorff-Young theorem states that if $f \in L^{p}(G)$, where $1 \leq p \leq 2$, then its Fourier transform $\mathcal{F}(f)$ belongs to $L^{q}(\hat{G})$, where $\frac{1}{p} + \frac{1}{q} = 1$ (cf. [23, p. 117]). In the case of Fourier series, i.e. when G is the circle group and \hat{G} the integers, this is a classical result due to F. Hausdorff and W. H. Young [24, p. 101]. An extension of this theorem to all unimodular locally compact groups was given by R. A. Kunze [14]. In this paper we shall treat the case of a general, i.e. not necessarily unimodular, locally compact group.

In order to describe our results, we first briefly recall those of [14]. Suppose that f is an integrable function on a unimodular group G. Then we consider the Fourier transform $\mathcal{F}(f)$ to be the operator $\lambda(f)$ of left convolution by f on $L^2(G)$. (As pointed out by Kunze [14], this point of view is justified by the fact that in the abelian case $\lambda(f)$ is unitarily equivalent to the operator on $L^2(\hat{G})$ of multiplication by the (ordinary) Fourier transform \hat{f} .) The Fourier transformation maps $L^1(G)$ into the space $L^{\infty}(G')$, defined as the von Neumann algebra M generated by $\lambda(L^1(G))$. More generally, one can define $\lambda(f)$ as an (unbounded) operator on $L^2(G)$ even for functions f not in $L^1(G)$. It then turns out that λ maps each $L^p(G)$, $1 \leq p \leq 2$, norm-decreasingly into a certain space $L^q(G')$ of closed densely defined operators on $L^2(G)$ (where $\frac{1}{p} + \frac{1}{q} = 1$). This is the Hausdorff-Young theorem. Kunze introduced the spaces $L^q(G')$ as spaces

of measurable operators (in the sense of [21]) with respect to the canonical gage on M [14, p. 533]. An equivalent but simpler way of introducing the $L^{q}(G^{*})$ is to consider the trace φ_{0} on M characterized by $\varphi_{0}(\lambda(h)*\lambda(h)) = \|h\|_{2}^{2}$ for certain functions h, and then take $L^{q}(G^{*})$ to be $L^{q}(M,\varphi_{0})$ as defined by E. Nelson [15], viewing it as a space of " φ_{0} -measurable" operators [15, Theorem 5]. (In either case, the L^{q} spaces obtained are isomorphic to the abstract L^{q} spaces of J. Dixmier [5] associated with a trace on a von Neumann algebra.)

In the general (non-unimodular) case, φ_0 is no longer a trace, and the lack of adequate spaces L^{q} into which the $L^{p}(G)$ were to be mapped for a long time prevented the formulation of a Hausdorff-Young theorem, except for some special cases ([7, §8], [20, Proposition 15]). In [10], however, U. Haagerup constructed abstract L^P spaces corresponding to an arbitrary von Neumann algebra, and combining methods from [10] with the recent theory of spatial derivatives by A. Connes [2], M. Hilsum has developed a spatial theory of L^p spaces [12]. If M is a von Neumann algebra acting on a Hilbert space H and ψ is a weight on its commutant M', then the elements of $L^{P}(M,H,\psi)$ are (in general unbounded) operators on H satisfying a certain homogeneity property with respect to (. We shall see that when using these spaces (in the particular case of $M = \lambda(G)$ ", $H = L^2(G)$, and ψ = the canonical weight on M') and when defining the L^{P} Fourier transform of an L^p function f to be the operator $\xi \mapsto f^*\Delta^{1/q}\xi$ on $L^2(G)$ (where Δ is the modular function of the group), one gets a nice L^p Fourier transformation theory and in particular a Hausderff-Young theorem.

- 3 -

The paper is organized as follows. In Section 1 we fix the notations and describe our set-up. In Section 2, we study the L^p spaces of [12] in our particular case; we give a reformulation of the α -homogeneity property appearing in [2] that does not involve modular automorphism groups and we characterize $L^p(\psi_0)$ -operators among all $(-\frac{1}{p})$ -homogeneous operators. In Section 3, we treat the case p = 2 and obtain explicit expressions for the L^2 Fourier transformation $\mathcal{F}_2 = \mathcal{P}$, called the Plancherel transformation, as well as for its inverse.

Next, in Section 4, we deal with the case of a general $p \in [1,2]$; we define the L^p Fourier transformation \mathcal{F}_p , and using interpolation (specifically, the three lines theorem) we prove our version of the Hausdorff-Young theorem.

Finally, in Section 5, we define an L^{P} Fourier cotransformation $\overline{\mathcal{F}}_{p}$ taking $L^{p}(\psi_{0})$, $1 \leq p \leq 2$, into $L^{G}(G)$ and we investigate the relations between cotransformation and Fourier inversion. A detailed study of the p = 1 case gives a new characterization of $A(G)_{+}$ functions among all continuous positive definite functions on G.

1. Preliminaries and notation.

Let G be a locally compact group with left Haar measure dx. We denote by $\mathcal{K}(G)$ the set of continuous functions on G with compact support and by $L^{p}(G)$, $1 \leq p \leq \infty$, the ordinary Lebesque spaces with respect to dx. The modular function Δ on G is given by

- 4 -

$$\int f(xa^{-1}) dx = \Delta(a) \int f(x) dx$$

for all $f \in \mathcal{K}(G)$ and $a \in G$. Por functions f on G we put

$$\begin{array}{l} v \\ f(x) &= f(x^{-1}) \\ f^{*}(x) &= \Delta^{-1}(x) \overline{f(x^{-1})} \\ \end{array} , \qquad \widetilde{f}(x) &= \Delta^{-\frac{1}{2}}(x) \overline{f(x^{-1})} \\ \end{array} , \qquad (Jf)(x) &= \Delta^{-\frac{1}{2}}(x) \overline{f(x^{-1})} \\ \end{array} ,$$

for all x \in G . More generally, for each $\,p\,\in\,$ [1, ∞] , we define

$$(J_{p}f)(x) = \Delta^{-1/p}(x)\overline{f(x^{-1})}, x \in G.$$

Then in particular $J_1 f = f^*$, $J_2 f = Jf$, $J_{\infty} f = \tilde{f}$. Note that for each $p \in [1,\infty]$, the operation J_p is a conjugate linear isometric involution of $L^p(G)$.

We shall often make use of the following non-unimodular version of Young's inequalities for convolution:

Lemma 1.1. (Young's convolution inequalities.) Let $P_1, P_2, p \in [1, \infty]$ and $\frac{1}{P_1} + \frac{1}{q_1} = 1$. Assume that $\frac{1}{P_1} + \frac{1}{P_2} - \frac{1}{p} = 1$. Then for all $f_1 \in L^{p_1}(G)$ and $f_2 \in L^{p_2}(G)$ the convolution product $f_1 * \Delta$ f_2 exists and belongs to $L^{p}(G)$, and

$$\|f_{1} * \Delta^{1/q_{1}} f_{2}\|_{p} \leq \|f_{1}\|_{p_{1}} \|f_{2}\|_{p_{2}}$$

This theorem is well-known in the unimodular case as well as in the special cases $(p_1, p_2, p) = (p_1, q_1, \infty)$ (where it follows from Hölder's inequality), $(p_1, p_2, p) = (1, p, p)$ or $(p_1, p_2, p) = (p, 1, p)$ [11, (20.14)]. The general case has also been noted [13, Remark 2.2]. It can be proved by modifying the proof of [11, (20.18)] or by interpolation from the special cases mentioned above.

. - 5 -

For operators T on the Hilbert space $L^{2}(G)$ we use the notation D(T) (domain of T), R(T) (range of T), N(T) (kernel of T). If T is preclosed, we denote by [T] the closure of T. If T is a positive self-adjoint operator and P the projection onto $N(T)^{\perp}$, then by definition T^{it} , $t \in \mathbb{R}$, is the partial isometry coinciding with the unitary $(TP)^{it}$ on $N(T)^{\perp}$ and O on N(T). By convention, when speaking of operators, "bounded"

We denote by λ and ρ the left and right regular representations of G on $L^2(G)$, i.e. the unitary representations given by

$$(\lambda (x) f) (y) = f(x^{-1}y) ,$$

 $(\rho (x) f) (y) = \Delta^{\frac{1}{2}} (x) f(yx) ,$

for all x,y \in G and f \in L²(G). The corresponding representations of the algebra L¹(G) (as in [4, 13.3]) are given by

$$\lambda(h)f = h*f ,$$

$$\rho(h)f = f*\Delta^{-\frac{1}{2}N} ,$$

for all $h \in L^{1}(G)$ and $f \in L^{2}(G)$.

We denote by M the von Neumann algebra of operators on $L^2(G)$ generated by $\lambda(G)$ (or $\lambda(\mathcal{K}(G))$, or $\lambda(L^1(G))$). In other words, M is the left von Neumann algebra of $\mathcal{K}(G)$, where $\mathcal{K}(G)$ is considered as a left Hilbert algebra [3, Definition 2.1] with convolution, involution *, and the ordinary inner product in $L^2(G)$. The COmmutant M' of M is the von Neumann algebra generated by $\rho(G)$, and M' = JMJ. A function $\xi \in L^2(G)$ is called left (resp. right) bounded if left (resp. right) convolution with ξ on $\mathcal{K}(G)$ extends to a bounded operator on $L^2(G)$, i.e. if there exists a bounded operator $\lambda(\xi)$ (resp. $\lambda^*(\xi)$) such that $\forall k \in \mathcal{K}(G): \lambda(\xi)k = \xi * k$ (resp. $\lambda^*(\xi)k = k * \xi$). The set of left (resp. right) bounded $L^2(G)$ -functions is denoted \mathcal{O}_{ξ} (resp. \mathcal{O}_{χ}). Obviously, $\mathcal{K}(G) \subseteq \mathcal{O}_{\ell}$, $\mathcal{K}(G) \subseteq \mathcal{O}_{\chi}$, and for $\xi \in \mathcal{K}(G)$ we have $\lambda^*(\xi) = \rho(\Delta^{-\frac{1}{2}}\xi)$. Note that $\xi \in L^2(G)$ is left bounded if and only if the operator $\eta \mapsto \lambda^*(\eta)\xi$: $\mathcal{O}_{\chi} \to L^2(G)$ extends to a bounded off rator on $L^2(G)$; if this is the case, we have $\lambda(\xi)\eta = \lambda^*(\eta)\xi$ for all $\eta \in \mathcal{O}_{\chi}$. (Our definition of left-boundedness therefore agrees with [1, Définition 2.1]). If $\xi \in \mathcal{O}_{\xi}$ and $T \in M$, then $T\xi \in \mathcal{O}_{\ell}$ and $\lambda(T\xi) = T\lambda(\xi)$.

We denote by φ_0 the canonical weight on M [1, Définition 2.12]. Then the weight ψ_0 on M' given by $\psi_0(y) = \varphi_0(JyJ)$ for all $y \in (M')_+$ is called the canonical weight on M'. The corresponding modular automorphism groups are given by

$$\sigma_{t}^{\phi_{0}}(x) = \Delta^{it} x \Delta^{-it} , x \in M ,$$

$$\sigma_{t}^{\psi_{0}}(y) = \Delta^{-it} y \Delta^{it} , y \in M' ,$$

for all $t \in \mathbb{R}$. Here, Δ denotes the multiplication operator on $L^2(G)$ by the function Δ (note that we shall not distinguish in our notation between the function Δ and the corresponding multiplication operator). With this definition, Δ is in fact the modular operator of $\mathcal{K}(G)$ (as defined in [3, Lemma 2.2]).

- 7 -

It follows from the defining property of φ_0 [1, Théorème 2.11] that for all y \in M' we have

$$\psi_{0}(y^{*}y) = \begin{cases} \left\| \ln \right\|_{2}^{2} & \text{if } y = \lambda'(n) \text{ for some } n \in Ol_{r} \\ \\ \infty & \text{otherwise} \end{cases}$$

We identify the Hilbert space completion H_{ψ_0} of $n_{\psi_0} = \{y \in M' \mid \psi_0(y^*y) < \infty\}$ with $L^2(G)$ via $\eta \mapsto \lambda'(\eta)$.

Now recall that by definition [2, Definition 1], $D(L^2(G), \psi_0)$ is the set of $\xi \in L^2(G)$ such that $y \mapsto y\xi \colon n_{\psi_0} \to L^2(G)$ extends to a bounded operator $\mathbb{R}^{\psi_0}(\xi) \colon H_{\psi_0} \to L^2(G)$, i.e., in view of the identification of H_{ψ_0} with $L^2(G)$, such that $\eta \mapsto \lambda^*(\eta)\xi$: $Ol_r \to L^2(G)$ extends to a bounded operator on $L^2(G)$. Thus $D(L^2(G), \psi_0) = Ol_k$, and for all $\xi \in D(L^2(G), \psi_0)$ we have $\mathbb{R}^{\psi_0}(\xi) = \lambda(\xi)$.

If φ is a normal semi-finite weight on M , then by definition [2], $\frac{d\varphi}{d\psi_0}$ is the unique positive self-adjoint operator T satisfying

and

$$\mathbf{T}^{\frac{1}{2}} = [\mathbf{T}^{\frac{1}{2}}] \quad \mathbf{O}[\mathbf{T}_{1} \cap \mathbf{D}(\mathbf{T}^{\frac{1}{2}})] \quad \mathbf{O}[\mathbf{T}_{1} \cap \mathbf{D}(\mathbf{T}^{\frac{1}{2}})]$$

In particular, we have

$$\frac{d\phi_0}{d\psi_0} = \Delta$$

(cf. [2, Lemma 10 (b)] together with the proof of [2, Lemma 10 (a)]).

- 8 -

If
$$\varphi$$
 is a functional, then by the definition of $\frac{d\varphi}{d\psi_0}$ we have $O_{\ell_{\ell_1}} \subseteq D\left(\left(\frac{d\varphi}{d\psi_0}\right)^{\frac{1}{2}}\right)$ and $\left(\frac{d\varphi}{d\psi_0}\right)^{\frac{1}{2}} = \left[\left(\frac{d\varphi}{d\psi_0}\right)^{\frac{1}{2}}\right]_{O_{\ell_{\ell_1}}}$.

Finally, we note that the predual space M_* of the von Neumann algebra M may be viewed as a space of functions on the group in the following manner: for each $\phi \in M_*$, define u: $G \to \Phi$ by

$$u(x) = \varphi(\lambda(x))$$
, $x \in G$.

Then u is a continuous function on the group determining φ completely. The linear space of such functions, normed by $||u|| = ||\varphi||$, is exactly the Fourier algebra A(G) of G introduced by P. Eymard [6] (this follows from [6, Théorème (3.10)]). The identification of A(G) with M_{*} is such that

$$\langle \varphi, \lambda(f) \rangle = \int \varphi(x) f(x) dx$$

for all $\varphi \in M_* \simeq A(G)$ and all $f \in L^1(G)$.

Recall that by [4, 13.4.4] a continuous function φ on G is positive definite if and only if

$$\forall \xi \in \mathcal{K}(G) : \int \varphi(\mathbf{x}) \left(\xi \star \xi \star \right) (\mathbf{x}) d\mathbf{x} \ge 0$$

i.e., if and only if

$$\forall \xi \in \mathcal{K}(G) : \iint \varphi(yx^{-1})\xi(y)\overline{\xi(x)} \, dy \, dx \ge 0 \; .$$

If $\varphi \in A(G)$, then φ is positive definite if and only if the corresponding functional $\varphi \in M_*$ is positive. We denote by $A(G)_+$ the set of positive definite $\varphi \in A(G)$.

- 9 -

2. Homogeneous operators on $L^2(G)$ and the spaces $L^p(\phi_G)$. <u>Definition</u>. Let $a \in \mathbb{R}$. An operator T on $L^2(G)$ is called *a*-homogeneous if

$$\forall \mathbf{x} \in \mathbf{G}; \ \rho(\mathbf{x}) \mathbf{T} \subset \Delta^{-\alpha}(\mathbf{x}) \mathbf{T} \rho(\mathbf{x})$$

<u>Remarks</u>. (1) The O-homogeneous operators are precisely the operators affiliated with M .

(2) If T is α -homogeneous, then actually $\rho(x)T = \Delta^{-\alpha}(x)T\rho(x)$ for all $x \in G$ (to see this, replace x by x^{-1} in the definition).

(3) If T and S are both α -homogeneous, then T+S is α -homogeneous. If T is α -homogeneous and S is β -homogeneous, then TS is $(\alpha+\beta)$ -homogeneous. If T is densely defined and α -homogeneous, then T* is also α -homogeneous. If T is positive self-adjoint and α -homogeneous and $\beta \in \mathbb{R}_+$, then T^{β} is $(\alpha\beta)$ -homogeneous (use $\rho(x)T^{\beta}_{\rho}(x^{-1}) = (\rho(x)T_{\rho}(x^{-1}))^{\beta}$).

(4) If T is α -homogeneous for some $\alpha \in \mathbb{R}$, then the projection onto $N(T)^{\perp}$ belongs to M (since N(T) is invariant under all $\rho(x)$, $x \in G$).

(5) If a preclosed operator T is α -homogeneous, then its closure [T] is also α -homogeneous.

(6) For each $a \in \mathbb{R}$, Δ^{-a} is a-homogeneous.

Lemma 2.1. Let T be a closed densely defined operator on $L^{2}(G)$ with polar decomposition T = U(T). Let $a \in \mathbb{R}$. Then T is a-homogeneous if and only if $U \in M$ and |T| is a-homogeneous. <u>Proof</u>. If T is α -homogeneous, then, by Remark (3), $|T| = (T^*T)^{\frac{1}{2}}$ is also α -homogeneous. Then for all $x \in G$ and $\xi \in D(|T|)$ we have $\rho(x)U|T|\xi = \rho(x)T\xi = \Delta^{-\alpha}(x)T\rho(x)\xi = \Delta^{-\alpha}(x)U|T|\rho(x)\xi =$ $U\rho(x)|T|\xi$, i.e. $\rho(x)U \subseteq U\rho(x)$ on R(|T|). Since the projection onto $R(|T|) = N(|T|)^{\perp}$ belongs to M, we conclude that U commutes with all $\rho(x)$; thus $U \in M$.

The "if"-part follows directly from Remarks (3) and (1).

Lemma 2.2. Let T be a closed densely defined operator on $\ L^2\left(G\right)$, and let $\alpha\in C$. Suppose that

 $\forall x \in G: \rho(x)T \subseteq \Delta^{-\alpha}(x)T\rho(x)$.

Then

$$\forall f \in \mathcal{K}(G): \lambda'(f)T \subset T\lambda'(\Delta^{\alpha}f)$$
.

<u>Proof.</u> Let $f \in \mathcal{K}(G)$ and $\xi \in D(T)$. Then for all $\eta \in D(T^*)$ we have

$$o(f)T\xi(\eta) = \int f(x) (\rho(x)T\xi(\eta) dx$$
$$= \int f(x) \Delta^{-\alpha}(x) (T\rho(x)\xi(\eta) dx$$
$$= \int \Delta^{-\alpha}(x) f(x) (\rho(x)\xi(T^*\eta) dx$$
$$= (\rho(\Delta^{-\alpha}f)\xi(T^*\eta)) ,$$

This shows that $\rho(\Delta^{-\alpha}f)\xi \in D(T^{**}) = D(T)$ and $T_{\rho}(\Delta^{-\alpha}f)\xi = \rho(f)T\xi$ for all $\xi \in D(T)$, i.e.

$$\mathfrak{d}(f) T \subseteq T\mathfrak{d}(\Delta^{-\alpha} f)$$
.

Hence for all $f \in \mathcal{K}(G)$ we have

$$\lambda^{*}(f)T = c(\Delta^{-\frac{1}{2}}f)T \subseteq Tc(\Delta^{-\alpha}\Delta^{-\frac{1}{2}}f) = T\lambda^{*}(\Delta^{\alpha}f) .$$

Lemma 2.3. Let T be a closed densely defined operator on $L^2(G)$, α -homogeneous for some $\alpha \in \mathbb{R}$. Let $\xi \in \mathcal{O}_{\xi}$. Then for all $t \in \mathbb{R}$ we have $|T|^{it}\xi \in \mathcal{O}_{\xi}$ and

$$\|\lambda(|\mathbf{T}|^{\mathbf{1}\mathbf{t}}\boldsymbol{\xi})\| \leq \|\lambda(\boldsymbol{\xi})\|$$

<u>Proof</u>. By Lemma 2.1, we have $\rho(x)|T|\rho(x^{-1}) = \Delta^{-\alpha}(x)|T|$ for all $x \in G$, whence $\rho(x)|T|^{it}\rho(x^{-1}) = \Delta^{-i\alpha t}(x)|T|^{it}$ for all $x \in G$ and all $t \in \mathbb{R}$. Then, applying the preceding lemma to $|T|^{it}$, we obtain for all $n \in \mathcal{K}(G)$ that

$$|\mathbf{T}|^{it}\xi * \eta = \lambda'(\eta) |\mathbf{T}|^{it}\xi = |\mathbf{T}|^{it}\lambda'(\Delta^{i\alpha t}\eta)\xi = |\mathbf{T}|^{it}\lambda(\xi)\Delta^{i\alpha t}\eta$$

and thus

 $\||\mathbf{T}|^{it}\xi * \mathbf{n}\|_{2} \leq \||\mathbf{T}|^{it}\| \|\|\lambda(\xi)\| \|\|\Delta^{i\alpha t}\mathbf{n}\|_{2} \leq \|\lambda(\xi)\| \|\mathbf{n}\|_{2}.$ We conclude that $|\mathbf{T}|^{it}\xi$ is left bounded and that

$$\|\lambda(|\mathbf{T}|^{\mathsf{it}}\xi)\| \leq \|\lambda(\xi)\| \quad . \quad \blacksquare$$

<u>Remark</u>. In particular, $\Delta^{it}\xi \in \mathcal{O}_{\mathfrak{g}}$ with $\|\lambda(\Delta^{it}\xi)\| \leq \|\lambda(\xi)\|$ for all $\xi \in \mathcal{O}_{\mathfrak{g}}$ and $t \in \mathbb{R}$.

Our next lemma shows that α -homogeneity as defined here is equivalent to homogeneity of degree α with respect to ψ_{0} as defined in [2, Definition 17].

Lemma 2.4. Let $\alpha \in \mathbb{R}$, and let τ be a closed densely defined operator on $L^2(G)$ with polar decomposition T = U[T]. Then the

following conditions are equivalent:

(i) T is α-homogeneous,

(ii) U \in M and $\forall y \in$ M' $\forall t \in \mathbb{R}$: $\sigma_{at}^{\psi_0}(y) |T|^{it} = |T|^{it}y$.

<u>Proof</u>. By Lemma 2.1, we may assume that T is positive self-adjoin Denote by P the projection onto $N(T)^{\perp}$. If either (i) or (ii) holds, then P is in M, and thus the subspace P $L^{2}(G)$ is invariant under all operators considered. Therefore, we may suppose that P \in M, and the lemma is proved when we have shown the equivalence of

(1)
$$\forall x \in G: \rho(x) T \rho(x^{-1}) P = \Delta^{-\alpha}(x) T H$$

and

(2)
$$\forall t \in \mathbb{R} \forall y \in M': \sigma_{\alpha t}^{\psi_0}(y)P = T^{it}yT^{-it}P$$

Now for all $x \in G$ we have

$$\sigma_{\alpha t}^{\psi_{0}}(\rho(\mathbf{x})) = \Delta^{-i\alpha t}\rho(\mathbf{x})\Delta^{i\alpha t} = \Delta^{i\alpha t}(\mathbf{x})\rho(\mathbf{x})$$

since

$$(\Delta^{-i\alpha t}\rho(x)\Delta^{i\alpha t}f)(z)$$

 $= \Delta^{-it}(z)\Delta^{\frac{1}{2}}(x)\Delta^{it}(zx)f(zx)$ $= \Delta^{-it}(x)(p(x)f)(z)$

for all $f \in L^2(G)$ and all $x, z \in G$. Then, since M' is generated by the $\rho(x)$, the condition (2) is equivalent to

 $\forall x \in G \quad \forall t \in \mathbb{R}: \Delta^{i\alpha t}(x)_{\rho}(x)P = T^{it}_{\rho}(x)T^{-it}P$

or (changing t into -t)

which in turn is equivalent to (1).

 $\forall x \in G \quad \forall t \in \mathbb{R}: \ \rho(x)T^{it}\rho(x)P = \Delta^{-i\alpha t}(x)T^{it}P$,

Now, by [2, Theorem 13] a positive self-adjoint operator on $L^2(G)$ is (-1)-homogeneous if and only if it has the form $\frac{d\phi}{d\psi_0}$

for a (necessarily unique) normal semi-finite weight ϕ on M. We define the "integral with respect to ψ_0 " of a positive

self-adjoint (-1)-homogeneous operator T as

$$\int T d\psi_0 = \varphi(1) \in [0,\infty] ,$$

where $T = \frac{d\phi}{d\psi_0}$. If $\int T d\psi_0 < \infty$, i.e. if ϕ is a functional, we shall say that T is integrable. (These definitions agree with those given in [2, remarks following Corollary 18].)

For each $p \in [1,\infty[$, we denote by $L^p(v_0)$ the set of closed densely defined $(-\frac{1}{p})$ -homogeneous operators T on $L^2(G)$ satisfying

$$\int |\mathbf{T}|^{\mathbf{p}} d\psi_0 < \infty .$$

(Note that $|T|^p$ is (-1)-homogeneous, so that $\int |T|^p d\psi_0$ is defined.) We put $L^{\infty}(\psi_0) = M$.

The spaces $L^{p}(\psi_{0})$ introduced here are special cases of the spatial L^{p} -spaces of M. Hilsum [12]. We recall their main properties (note, however, that our notation differs from that of [12] in that we maintain throughout the distinction between operators and their closures:

If T,S $\in L^{p}(\psi_{0})$, then T+S is densely defined and preclosed, and the closure [T+S] belongs to $L^{p}(\psi_{0})$. With the obvious scalar multiplication and the sum (T,S) \mapsto [T+S], $L^{p}(\psi_{0})$ is a linear space, and even a Banach space with the norm $\|\cdot\|_{p}$ defined by $\|T\|_{p} = (\int |T|^{p} d\psi_{0})^{1/p}$ if $p \in [1,\infty[$ and $\|T\|_{p} = \|T\|$ (operator norm) if $p = \infty$. The operation $T \mapsto T^{*}$ is an isometry of $L^{p}(\psi_{0})$ onto $L^{p}(\psi_{0})$. We denote $L^{p}(\psi_{0})_{+}$ the set of positive self-adjoint operators belonging to $L^{p}(\psi_{0})$.

By linearity, $T \mapsto \int T d\psi_0$ defined on $L^1(\psi_0)_+$ extends to a linear form on the whole of $L^1(\psi_0)$ satisfying $\int T^* d\psi_0 = \overline{\int T d\psi_0}$ and $|\int T d\psi_0| \leq ||T||_1$ for all $T \in L^1(\psi_0)$.

Let $p_1, p_2, p \in [1, \infty]$ such that $\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p}$. If $T \in L^{p_1}(\psi_0)$ and $S \in L^{p_2}(\psi_0)$, then the operator TS is densely defined and preclosed, its closure [TS] belongs to $L^{p}(\psi_0)$, and

 $\|[\mathsf{TS}]\|_{\mathsf{p}} \leq \|\mathsf{T}\|_{\mathsf{p}_1} \|\mathsf{S}\|_{\mathsf{p}_2}$

In particular, if $T \in L^{p}(\psi_{0})$ and $S \in L^{q}(\psi_{0})$ where $\frac{1}{p} + \frac{1}{q} = 1$, then $[TS] \in L^{1}(\psi_{0})$ and $\|[TS]\|_{1} \leq \|T\|_{p} \|S\|_{q}$ (Hölder's inequality furthermore, $\int [TS] d\psi_{0} = \int [ST] d\psi_{0}$.

If $p \in [1,\infty[$ and $\frac{1}{p} + \frac{1}{q} = 1$, then we identify $L^{q}(\psi_{0})$ with the dual space of $L^{p}(\psi_{0})$ by means of the form $(T,S) \mapsto \int [TS] d\psi_{0}$ $T \in L^{p}(\psi_{0})$, $S \in L^{q}(\psi_{0})$. In particular, $L^{1}(\psi_{0})$ is the predual of $M = L^{\infty}(\psi_{0})$. The space $L^{2}(\psi_{0})$ is a Hilbert space with the inner product $(T|S)_{L^{2}(\psi_{0})} = \int [S^{*}T] d\psi_{0}$.

<u>Remark.</u> Suppose that G is unimodular. Then the α -homogeneous operators for any α are simply the operators affiliated with M

and the canonical weight φ_0 on M is a trace. We claim that $\int T \ d\psi_0 = \varphi_0(T)$ for all positive self-adjoint operators T affiliated with M, where we have written $\varphi_0(T)$ for the value of $\varphi = \varphi_0(T \cdot)$ at 1 (with $\varphi_0(T \cdot)$ defined as in [17, Section 4]). To see this, recall that $\frac{d\varphi_0}{d\psi_0} = \Delta = 1$, so that using [2, Theorem 9, (2)], we have

$$\mathbf{T}^{\text{it}} = (\mathbf{D}\boldsymbol{\varphi}: \mathbf{D}\boldsymbol{\varphi}_0)_{t} = \left(\frac{\mathrm{d}\boldsymbol{\varphi}}{\mathrm{d}\boldsymbol{\psi}_0}\right)^{\text{it}} \left(\frac{\mathrm{d}\boldsymbol{\varphi}_0}{\mathrm{d}\boldsymbol{\psi}_0}\right)^{-\text{it}} = \left(\frac{\mathrm{d}\boldsymbol{\varphi}}{\mathrm{d}\boldsymbol{\psi}_0}\right)^{\text{it}}$$

for all $t \in \mathbb{R}$. Thus $T = \frac{d\varphi}{d\psi_0}$ and $\int T d\psi_0 = \varphi(1) = \varphi_0(T)$. (When proving $T = \frac{d\varphi}{d\psi_0}$, we implicitly assumed that T is injective so that $\varphi = \varphi_0(T \cdot)$ is faithful. In the general case, denote by $Q \in M$ the projection onto N(T), note that T+Q is positive self-adjoint, affiliated with M, and injective, and verify that

$$T+Q = \frac{d\varphi_0((T+Q)\cdot)}{d\psi_0} = \frac{d\varphi_0(T\cdot)}{d\psi_0} + \frac{d\varphi_0(Q\cdot)}{d\psi_0} .$$

Since the supports of $\frac{d\phi_0(T^*)}{d\psi_0}$ and $\frac{d\phi_0(Q^*)}{d\psi_0}$ are 1-Q and Q,

respectively, we conclude that $T = \frac{d\phi_0(T \cdot)}{d\psi_0}$ as desired.) It follows that in this case the spaces $L^p(\psi_0)$ reduce to the ordinary $L^p(M,\phi_0)$ (discussed in the introduction).

Returning to the general case, we now proceed to a more detailed study of the spaces $L^{P}(\psi_{0})$. For this, we shall need the following slightly generalized version of [12, II, Proposition 2]:

Lemma 2.5. Let T be a positive self-adjoint operator on $L^{2}(G)$, α -homogeneous for some $\alpha \in \mathbb{R}$. Let $\xi \in \Omega_{\zeta}$. Then there exist $\xi_{n} \in \Omega_{\zeta} \cap \cap D(T^{\beta})$, $n \in \mathbb{N}$, such that $\beta \in \mathbb{R}_{+}$

 ξ and $\beta \in \mathbb{R}_{\perp}$

(i)
$$\forall n \in \mathbb{N}$$
: $\|\lambda(\xi_n)\| \leq \|\lambda(\xi)\|$,

(ii)
$$\xi_n \to \zeta$$
 as $n \to \infty$,
(iii) $T^{\beta} \xi \to T^{\beta} \xi$ as $n \to \infty$ whenever

satisfy $\xi \in D(T^{\beta})$.

<u>Proof</u>. For each $n \in \mathbb{N}$, define $f_n: [0,\infty] \to \mathbb{C}$ by

$$f_{n}(x) = \begin{cases} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}x^{it}/\sqrt{n}} dt & \text{if } x > 0\\ 1 & \text{if } x = 0 \end{cases}$$

Since for all $x \in [0,\infty[$ we have $|f_n(x)| \leq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} dt = 1$, the operators $f_n(T)$ are bounded. For each $n \in \mathbb{N}$, put $\xi_n = f_n(T)\xi$.

To prove that the ξ_n belong to α_ℓ and satisfy (i), denote by P the projection onto N(T)^{\perp} and observe that for all $\eta \in \mathcal{K}(G)$ we have

$$\begin{split} f_{n}(T) P\xi * \eta &= \lambda'(\eta) f_{n}(T) P\xi \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}} \lambda'(\eta) T^{it/\sqrt{n}} \xi dt \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}} T^{it/\sqrt{n}} \lambda'(\Delta^{i\alpha t/\sqrt{n}} \eta) \xi dt \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}} T^{it/\sqrt{n}} (\xi * \Delta^{i\alpha t/\sqrt{n}} \eta) dt , \end{split}$$

where we have used Lemma 2.2. It follows that

- 17 -

$$\|f_{n}(T)P\xi*\eta\|_{2} \leq \frac{1}{\sqrt{\pi}} \int e^{-t^{2}} \|\lambda(\xi)\| \|\Delta^{i\alpha t/\sqrt{n}}\eta\|_{2} dt \leq \|\lambda(\xi)\| \|\eta\|_{2}$$

On the other hand,

 $\| (1-P)\xi *n \|_{2} \leq \| \lambda ((1-P)\xi) \| \| \| \|_{2} \leq \| \lambda (\xi) \| \| \| \|_{2}$

since $P \in M$.

In all, $f_n(T)\xi = f_n(T)P\xi + (1-P)\xi$ belongs to Ol_{ℓ} and $\|\lambda(f_n(T)\xi)\| \le \|\lambda(\xi)\|$.

Now, to see that $\xi_n \in D(T^{\beta})$ for all $\beta \in \mathbb{R}_+$, note that

$$f_{n}(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}} e^{(it/\sqrt{n})\log x} dt$$

= $e^{-\frac{1}{4n}(\log x)^{2}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(t-\frac{i}{2\sqrt{n}}\log x)^{2}} dt$
= $e^{-\frac{1}{4n}(\log x)^{2}}$

for all x>0. Then $x \mapsto x^{\beta} f_n(x) = e^{(\beta \log x - \frac{1}{4n}(\log x)^2)}$ is bounded, so that $T^{\beta} f_n(T)$ is a bounded operator, and thus $f_n(T) \xi \in D(T^{\beta})$.

Since f_n is bounded and $f_n(x) \to 1$ as $n \to \infty$ for all $x \in [0,\infty[\ , \ we \ have$

$$f_n(T)\zeta \rightarrow \zeta$$
 as $n \rightarrow \infty$

for all ζ . From this, we immediately get (ii) and (iii). Indeed, $\xi_n = f_n(T)\xi \rightarrow \xi$, and if $\xi \in D(T^{\beta})$, then

$$\mathbf{T}^{\beta}\xi_{n} = \mathbf{T}^{\beta}f_{n}(\mathbf{T})\xi = f_{n}(\mathbf{T})\mathbf{T}^{\beta}\xi \rightarrow \mathbf{T}^{\beta}\xi .$$

<u>Proposition 2.1</u>. Let T be a closed densely defined (-1)-homogeneous operator on $L^2(G)$. Then the following conditions are equivalent:

- (i) $T \in L^{1}(\psi_{0})$,
- (ii) there exists a constant $C \ge 0$ such that $\forall \xi \in \mathcal{O}_{\mathbb{R}} \cap D(\mathbb{T}) \quad \forall \eta \in \mathcal{O}_{\mathbb{L}}: |(\mathbb{T}\xi|\eta)| \le \mathbb{C}[\lambda(\xi)|| ||\lambda(\eta)|| ,$ (iii) there exists a constant $C \ge 0$ such that $\forall \xi \in \mathcal{O}_{\mathbb{R}} \cap D(|\mathbb{T}|^{\frac{1}{2}}): |||\mathbb{T}|^{\frac{1}{2}}\xi||^{2} \le \mathbb{C}[\lambda(\xi)||^{2} ,$
 - (iv) there exists an approximate identity $(\xi_i)_{i \in I}$ in $\mathcal{K}(G)_+$ such that all $\xi_i \in D(|T|^{\frac{1}{2}})$ and $\lim \inf \|T\|^{\frac{1}{2}}\xi_i\| < \infty$.

If $T \in L^{1}(\psi_{0})$, then $\mathcal{O}_{\ell} \subseteq D(|T|^{\frac{1}{2}})$, and for any approximate identity $(\xi_{i})_{i \in I}$ in $\mathcal{K}(G)_{+}$ we have

 $\|T\|_{1} = \lim \|T\|_{2}^{\frac{1}{2}} \xi_{1}\|^{2}$.

Furthermore, $\|T\|_1$ is the smallest C satisfying (ii) and the smallest C satisfying (iii).

<u>Proof.</u> Let T = U|T| be the polar decomposition of T.

First, suppose that $T \in L^{1}(\psi_{0})$. Then $|T| \in L^{1}(\psi_{0})_{+}$, and therefore $|T| = \frac{d\varphi}{d\psi_{0}}$ for some positive functional φ on M. Recall that $\mathcal{O}_{\chi} \subseteq D(|T|^{\frac{1}{2}})$. Thus for all $\xi \in \mathcal{O}_{\chi} \cap D(T)$ and $\eta \in \mathcal{O}_{\varphi}$ we have

$$\begin{split} | (\mathbf{T}\boldsymbol{\xi} | \boldsymbol{\eta}) | &= | (|\mathbf{T}|^{\frac{1}{2}}\boldsymbol{\xi}| |\mathbf{T}|^{\frac{1}{2}}\mathbf{U}^*\boldsymbol{\eta}) | \\ &= | \boldsymbol{\varphi} (\boldsymbol{\lambda} (\boldsymbol{\xi}) \boldsymbol{\lambda} (\mathbf{U}^*\boldsymbol{\eta})) | \\ &\leq || \boldsymbol{\varphi} || || \boldsymbol{\lambda} (\boldsymbol{\xi}) || || \boldsymbol{\lambda} (\mathbf{U}^*\boldsymbol{\eta}) || \\ &\leq || \mathbf{T} ||_{1} || \boldsymbol{\lambda} (\boldsymbol{\xi}) || || || \boldsymbol{\lambda} (\boldsymbol{\eta}) || ||, \end{split}$$

i.e., (ii) holds.

Next, suppose that T satisfies (ii). Then for all $\xi \in \mathcal{O}l_0 \ \cap \ D(|\mathsf{T}|) \ \text{ we have }$

11

$$|\mathbf{T}|^{\frac{1}{2}} \boldsymbol{\xi} \|^{2} = |(\mathbf{T}\boldsymbol{\xi}|\boldsymbol{U}\boldsymbol{\xi})|$$

$$\leq C |\boldsymbol{\lambda}(\boldsymbol{\xi})|| \quad ||\boldsymbol{\lambda}(\boldsymbol{U}\boldsymbol{\xi})|$$

$$\leq C ||\boldsymbol{\lambda}(\boldsymbol{\xi})||^{2} .$$

Now if $\xi \in \mathcal{Ol}_{\ell} \cap D(|T|^{\frac{1}{2}})$, there exist (by Lemma 2.5) $\xi_{n} \in \mathcal{Ol}_{\ell} \cap D(|T|)$ such that $|T|^{\frac{1}{2}}\xi_{n} \rightarrow |T|^{\frac{1}{2}}\xi$ and $||\lambda(\xi_{n})|| \leq ||\lambda(\xi)||$. Since

$$\| \| \mathbf{T} \|^{\frac{1}{2}} \xi_{\mathbf{n}} \|^{2} \leq C \| \lambda(\xi_{\mathbf{n}}) \|^{2} \leq C \| \lambda(\xi) \|^{2}$$

we conclude that $\|\|\mathbf{T}\|^{\frac{1}{2}} \xi \|^{2} \leq C \|\lambda(\xi)\|^{2}$. Thus (iii) is proved.

Now suppose that T satisfies (iii). First we show that this implies $\mathcal{O}_{\ell} \subseteq D(|T|^{\frac{1}{2}})$. Let $\xi \in \mathcal{O}_{\ell}$. Then by Lemma 2.5 there exist $\xi_n \in \mathcal{O}_{\ell} \cap D(|T|^{\frac{1}{2}})$ such that $\xi_n \to \xi$ and $||\lambda(\xi_n)|| \leq ||\lambda(\xi)||$. Then for all $\eta \in D(|T|^{\frac{1}{2}})$ we have

$$\begin{split} |(|T|^{\frac{1}{2}}\xi_{n}|\eta\rangle| &\leq \| |T|^{\frac{1}{2}}\xi_{n}\| \|\eta\| \\ &\leq C^{\frac{1}{2}}\|\lambda(\xi_{n})\| \|\eta\| \\ &\leq C^{\frac{1}{2}}\|\lambda(\xi)\| \|\eta\| \end{split}$$

and

$$(|\mathbf{T}|^{\frac{1}{2}}\xi_{n}|\eta) = (\xi_{n} | |\mathbf{T}|^{\frac{1}{2}}\eta) \rightarrow (\xi | |\mathbf{T}|^{\frac{1}{2}}\eta)$$

We conclude that

 $\forall \eta \in D(|T|^{\frac{1}{2}}): |(\xi | |T|^{\frac{1}{2}}\eta)| \leq C^{\frac{1}{2}} ||\lambda(\xi)|| ||\eta||$ $\leq C^{\frac{1}{2}} ||\lambda(\xi)|| ||\eta||$

I

Now, still assuming (iii), let us prove (iv). Let $(\xi_i)_{i \in I}$ be any approximate identity in $\mathcal{K}(G)_+$. Then automatically all $\xi_i \in \mathcal{K}(G) \subseteq \mathcal{A}_{\ell} \subseteq D(|T|^{\frac{1}{2}})$, and $\|\lambda(\xi_i)\| \leq \|\xi_i\|_1 = 1$ so that

$$\|\|\mathbf{T}\|^{\frac{1}{2}} \boldsymbol{\xi}_{\mathbf{i}} \|^{2} \leq C \|\boldsymbol{\lambda}(\boldsymbol{\xi}_{\mathbf{i}})\|^{2} \leq C$$

whence $\lim \inf \||T|^{\frac{1}{2}} \xi_{1}\| \leq C^{\frac{1}{2}} < \infty$.

Finally, suppose that T satisfies (iv) for some $(\xi_i)_{i\in I}$. Note that since $\int (\xi_i * \xi_i *) (x) dx = 1$, $(\xi_i * \xi_i *)_{i\in I}$ is again an approximate identity in $\mathcal{K}(G)_+$. Therefore, $\lambda(\xi_i)\lambda(\xi_i) * = \lambda(\xi_i * \xi_i *)$ converges strongly, and hence weakly, to 1 in M. Since all $\|\lambda(\xi_i)\lambda(\xi_i) *\| \leq 1$, this convergence is also σ -weak, and by the σ -weak lower semicontinuity of φ , this implies

$$\begin{split} \varphi(1) &\leq \lim \inf \varphi(\lambda(\xi_{i})\lambda(\xi_{i})*) \\ &= \lim \inf \||T|^{\frac{1}{2}} \xi_{i}\|^{2} \\ &\leq C \lim \inf \|\lambda(\xi_{i})\|^{2} \\ &\leq C < \infty \quad . \end{split}$$

Since $\varphi(1) = \int |T| d\psi_0 < \infty$, we have $T \in L^1(\psi_0)$, i.e. (i) holds

Note that once $\varphi(1) < \infty$ is established, φ is known to be σ -weakly lower continuous and thus

$$\varphi(1) = \lim \varphi(\lambda(\xi_i)\lambda(\xi_i)^*) = \lim ||T|^{\frac{1}{2}}\xi_i||^2$$

for any approximate identity $(\xi_i)_{i \in I}$, i.e.

$$\|T\|_{1} = \lim \|T\|^{\frac{1}{2}} \xi_{i}\|^{2}$$

In the course of the proof we observed that $\|T\|_1$ may be used as

the constant C in (ii), that every constant C satisfying (ii) also satisfies (iii), and that any C satisfying (iii) is bigger than $\lim \|T\|_{\frac{1}{2}}^{\frac{1}{2}} \xi_{i}\|^{2}$, i.e. bigger than $\|T\|_{1}$. This proves the remarks that end Proposition 2.1.

- 22 -

As an immediate corollary, we have:

<u>Proposition 2.2</u>. Let T be a closed densely defined $(-\frac{1}{2})$ -homogeneous operator on $L^2(G)$. Then the following conditions are equivalent:

- (i) $T \in L^2(\psi_0)$,
- (ii) there exists a constant $C \ge 0$ such that

 $\forall \xi \in Ol_0 \cap D(T): \|T\xi\| \leq C\|\lambda(\xi)\|$,

(iii) there exists an approximate identity $(\xi_i)_{i\in I}$ in $\mathcal{K}(G)_+$ such that all $\xi_i \in D(T)$ and

 $\lim \inf \|T\xi_i\| < \infty .$

If $T \in L^{2}(\psi_{0})$, then $Ol_{\ell} \subseteq D(T)$, and for any approximate identity $(\xi_{i})_{i \in I}$ in $\mathcal{K}(G)_{+}$ we have

 $\|T\|_{2} = \lim \|T\xi_{i}\|;$

furthermore, $\|T\|_2$ is the smallest constant C satisfying (ii).

We now come to the case of a general $p \in [1,\infty[$. Suppose that $T \in L^{p}(\psi_{0})$ and $S \in L^{q}(\psi_{0})$, where $\frac{1}{p} + \frac{1}{q} = 1$. Then by [12, II, Proposition 5,1)], we have

$$(T\xi)Sn$$
 = $\langle [S*T], \lambda(\xi)\lambda(n)* \rangle$

for all $\xi \in \mathcal{O}_{\ell} \cap D(T)$ and $\eta \in \mathcal{O}_{\ell} \cap D(S)$. (Here, <-,-> denotes the form giving the duality of $L^{1}(\psi_{0})$ and M.) Using Hölder's inequality, we get

$$\begin{split} \| (\mathrm{T}\xi|\mathrm{S}\eta) \| &\leq \| [\mathrm{S}^{*}\mathrm{T}]\|_{1} \| \| \lambda(\xi)\lambda(\eta)^{*} \| &\leq \| \mathrm{T}\|_{p} \| \| \mathrm{S}\|_{q} \| \| \lambda(\xi) \| \| \| \lambda(\eta) \| \\ \text{for all such } \xi \text{ and } \eta \text{ . This kind of inequality in fact characterizes } \mathrm{L}^{p}(\psi_{0}) \text{-operators among all } (-\frac{1}{p}) \text{-homogeneous operators:} \end{split}$$

<u>Proposition 2.3</u>. Let $p \in [1,\infty]$ and define q by $\frac{1}{p} + \frac{1}{q} = 1$. Let T be a closed densely defined $(-\frac{1}{p})$ -homogeneous operator on $L^2(G)$. Then the following conditions are equivalent:

(i) $T \in L^{p}(\psi_{0})$,

(ii) there exists a constant $C \ge 0$ such that $\forall S \in L^{q}(\psi_{0}) \quad \forall \xi \in Ol_{\ell} \cap D(T) \quad \forall \eta \in Ol_{\ell} \cap D(S):$ $|(T\xi|S\eta)| \le C||S||_{q} ||\lambda(\xi)|| ||\lambda(\eta)||$.

If $T \in L^{p}(\psi_{0})$, then $\|T\|_{p}$ is the smallest C satisfying (ii). <u>Proof</u>. In view of the remarks preceding this proposition, we just have to show that if T satisfies (ii) for some constant C, then $T \in L^{p}(\psi_{0})$ and $\|T\|_{p} \leq C$.

Therefore suppose that T with polar decomposition T = U|T| satisfies (ii). Then also

 $|(|T|\xi|S_{\eta})| = |(T\xi|U*S_{\eta})|$

 $\leq C \| [U^*S] \|_{q} \| \| \lambda (\xi) \| \| \| \lambda (\eta) \|$ $\leq C \| S \|_{q} \| \| \lambda (\xi) \| \| \| \lambda (\eta) \|$

for all S , ξ , and η chosen as in (ii). Thus we may assume that T is positive self-adjoint.

- 23 -

Let $S \in L^{q}(\psi_{0})$ and $\eta \in Ol_{\ell} \cap D(T^{\frac{1}{2}}S)$. We claim that for all $\xi \in Ol_{\ell} \cap D(T^{\frac{1}{2}})$ we have

(1)
$$|(\mathbf{T}^{\mathbf{\dot{5}}}\boldsymbol{\xi}|\mathbf{T}^{\mathbf{\dot{5}}}\boldsymbol{S}\boldsymbol{\eta})| \leq C \|\boldsymbol{S}\|_{\alpha} \|\lambda(\boldsymbol{\xi})\| \|\lambda(\boldsymbol{\eta})\|$$

If $\xi \in \Omega_{\ell} \cap D(T)$, this follows directly from the hypothesis. In case of a general $\xi \in \Omega_{\ell} \cap D(T^{\frac{1}{2}})$, choose (by Lemma 2.5) $\xi_n \in \Omega_{\ell} \cap D(T)$ such that $T^{\frac{1}{2}}\xi_n \to T^{\frac{1}{2}}\xi$ and $\|\lambda(\xi_n)\| \leq \|\lambda(\xi)\|$. Then (1) follows by passing to the limit.

Now since T is $(-\frac{1}{p})$ -homogeneous, there exist $T_i \in L^p(\psi_0)_+$ satisfying $T_i^p \leq T^p$ and $\int T^p d\psi_0 = \sup \int T_i^p d\psi_0$. (To see this, recall that $T^p = \frac{d\varphi}{d\psi_0}$ for some normal semi-finite weight φ on M; put $T_i = \left(\frac{d\varphi_i}{d\psi_0}\right)^{1/p}$ where the φ_i are positive normal functionals such that $\varphi_i \nearrow \varphi$; then $\frac{d\varphi_i}{d\psi_0} \leq \frac{d\varphi}{d\psi_0}$ by [2, Proposition 8], and $\int T^p d\psi_0 = \varphi(1) = \sup \varphi_i(1) = \sup \int T_i^p d\psi_0$.)

Since the function $t \mapsto t^{1/p}$ is operator monotone on $[0,\infty[$ (by [16, Proposition 1.3.8]), we have $T_{i} \leq T$, i.e. $D(T_{i}^{\frac{1}{2}}) \supseteq D(T^{\frac{1}{2}})$ and

$$\forall \xi \in D(T^{\frac{1}{2}}): \|T_{1}^{\frac{1}{2}}\xi\| \leq \|T^{\frac{1}{2}}\xi\|$$

for each $i \in I$ (cf. also the remark following this proof).

For each i, let B_i be the bounded operator characterized by $B_i T^{\frac{1}{2}} \xi = T_i^{\frac{1}{2}} \xi$ for all $\xi \in D(T^{\frac{1}{2}})$ and $B_i \xi = 0$ for all $\xi \in R(T^{\frac{1}{2}})^{\perp}$. Then $\|B_i\| \leq 1$. Since $B_i T^{\frac{1}{2}} \subseteq T_i^{\frac{1}{2}}$, and since $T^{\frac{1}{2}}$ and $T_i^{\frac{1}{2}}$ are $(-\frac{1}{p})$ -homogeneous, B_i is 0-homogeneous, i.e. $B_i \in M$. Put $A_i - B_i^*$. Then $A_i \in M$, $\|A_i\| \leq 1$, and

$$T_i^{\frac{1}{2}} \subseteq T^{\frac{1}{2}}A_i$$

Using this, the fact that

$$\mathtt{T_i}^{p-1} = \mathtt{T_i}^{p/q} \in \mathtt{L}^q(\mathtt{\psi}_0) \quad \text{with} \quad \|\mathtt{T_i}^{p-1}\|_q = \|\mathtt{T_i}\|_p^{p-1} \;,$$

and (1), we find that for all $\xi \in Ol_{\hat{k}} \cap \cap D(T_i^{\beta})$, we have $\beta \in \mathbb{R}_+$

$$\|\mathbf{T}_{i}^{p/2}\xi\|^{2} = (\mathbf{T}_{i}^{\frac{1}{2}}\xi|\mathbf{T}_{i}^{\frac{1}{2}}\mathbf{T}_{i}^{p-1}\xi)$$

$$= (\mathbf{T}^{\frac{1}{2}}A_{i}\xi|\mathbf{T}^{\frac{1}{2}}A_{i}\mathbf{T}_{i}^{p-1}\xi)$$

$$\leq C\|[A_{i}\mathbf{T}_{i}^{p-1}]\|_{q} \|\lambda(A_{i}\xi)\| \|\lambda(\xi)\|$$

$$\leq C\|A_{i}\| \|\mathbf{T}_{i}^{p-1}\|_{q} \|A_{i}\| \|\lambda(\xi)\|^{2}$$

$$= C\|\mathbf{T}_{i}\|_{p}^{p-1} \|\lambda(\xi)\|^{2}.$$

By means of Lemma 2.5, we conclude that the estimate

$$\|\mathbf{T}_{i}^{p/2}\|^{2} \leq C \|\mathbf{T}_{i}\|_{p}^{p-1} \|\lambda(\xi)\|^{2}$$

holds for all $\xi \in Ol_{\xi} \cap D(T_i^{p/2})$. Thus by Proposition 2.1,

$$\|\mathbf{T}_{\mathbf{i}}\|_{\mathbf{p}}^{\mathbf{p}} = \|\mathbf{T}_{\mathbf{i}}^{\mathbf{p}}\|_{1} \leq C\|\mathbf{T}_{\mathbf{i}}\|_{\mathbf{p}}^{\mathbf{p}-1}$$

i.e.

 $\|T_{i}\|_{p} \leq C$.

Since this holds for all i , we have

$$\int T^{P} d\psi_{0} = \sup \int T_{i}^{P} d\psi_{0} \leq C^{P} < \infty ;$$

thus $T \in L^{p}(\psi_{0})$ and $||T_{i}||_{p} \leq C$. <u>Remark</u>. We have used the fact that if a continuous function f on $[0,\infty[$ is operator monotone in the sense that $R \leq S$ implies $f(R) \leq f(S)$ for all positive bounded operators R and S, then the same is true for all - possibly unbounded - positive self-adjoint R and S. To see this, suppose that $R \leq S$. Then for all $\varepsilon \in \mathbb{R}_+$, we have $R(1+\varepsilon R)^{-1} \leq S(1+\varepsilon S)^{-1}$ by [17, Section 4], and hence $f(R(1+\varepsilon R)^{-1}) \leq f(S(1+\varepsilon S)^{-1})$. Now if $\xi \in D(f(S)^{\frac{1}{2}})$, we have by spectral theory

$$(f(R(1+\varepsilon R)^{-1})\xi|\xi) \leq (f(S(1+\varepsilon S)^{-1})\xi|\xi)$$

$$\rightarrow ||f(S)^{\frac{1}{2}}\xi||^{2} \text{ as } \varepsilon \rightarrow 0 .$$

Again by spectral theory, we conclude that $\xi \in D(f(R)^{\frac{1}{2}})$ and that

$$\|f(R)^{\frac{1}{2}}\xi\|^{2} = \lim_{\epsilon \to 0} (f(R(1+\epsilon R)^{-1})\xi|\xi) \leq \|f(S)^{\frac{1}{2}}\xi\|^{2}.$$

In all, we have proved that $f(R) \leq f(S)$.

Recall from [12, §1, Théorème 4, 1)], that if T_1 and T_2 belong to some $L^p(\psi_0)$, $1 \le p < \infty$, and if $T_2 \subseteq T_1$, then $T_1 = T_2$. Actually, a stronger result holds:

Lemma 2.6. Let $p \in [1,\infty]$. Let $T_1 \in L^p(\psi_0)$ and let T_2 be a closed densely defined $(-\frac{1}{p})$ -homogeneous operator on $L^2(G)$. Suppose that

$$T_2 \subseteq T_1$$
 or $T_1 \subseteq T_2$.

Then $T_1 = T_2$.

<u>Proof.</u> 1) First suppose that $T_2 \subseteq T_1$. If $p = \infty$, the result is well-known (a closed densely defined operator having a bounded and everywhere defined extension is equal to that extension). If $p \in [1,\infty[$, we conclude by Proposition 2.3 that also $T_2 \in L^p(\psi$ and thus by [12, §1, Théorème 4, 1)], $T_1 = T_2$. (Alternatively, this can be proved directly, i.e. without using Proposition 2.3, by the methods of the proof of [12, §1, Théorème 4, 1)].)

If $T_1 \subseteq T_2$, apply the first part of the proof to $T_2^* \subseteq T_1^*$.

A specific form of this lemma will be crucial to much of the following:

Proposition 2.4. Let $p \in [1,\infty]$.

1) Let T and S be closed densely defined $(-\frac{1}{p})$ -homogeneou operators on $L^{2}(G)$ with $\mathcal{K}(G) \subseteq D(T)$ and $\mathcal{K}(G) \subseteq D(S)$ Suppose that

$$\forall \xi \in \mathcal{K}(G): T\xi = S\xi .$$

Then if one of the operators, say T , belongs to $L^p(\psi_0)$, we may conclude that T = S .

2) If $T \in L^{p}(\psi_{0})$ and $\mathcal{K}(G) \subseteq D(T)$, then $T = [T]_{\mathcal{K}(G)}$

<u>Proof</u> (of both parts). Suppose that $T \in L^{P}(\psi_{0})$. Then $T \mid \chi(G)$ being a restriction of a $(-\frac{1}{p})$ -homogeneous operator to a right invariant subspace, is itself $(-\frac{1}{p})$ -homogeneous. Therefore also $[T \mid \chi(G)]$ is $(-\frac{1}{p})$ -homogeneous. Since $[T \mid \chi(G)] \subseteq T$, we conclude by the above lemma that $T = [T \mid \chi(G)]$. This proves 2). - As for 1), note that $S \supseteq S \mid \chi(G) = T \mid \chi(G)$, and thus $S \supseteq [T \mid \chi(G)] = T$. Again we conclude S = T. Finally, for later reference, we summarize in a lemma some remarks of Hilsum [12]:

Lemma 2.7. Let $q \in [2,\infty[$. Let $T \in L^q(\psi_0)$. Then $\mathcal{O}_{L_{\hat{L}}} \subseteq D(T)$, and for all $\xi \in \mathcal{O}_{\hat{L}}$ we have

$$\||\mathsf{T}\xi\|| \leq \|\mathsf{T}\|_{q} \|\lambda(\xi)\|^{2/q} \|\xi\|^{1-2/q}$$

<u>Proof</u>. Since $|T|^{q/2} \in L^q(\psi_0)$, we have $\mathcal{Ol}_{\mathfrak{L}} \subseteq D(|T|^{q/2})$. Now let $\xi \in \mathcal{Ol}_{\mathfrak{g}}$. Then by spectral theory $\xi \in D(|T|)$ and

$$\| \| \mathbf{T} \| \xi \|^{2} \leq (\| \| \mathbf{T} \|^{q/2} \xi \|^{2})^{2/q} \cdot (\| \xi \|^{2})^{1-2/q}$$

$$\leq (\| \| \| \mathbf{T} \|^{q} \|_{1} \| \|_{\lambda}(\xi) \|^{2})^{2/q} \cdot \| \xi \|^{2(1-2/q)}$$

$$= (\| \mathbf{T} \|_{q} \| \|_{\lambda}(\xi) \|^{2/q} \| \xi \|^{1-2/q})^{2} \cdot \blacksquare$$

3. The Plancherel transformation.

Given any functions $f \in L^2(G)$ and $\xi \in L^2(G)$, the convolution product $f * \Delta^{\frac{1}{2}} \xi$ exists and belongs to $L^{\infty}(G)$. Thus the following definition makes sense:

<u>Definition</u>. Let $f \in L^2(G)$. The Plancherel transform $\mathcal{P}(f)$ of f is the operator on $L^2(G)$ given by

$$\mathcal{P}(\mathbf{f}) \xi = \mathbf{f} * \Delta^{\frac{1}{2}} \xi$$
, $\xi \in D(\mathcal{P}(\mathbf{f}))$,

where

$$\mathbb{D}(\mathcal{P}(f)) = \{\xi \in L^2(G) \mid f * \Delta^{\frac{1}{2}} \xi \in L^2(G)\}.$$

Theorem 3.1. (Plancherel).

1) Let $f \in L^2(G)$. Then $\mathcal{P}(f)$ belongs to $L^2(\psi_0)$, and

$$\|\mathcal{P}(\mathbf{f})\|_{2} = \|\mathbf{f}\|_{2}$$

2) The Plancherel transformation $\mathcal{P}: L^2(G) \rightarrow L^2(\psi_0)$ is a unitary transformation of $L^2(G)$ onto $L^2(\psi_0)$.

<u>Proof</u>. 1) First note that $\mathcal{P}(f)$ is $(-\frac{1}{2})$ -homogeneous: for all x,y \in G and $\xi \in D(\mathcal{P}(f))$, we have

$$\begin{split} \rho(\mathbf{x}) \left(\mathcal{P}(\mathbf{f}) \xi \right) (\mathbf{y}) &= \Delta^{\frac{1}{2}}(\mathbf{x}) \left(\mathbf{f} * \Delta^{\frac{1}{2}} \xi \right) (\mathbf{y} \mathbf{x}) \\ &= \Delta^{\frac{1}{2}}(\mathbf{x}) \int \mathbf{f}(\mathbf{z}) \Delta^{\frac{1}{2}} (\mathbf{z}^{-1} \mathbf{y} \mathbf{x}) \xi (\mathbf{z}^{-1} \mathbf{y} \mathbf{x}) d\mathbf{z} \\ &= \Delta^{\frac{1}{2}}(\mathbf{x}) \int \mathbf{f}(\mathbf{z}) \Delta^{\frac{1}{2}} (\mathbf{z}^{-1} \mathbf{y}) (\rho(\mathbf{x}) \xi) (\mathbf{z}^{-1} \mathbf{y}) d\mathbf{z} \\ &= \Delta^{\frac{1}{2}}(\mathbf{x}) \left(\mathbf{f} * \Delta^{\frac{1}{2}} \rho(\mathbf{x}) \xi \right) (\mathbf{y}) \quad, \end{split}$$

i.e. $\rho(\mathbf{x}) \mathcal{P}(\mathbf{f}) \subseteq \Delta^{\frac{1}{2}}(\mathbf{x}) \mathcal{P}(\mathbf{f})\rho(\mathbf{x})$.

We next show that $\mathcal{P}(f)$ is closed. Suppose that $\xi_n \to \xi$ in $L^2(G)$ and $\mathcal{P}(f)\xi_n \to \eta$ in $L^2(G)$, where all the $\xi_n \in D(\mathcal{P}(f))$ Then $f*\Delta^{\frac{1}{2}}\xi_n \to f*\Delta^{\frac{1}{2}}\xi$ uniformly (by a simple case of Lemma 1.1). Since $f*\Delta^{\frac{1}{2}}\xi_n \to \eta$ in $L^2(G)$, we conclude that $\eta = f*\Delta^{\frac{1}{2}}\xi$. Thus $\xi \in D(\mathcal{P}(f))$ and $\mathcal{P}(f)\xi = \eta$, so that $\mathcal{P}(f)$ is closed.

Obviously, $\mathcal{K}(G) \subseteq D(\mathcal{P}(f))$. In all, we have shown that $\mathcal{P}(f)$ is closed, densely defined, and $(-\frac{1}{2})$ -homogeneous, so that we are now in a position to apply Proposition 2.2.

Let $(\xi_i)_{i\in I}$ be an approximate identity in $\mathcal{K}(G)_+$. Then

 $\mathcal{P}(\mathbf{f})\xi_{\mathbf{i}} = \mathbf{f} \ast \Delta^{\frac{1}{2}}\xi_{\mathbf{i}} \rightarrow \mathbf{f} \quad \text{in} \quad \mathbf{L}^{2}(\mathbf{G}) .$

Thus $\|\mathcal{P}(f)\xi_{i}\| \to \|f\|_{2}$. By Proposition 2.2 we conclude that $\mathcal{P}(f) \in L^{2}(\psi_{0})$ and that

$$\|\mathcal{P}(f)\|_{2} = \|f\|_{2}$$

2) The map \mathcal{P} is linear: if $f_1, f_2 \in L^2(G)$, then $[\mathcal{P}(f_1) + \mathcal{P}(f_2)]$ and $\mathcal{P}(f_1 + f_2)$ obviously agree on $\mathcal{K}(G)$, and therefore by Proposition 2.4, we have

$$\mathcal{P}(\mathbf{f}_1 + \mathbf{f}_2) = [\mathcal{P}(\mathbf{f}_1) + \mathcal{P}(\mathbf{f}_2)] .$$

Now, to prove that \mathcal{P} is surjective, let $T \in L^2(\psi_0)$. We shall show that there exists a function $f \in L^2(G)$ such that $T = \mathcal{P}(f)$. Let $(\xi_i)_{i \in I}$ be an approximate identity in $\mathcal{K}(G)_+$. Then for all $n, \zeta \in \mathcal{K}(G)$ we have

$$(\eta * \Delta^{-\frac{1}{2}} \widetilde{\zeta} | T\xi_{i}) = (\eta | (T\xi_{i}) * \Delta^{\frac{1}{2}} \zeta)$$
$$= (\eta | T(\xi_{i} * \zeta))$$
$$= (T*\eta | \xi_{i} * \zeta)$$

 $\rightarrow (\mathbf{T}^* \eta | \zeta) = (\eta | \mathbf{T} \zeta)$

(where we have used the $(-\frac{1}{2})$ -homogeneity of T and the fact that $\mathcal{K}(G) \subseteq D(T^*)$ since $T^* \in L^2(\psi_0)$). Thus we can define a linear functional F on the dense subspace $\mathcal{K}(G) * \mathcal{K}(G)$ of $L^2(G)$ by

$$F(\xi) = \lim_{i} (\xi | T\xi_i) .$$

Since

 $\| \{\xi \| \mathbf{T}\xi_i \} \| \leq \| \xi \|_2 \| \| \mathbf{T}\xi_i \|_2 \leq \| \xi \|_2 \| \| \mathbf{T}\|_2 \|_{\lambda} \langle \xi_i \rangle \| \leq \| \mathbf{T}\|_2 \| \| \xi \|_2 ,$

this functional is bounded and therefore is given by some f f $L^2(G)$:

$$\forall \xi \in \mathcal{K}(G) * \mathcal{K}(G) : F(\xi) = (\xi | f) .$$

In particular, we have

$$(\eta | T\zeta) = F(\eta * \Delta^{-\frac{1}{2}} \widetilde{\zeta}) = (\eta * \Delta^{-\frac{1}{2}} \widetilde{\zeta} | f)$$

for all $\eta, \zeta \in \mathcal{K}(G)$. Since

$$(\eta * \Delta^{-\frac{1}{2}} \widetilde{\zeta} | f) = (\eta | f * \Delta^{\frac{1}{2}} \zeta) = (\eta | \mathcal{P}(f) \zeta)$$

this implies

$$\forall \zeta \in \mathcal{K}(G): T\zeta = \mathcal{P}(f)\zeta$$
,

and we conclude by Proposition 2.4 that T = $\mathcal{P}(f)$.

Proposition 3.1. 1) For all $T \in M$ and all $f \in L^2(G)$, we have

$$\mathcal{P}(\mathbf{T}\mathbf{f}) = [\mathbf{T}\mathcal{P}(\mathbf{f})]$$

2) For all $f \in L^2(G)$, we have

$$\mathcal{P}(Jf) = \mathcal{P}(f)^*$$

<u>Proof</u>. 1) Let $f \in L^2(G)$ and $T \in M$. Then $[T \mathcal{P}(f)]$ and $\mathcal{P}(Tf)$ both belong to $L^2(\psi_0)$, and for all $\xi \in \mathcal{K}(G)$ we have

$$\mathcal{P}(\mathrm{Tf})\xi = (\mathrm{Tf}) * \Delta^{\frac{1}{2}}\xi = \mathrm{T}(\mathrm{f} * \Delta^{\frac{1}{2}}\xi) = [\mathrm{T}\mathcal{P}(\mathrm{f})]\xi$$
,

since T commutes with right convolution. By Proposition 2.4 we conclude that $\mathcal{P}(\mathrm{Tf}) = [\mathrm{T}\mathcal{P}(\mathrm{f})]$.

2) Let $f \in L^{2}(G)$. Then for all $\xi, \eta \in \mathcal{K}(G)$ we have

$$\mathcal{P}(\mathbf{J}\mathbf{f})\boldsymbol{\xi}|\boldsymbol{\eta}) = (\mathbf{J}\mathbf{f}*\Delta^{3}\boldsymbol{\xi}|\boldsymbol{\eta})$$

$$= (\mathbf{J}\mathbf{f}|\boldsymbol{\eta}*\Delta^{-\frac{1}{2}}\boldsymbol{\widetilde{\xi}})$$

$$= (\mathbf{J}(\boldsymbol{\eta}*\Delta^{-\frac{1}{2}}\boldsymbol{\widetilde{\xi}})|\mathbf{f})$$

$$= (\boldsymbol{\xi}*\Delta^{-\frac{1}{2}}\boldsymbol{\widetilde{\eta}}|\mathbf{f})$$

$$= (\boldsymbol{\xi}|\mathbf{f}*\Delta^{\frac{1}{2}}\boldsymbol{\eta}) = (\boldsymbol{\xi}|\boldsymbol{\mathcal{P}}(\mathbf{f})\boldsymbol{\eta}) ,$$

so that $\mathcal{P}(Jf)|_{\mathcal{K}(G)} \subseteq (\mathcal{P}(f)|_{\mathcal{K}(G)})^* = [\mathcal{P}(f)|_{\mathcal{K}(G)}]^* = \mathcal{P}(f)^*$ (since $\mathcal{P}(f) = [\mathcal{P}(f)|_{\mathcal{K}(G)}]$). We conclude by Proposition 2.4 that $\mathcal{P}(Jf) = \mathcal{P}(f)^*$.

Proposition 3.2. Let $f \in L^2(G)$. Then $\mathcal{P}(f) \geq 0$ if and only if

 $\int f(\mathbf{x}) \left(\xi * J\xi\right) (\mathbf{x}) d\mathbf{x} \ge 0$

for all $\xi \in \mathcal{K}(G)$.

Proof. For all $\xi \in \mathcal{K}(G)$ we have

 $\left[f(x) \left(\xi * J \xi \right) (x) dx = \left(f | \overline{\xi} * \Delta^{-\frac{1}{2}} \overset{\vee}{\xi} \right) = \left(f * \overline{\xi} | \overline{\xi} \right) = \left(\mathcal{P}(f) \overline{\xi} | \overline{\xi} \right) \ .$

Since $\mathcal{P}(f) = \left[\mathcal{P}(f) \middle|_{\mathcal{K}(G)} \right]$, we have $\mathcal{P}(f) \ge 0$ if and only if $(\mathcal{P}(f) \mid n \mid n) \ge 0$ for all $n \in \mathcal{K}(G)$, and the result follows.

By [10, Theorem 1.21, (3)] (or, to be precise, its spatial analogue obtained by the methods of [12, §1] connecting abstract [10] and spatial [12] L^{p} spaces), $L^{2}(\psi_{0})_{+}$ is a selfdual cone in $L^{2}(\psi_{0})$. By Proposition 3.2 and the unitarity of \mathcal{F} we conclude that

 $P_{0} = \{ f \in L^{2}(G) \mid \forall \xi \in \mathcal{K}(G) : \int f(x)^{2}(\xi * J\xi)(x) \ge 0 \}$

is a selfdual cone in $L^2(G)$. Denote by P the ordinary selfdual cone in $L^2(G)$ associated with the achieved left Hilbert algebra $(\mathcal{N}_{\ell} \cap \mathcal{N}_{\ell}^*)$, i.e. let P be the closure in $L^2(G)$ of the set $\{\lambda(\xi)(J\xi) \mid \xi \in \mathcal{O}_{\ell} \cap \mathcal{O}_{\ell}^*\}$ (see [8, Section 1]). Since P is selfdual, we have

$$P = \{ f \in L^{2}(G) \mid \forall \xi \in \mathcal{Q}_{\ell} \cap \mathcal{Q}_{\ell}^{*} : (f \mid \lambda(\xi)(J\xi)) \geq 0 \} .$$

Thus $P \subseteq P_0$. Since P and P_0 are both selfdual, this implies that $P = P_0$. We have proved

<u>Corollary</u>. A function $f \in L^2(G)$ belongs to the positive selfdual cone of $L^2(G)$ if and only if

$$\forall \xi \in \mathcal{K}(G): f(x)(\xi * J\xi)(x) dx \geq 0.$$

<u>Remark</u>. This result is similar to the characterization of the cone P^b given in [18, p. 392] and proved in general in [9, Corollary 8]. The methods of [9] would also apply for our result. Our proof is based on the fact that $\mathcal{P}(f) = [\mathcal{P}(f) \mid \mathcal{V}(G)]$.

Note. We have proved that $\mathcal{P}: L^2(G) \to L^2(\psi_0)$ carries the left regular representation on $L^2(G)$ into left multiplication on $L^2(\psi_0)$, takes J into *, and maps the positive selfdual con of $L^2(G)$ onto $L^2(\psi_0)_+$. That a unitary transformation $L^2(G) \to L^2(\psi_0)$ having these properties exists (and is unique) a. follows from [8, Theorem 2.3], since both representations of M are standard (by the spatial analogue of [10, Theorem 1.21, (3)] In our approach, we have given a simple and direct definition of We can give an explicit description of the inverse of $\,\mathcal{P}\,$:

<u>Proposition 3.3</u>. Let $T \in L^2(\psi_0)$, and let $(\xi_i)_{i \in I}$ be an approximate identity in $\mathcal{R}(G)_+$. Then

$$\mathcal{P}^{-1}(\mathbf{T}) = \lim_{i \in \mathbf{I}} \mathbf{T}\xi_i$$
.

<u>Proof</u>. Let $f = \mathcal{P}^{-1}(T)$. Then

$$r\xi_{i} = \mathcal{P}(f)\xi_{i} = f * \Delta^{5}\xi_{i} \rightarrow f$$

in L²(G) .

<u>Remark</u>. From Proposition 2.2 we already knew that for any approximate identity $(\xi_i)_{i\in I}$, the $||T\xi_i||$ tend to a limit and that this limit is independent of the choice of $(\xi_i)_{i\in I}$. Now, using that $L^2(\psi_0) = \mathcal{P}(L^2(G))$, we have proved that the same holds for the $T\xi_i$ themselves.

As a corollary, we have the following characterization of the inner product in $L^2(\psi_0)$, generalizing the formula for $\|T\|_2$ given in Proposition 2.2:

Corollary. Let T,S $\in L^{2}(\psi_{0})$. Then

$$T|S|_{L^{2}(\psi_{0})} = \lim_{i \in I} (T\xi_{i}|S\xi_{i})$$

for any approximate identity $\left(\xi_{i}
ight)_{i\in I}$ in $\mathcal{K}\left(G
ight)_{+}$.

Proof. Since ${\mathcal P}$ is unitary, we have

$$(\mathbf{T}(\mathbf{S}))_{\mathbf{L}^{2}(\psi_{0})} = (\mathcal{P}^{-1}(\mathbf{T}) + \mathcal{P}^{-1}(\mathbf{S}))_{\mathbf{L}^{2}(\mathbf{G})} = \lim_{\mathbf{i} \in \mathbf{I}} (\mathbf{T}\xi_{\mathbf{i}} + \mathbf{S}\xi_{\mathbf{i}})_{\mathbf{L}^{2}(\mathbf{G})}$$

4. The L^p Fourier transformations.

Let $p \in [1,2]$ and define $q \in [2,\infty]$ by $\frac{1}{p} + \frac{1}{q} = 1$.

<u>Definition</u>. Let $f \in L^p(G)$. The L^p Fourier transform of f is the operator $\mathcal{F}_p(f)$ on $L^2(G)$ given by

$$\mathcal{F}_{p}(f)\xi = f * \Delta^{1/q} \xi$$
, $\xi \in D(\mathcal{F}_{p}(f))$

where $D(\mathcal{F}_{p}(f)) = \{\xi \in L^{2}(G) \mid f * \Delta^{1/q} \xi \in L^{2}(G)\}$.

Note that by Lemma 1.1 the convolution product $f * \Delta^{1/q} \xi$ exist and belongs to $L^r(G)$, where $r \in [2,\infty]$ is given by $\frac{1}{p} + \frac{1}{2} - \frac{1}{r} = 1$, whenever $f \in L^p(G)$ and $\xi \in L^2(G)$, so that the definition of $D(\mathcal{F}_p(f))$ makes sense.

<u>Remark</u>. For p = 1, we write $\mathcal{F}_1 = \mathcal{F}$; we have $\mathcal{F}(f)\xi = f * \xi$ and $D(\mathcal{F}(f)) = L^2(G)$, so that $\mathcal{F}(f)$ is simply $\lambda(f)$. For p = 2, we have $\mathcal{F}_2(f) = \mathcal{P}(f)$.

Now again let $p \in [1,2]$. Let $f \in L^p(G)$. Then the operator $\mathcal{F}_p(f)$ is closed. To see this, suppose that $\xi_i \in D(\mathcal{F}_p(f))$ converges in $L^2(G)$ to some $\xi \in L^2(G)$ and $\mathcal{F}_p(f)\xi_i$ converges in $L^2(G)$ to some $\eta \in L^2(G)$. Now by Lemma 1.1 we have $\mathcal{F}_p(f)\xi_i = f * \Delta^{1/q}\xi_i \rightarrow f * \Delta^{1/q}\xi$ in $L^r(G)$ (where $\frac{1}{p} + \frac{1}{2} - \frac{1}{r} = 1$) Therefore $f * \Delta^{1/q}\xi = \eta$, so that $f * \Delta^{1/q}\xi \in L^2(G)$, i.e. $\xi \in D(\mathcal{F}_p(f))$ and $\mathcal{F}_p(f)\xi = \eta$ as wanted.

Next we show that $\mathcal{F}_p(f)$ is $(-\frac{1}{q})$ -homogeneous. For all $\xi \in D(\mathcal{F}_p(f))$ and all $x, y \in G$ we have

$$\begin{split} \rho(\mathbf{x}) \left(\mathcal{F}_{\mathbf{p}}(\mathbf{f})\xi \right) (\mathbf{y}) &= \Delta^{\frac{1}{2}}(\mathbf{x}) \left(\mathbf{f} * \Delta^{1/q} \xi \right) (\mathbf{y} \mathbf{x}) \\ &= \Delta^{\frac{1}{2}}(\mathbf{x}) \int \mathbf{f}(\mathbf{z}) \Delta^{1/q} (\mathbf{z}^{-1} \mathbf{y} \mathbf{x}) \xi (\mathbf{z}^{-1} \mathbf{y} \mathbf{x}) d\mathbf{z} \\ &= \Delta^{1/q}(\mathbf{x}) \int \mathbf{f}(\mathbf{z}) \Delta^{1/q} (\mathbf{z}^{-1} \mathbf{y}) \Delta^{\frac{1}{2}}(\mathbf{x}) \xi (\mathbf{z}^{-1} \mathbf{y} \mathbf{x}) d\mathbf{z} \\ &= \Delta^{1/q}(\mathbf{x}) \int \mathbf{f}(\mathbf{z}) \Delta^{1/q} (\mathbf{z}^{-1} \mathbf{y}) (\rho(\mathbf{x}) \xi) (\mathbf{z}^{-1} \mathbf{y}) d\mathbf{z} \\ &= \Delta^{1/q}(\mathbf{x}) \left(\mathbf{f} * \Delta^{1/q} \rho(\mathbf{x}) \xi \right) (\mathbf{y}) \\ &= \Delta^{1/q}(\mathbf{x}) \left(\mathcal{F}_{\mathbf{p}}(\mathbf{f}) \rho(\mathbf{x}) \xi \right) (\mathbf{y}) \quad , \end{split}$$

i.e.

$$\rho(\mathbf{x}) \mathcal{F}_{\mathbf{p}}(\mathbf{f}) \subseteq \Delta^{1/q}(\mathbf{x}) \mathcal{F}_{\mathbf{p}}(\mathbf{f})\rho(\mathbf{x})$$

for all $x \in G$ as wanted.

Finally, note that if $\xi \in L^2(G) \cap L^S(G)$ where $s \in [1,2]$ is given by $\frac{1}{p} + \frac{1}{s} - \frac{1}{2} = 1$, then $\xi \in D(\mathcal{F}_p(f))$ by Lemma 1.1. In particular, $\mathcal{K}(G) \subseteq D(\mathcal{F}_p(f))$.

In all, we have proved that for all $f \in L^{p}(G)$, $\mathcal{F}_{p}(f)$ is closed, densely defined, and $(-\frac{1}{q})$ -homogeneous. We shall see, using the criterion from Proposition 2.3, that actually $\mathcal{F}_{p}(f) \in L^{q}(\psi_{0})$. The proof is based on interpolation from the special cases

$$\mathcal{F}$$
 : $L^{1}(G) \rightarrow L^{\infty}(\psi_{0})$

and

$$\mathcal{P} : L^{2}(G) \rightarrow L^{2}(\psi_{0})$$

First we restrict our attention to f \in $\mathcal{K}(G)$.

Lemma 4.1. Let $p \in [1,2]$. Denote by A the closed strip $\{\alpha \in \mathbb{C} \mid \frac{1}{2} \leq \operatorname{Re} \alpha \leq 1\}$. Let $f \in \mathcal{K}(G)$ and $\xi \in \mathcal{O}_{\ell}$. Then: (i) for each $\alpha \in A$, the convolution product

$$\xi_{\alpha} = sg(f)|f|^{p\alpha} * \Delta^{1-\alpha}\xi$$

exists, and $\xi_{\alpha} \in L^{2}(G)$; (ii) the function

 $\alpha \mapsto \xi_{\alpha}$, $\alpha \in A$,

with values in $L^2\left(G\right)$ is bounded; (iii) for each $\eta\in L^2\left(G\right)$, the scalar function

 $\alpha \mapsto (\xi_{\alpha}|\eta)$, $\alpha \in A$,

is continuous on A and analytic in the interior of A <u>Proof</u>. Write $g = \Delta^{-1/p_f^v}$. Then

 $\forall \alpha \in A: sg(f)|f|^{p\alpha} = \Delta^{-\alpha}(sg(g)|g|^{p\alpha})^{\nu}$.

Note that g as well as all sg(g)|g| $^{p\alpha}$, $\alpha \in A$, belong to $\mathcal{K}(G)$.

For each $\eta \in \mathcal{K}(G)$, we define

(1)
$$H_{\eta}(\alpha) = \int \xi(x) (sg(g)|g|^{p\alpha} * \Delta^{1-\alpha} \eta)(x) dx , \alpha \in A$$

i.e.

(2)
$$H_{\eta}(\alpha) = \iint \xi(x) (sg(g)|g|^{p\alpha}) (y) \Delta^{1-\alpha} (y^{-1}x) \eta(y^{-1}x) dy dx ,$$

(later we shall recognize $H_n(\alpha)$ as simply $(\xi_{\alpha}(\overline{n}))$.

Note that

$$\forall \alpha \in A: \||sg(g)|g|^{p\alpha}| * |\Delta^{1-\alpha}n|\|_{2}$$
$$\leq \||g|^{p-Re-\alpha}\|_{1} \|\Delta^{1-Re-\alpha}|n|\|_{2}$$

(3)

where K is a constant independent of $\alpha \in A$. In particular, this allows us to apply Fubini's theorem to the double integral (2) . We find

$$\begin{split} H_{\eta}(\alpha) &= \iint \xi(x) (sg(g) |g|^{p\alpha}) (y^{-1}) \Delta^{1-\alpha} (yx) \eta(yx) \Delta^{-1} (y) dy dx \\ &= \iint \xi(y^{-1}x) (sg(g) |g|^{p\alpha}) (y^{-1}) \Delta^{1-\alpha} (x) \eta(x) \Delta^{-1} (y) dx dy \\ &= \iint (sg(f) |f|^{p\alpha}) (y) \Delta^{1-\alpha} (y^{-1}x) \xi(y^{-1}x) \eta(x) dy dx ; \end{split}$$

it also follows that the convolution integral

$$\xi_{\alpha}(\mathbf{x}) = \int (\operatorname{sg}(f) | f|^{p\alpha}) (\mathbf{y}) \Delta^{1-\alpha} (\mathbf{y}^{-1}\mathbf{x}) \xi (\mathbf{y}^{-1}\mathbf{x}) d\mathbf{y}$$

exists, so that we can write

$$H_{\eta}(\alpha) = \int \xi_{\alpha}(x) \eta(x) dx$$

Now we shall prove that there exists a constant C \geq 0 independent of α such that

(4)
$$\forall \eta \in \mathcal{K}(G): \left\| \int \xi_{\alpha}(x) \eta(x) dx \right\| \leq C \|\eta\|_{2}$$

This will imply that each ξ_{α} , $\alpha \in A$, is in $L^{2}(G)$ with $\|\xi_{\alpha}\|_{2} \leq C$, i.e. (i) and (ii) will be proved.

Let us prove (4). Without loss of generality, we may assume that $\|f\|_{p} = 1$. We want to show then that

(5)
$$\forall \eta \in \mathcal{K}(G): |H_{\eta}(\alpha)| \leq (||\lambda(\xi)||+||\xi||_2) ||\eta||_2$$

To do this, we shall apply the Phragmen-Lindelöf principle [24, p 93].

Fix $\eta \in \mathcal{K}(G)$. By (2), H_{η} is continuous on A and analy tic in the interior of A (the integrand in (2) can be majorized by an integrable function that is independent of α). Furthermore, H_{η} is bounded (use (3) and (1)). Finally, we shall estimate H_{η} on the boundaries of A.

Let t $\in \mathbb{R}$. Then $\Delta^{-it}\xi \in Q_{\ell}$ and $\|\lambda(\Delta^{-it}\xi)\| \le \|\lambda(\xi)\|$. Now

$$\mathcal{P}(sq(f)|f|^{p(\frac{1}{2}+it)})(\Delta^{-it}\varepsilon)$$

= $sg(f)|f|^{p(\frac{1}{2}+it)} * \Delta^{1-(\frac{1}{2}+it)} \xi = \xi_{\frac{1}{2}+it}$

so that $\xi_{\frac{1}{2}+it} \in L^2(G)$ with

11

$$\xi_{\frac{1}{2}+it}\|_{2} \leq \|\mathcal{P}(sg(f)|f|^{p(\frac{1}{2}+it)})\|_{2} \|\lambda(\Delta^{-it}\xi)\|$$

$$\leq \|sg(f)|f|^{p(\frac{1}{2}+it)}\|_{2} \|\lambda(\xi)\|$$

$$= \||f|^{p/2}\|_{2} \|\lambda(\xi)\|$$

$$= \|\lambda(\xi)\|$$

(where we have used Proposition 2.2, the fact that \mathcal{P} is unital and the hypothesis $\|f\|_p = 1$). Similarly,

$$\mathcal{F}$$
 (sg(f)|f|^{p(1+it)})($\Delta^{-it}\xi$)

$$= sg(f)|f|^{p(1+it)} * \Delta^{1-(1+it)} \xi = \xi_{1+it}$$

so that $\xi_{1+i+} \in L^2(G)$ with

$$\|\xi_{1+it}\|_{2} \leq \|\mathcal{F}(sg(f)|f|^{p(1+it)})\|_{\infty} \|\Delta^{-it}\xi\|_{2}$$
$$\leq \|sg(f)|f|^{p(1+it)}\|_{1} \|\xi\|_{2}$$
$$= \||f|^{p}\|_{1} \|\xi\|_{2}$$
$$= \|\xi\|_{2}$$

(where we have used that \mathcal{F} : $L^1(G) \to L^\infty(\psi_0)$ is norm-decreasing). It follows that

$$\forall t \in \mathbb{R}: |H_{\eta}(\frac{1}{2}+it)| = |\int \xi_{\frac{1}{2}+it}(x)\eta(x) dx|$$
$$\leq ||\xi_{\frac{1}{2}+it}||_{2} ||\eta||_{2} \leq ||\lambda|(\xi)|| ||\eta||_{2}$$

and

$$\forall t \in \mathbb{R}: |H_{\eta}(1+it)| = |\int_{\xi_{1+it}} (x)\eta(x)dx|$$

 $\leq \|\xi_{1+it}\|_2 \|\|\|_2 \leq \|\xi\|_2 \|\|\|_2$.

Then by the Phragmen-Lindelöf principle, we have established (5) and thus (i) and (ii).

Finally, (iii) is easy. Indeed, since $\alpha \mapsto \xi_{\alpha}$ is bounded, each $\alpha \mapsto (\xi_{\alpha} \mid n)$, where $n \in L^{2}(G)$, can be uniformly approximated by functions $\alpha \mapsto (\xi_{\alpha} \mid z)$ with $z \in \mathcal{K}(G)$, so we just have to prove (iii) in the case of $n \in \mathcal{K}(G)$. This is already done since $(\xi_{\alpha} \mid \eta) = H_{\overline{\eta}}(\Omega)$. Lemma 4.2. Let $p \in [1,2]$. Let $f \in \mathcal{K}(G)$ and $S \in L^{P}(\psi_{0})$. Then for all $\xi \in \mathcal{O}_{1}$, and $\eta \in \mathcal{O}_{1}$, $\Omega \cup D(S)$ we have

$$|(\mathcal{F}_{p}(f)\xi | S_{n})| \leq ||f||_{p} ||S||_{p} ||\lambda(\xi)|| ||\lambda(\eta)||$$

Note that $\xi \in D(\mathcal{F}_p(f))$ by Lemma 4.1. <u>Proof</u>. We may assume that $\|f\|_p = 1$ and $\|S\|_p = 1$. Furthermore by Lemma 2.5, we need only consider $\eta \in Ol_q \cap D(|S|^p)$.

Let $\xi \in \mathcal{O}_{\ell}$ and $\eta \in \mathcal{O}_{\ell} \cap D(|S|^{p})$. For each α in the closed strip $A = \{\alpha \in \mathbb{C} \mid \frac{1}{2} \leq \operatorname{Re} \alpha \leq 1\}$, put $\xi_{\alpha} = \operatorname{sg}(f) |f|^{p\alpha} * \Delta^{1-\alpha} \xi$ as in Lemma 4.1. Note that for all $\alpha \in A$ we have (by spectral theory) $\eta \in D(U|S|^{p\alpha})$ and

$$\|U|S|^{p\alpha}\eta\|_{2}^{2} \leq \||S|^{p/2}\eta\|_{2}^{2} + \||S|^{p}\eta\|_{2}^{2}$$

where S = U|S| is the polar decomposition of S. For each $\alpha \in A$, put

$$\eta_{\alpha} = U|S|^{p\alpha}\eta$$
.

Then the function $\alpha \mapsto \eta_{\alpha}$ with values in $L^{2}(G)$ is bounded on A. Furthermore, by [22, 9.15], it is continuous on A and analy tic in the interior of A.

Now for each $\alpha \in A$, let

$$H(\alpha) = (\xi_{\alpha}|\eta_{\alpha})$$

Then obviously H is bounded on A (by Lemma 4.1 (ii), $\alpha \mapsto \xi_{\alpha}$ is bounded). Furthermore, H is continuous on A. To see this, note that

$$\forall \alpha, \alpha_0 \in A: (\xi_{\alpha} | \eta_{\overline{\alpha}}) - (\xi_{\alpha_0} | \eta_{\overline{\alpha}_0}) = (\xi_{\alpha} | \eta_{\overline{\alpha}} - \eta_{\overline{\alpha}_0}) + (\xi_{\alpha} - \xi_{\alpha_0} | \eta_{\overline{\alpha}_0});$$

the continuity follows since $\alpha \mapsto \xi_{\alpha}$ is bounded and weakly continuous (Lemma 4.1 (iii)). Finally, we claim that H is analytic in the interior of A. First note that for each $\zeta \in L^2(G)$ the function $\alpha \mapsto (\zeta | \eta_{\overline{\alpha}})$, being equal to $\alpha \mapsto (\overline{\eta_{\overline{\alpha}} | \xi})$, is analytic. Next, recall that $\alpha \mapsto \xi_{\alpha}$ is actually analytic as a function with values is $L^2(G)$ (by Lemma 4.1 (iii) and [19, Theorem 3.31]). Then, writing

$$\frac{(\xi_{\alpha} \mid \eta_{\overline{\alpha}}) - (\xi_{\alpha_0} \mid \eta_{\overline{\alpha}_0})}{\alpha - \alpha_0} = \left(\frac{1}{\alpha - \alpha_0} (\xi_{\alpha} - \xi_{\alpha_0}) \mid \eta_{\overline{\alpha}}\right) + \frac{(\xi_{\alpha_0} \mid \eta_{\overline{\alpha}}) - (\xi_{\alpha_0} \mid \eta_{\overline{\alpha}_0})}{\alpha - \alpha_0}$$

we find that H has a derivative at each point $\boldsymbol{\alpha}_0$ in the interior of A .

Now suppose that

(1) $\forall t \in \mathbb{R}$: $|H(\xi+it)| \leq ||\lambda(\xi)|| ||\lambda(\eta)||$

and

(2) $\forall t \in \mathbb{R}$: $|H(1+it)| \leq |\lambda(\xi)|| ||\lambda(\eta)||$.

Then by the Phragmen-Lindelöf principle [24, p. 93] we infer that

$$\forall \alpha \in A$$
: $|H(\alpha)| < ||\lambda(\xi)|| ||\lambda(\eta)||$;

in particular,

$$|\langle \mathcal{F}_{n}(\mathbf{f})\boldsymbol{\xi}|\mathbf{S}n\rangle|| \leq ||\lambda(\boldsymbol{\xi})|| ||\lambda(n)||$$

as desired, since

$$H\left(\frac{1}{p}\right) = (f * a^{1-1/p} \xi | U| S| \eta) = (\mathcal{F}_{p}(f) | S\eta)$$

So we just have to prove (1) and (2).

Since
$$S \in L^{p}(\psi_{0})$$
 with $||S||_{p} = 1$ we have

(3) $U|S|^{p/2} \in L^2(\psi_0)$ with $||U|S|^{p/2}||_2 = 1$ and

(4)
$$U|S|^{P} \in L^{1}(\psi_{0})$$
 with $\|U|S|^{P}\|_{1} = 1$.

Now let $t \in \mathbb{R}$. Then by Lemma 2.3, we have

(5)
$$|s|^{-\text{pit}}\eta \in \Omega_{\ell}$$
 with $||\lambda(|s|^{-\text{pit}}\eta)|| \le ||\lambda(\eta)||$

Using this, Proposition 2.2, the estimate $\|\xi_{1+it}\|_{2} \leq \|\lambda(\xi)\|$ give in the proof of Lemma 4.1, and (3), we get

$$\begin{split} |H(\frac{1}{2}+it)| &= |(\xi_{\frac{1}{2}+it}|U|s|^{p/2}|s|^{-pit}n)| \\ &\leq ||\xi_{\frac{1}{2}+it}||_{2} ||U|s|^{p/2}|s|^{-pit}n||_{2} \\ &\leq ||\lambda(\xi)|| ||U|s|^{p/2}|_{2} ||\lambda(|s|^{-pit}n)||_{2} \\ &< ||\lambda(\xi)|| ||\lambda(n)|| , \end{split}$$

i.e., (1) is proved. To prove (2), note that

$$\xi_{1+i+} = sg(f)|f|^{p(1+it)} * \Delta^{1-(1+it)} \xi$$

$$= \lambda (sg(f)|f|^{p(1+it)}) \Delta^{-it} \xi \in \mathcal{O}_{\ell}$$

and

$$\|\lambda(\xi_{1+it})\| \leq \|\lambda(sg(f)|f|^{p(1+it)})\| \|\lambda(\Delta^{-it}\xi)\|$$

<
$$\| \text{sg}(f) \| f \|^{p(1+it)} \|_{1} \| \lambda(\xi) \|$$

since $\|sq(f)|f|^{p(1+it)}\|_{1} = \||f|^{p}\|_{1} = 1$. Using this together with (5), Proposition 2.1, and (4), we find

$$\begin{split} |H(1+it)| &= \| (\xi_{1+it} |U|S|^{P}|S|^{-pit}) \| \\ &\leq \| \lambda (\xi_{1+it}) \| \| \| U|S|^{P} \|_{1} \| \| \lambda (|S|^{-pit} \gamma) \| \\ &\leq \| \lambda (\xi) \| \| \| \lambda (\eta) \| , \end{split}$$

so that (2) is proved.

In the formulation of the following theorem we include the case p = 2. Note however that the proof is based on the results for this special case (they were used for the preceding lemmas).

<u>Theorem 4.1</u>. (Hausdorff-Young). Let $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$.

1) Let $f \in L^p(G)$. Then $\mathcal{F}_p(f) \in L^q(\psi_0)$ and

 $\|\mathcal{F}_{p}(f)\|_{q} \leq \|f\|_{p}$

2) The mapping

 $\mathcal{F}_{\mathrm{p}}\colon \ \mathrm{L}^{\mathrm{p}}(\mathrm{G}) \ \rightarrow \ \mathrm{L}^{\mathrm{q}}(\psi_{0})$

is linear, norm-decreasing, injective, and has dense range. 3) For all $h \in L^{1}(G)$ and $f \in L^{p}(G)$, we have

$$\mathcal{F}_{p}(h*f) = [\lambda(h) \mathcal{F}_{p}(f)]$$
.

4) For all $f \in L^p(G)$, we have

$$\mathcal{F}_{p}(J_{p}f) = \mathcal{F}_{p}(f) *$$

<u>Proof.</u> 1) First suppose that $f \in \mathcal{K}(G)$. Then, using proposition 2.3, we conclude from Lemma 4.2 that $\mathcal{F}_{p}(f) \in L^{\mathbf{q}}(\psi_{0})$ with

 $\|\mathcal{F}_{p}(f)\|_{q} \leq \|f\|_{p}$. Thus we have defined a norm-decreasing mappin

$$\mathcal{F}_{\mathbf{p}} \mid \mathcal{K}(\mathbf{G}) : \mathbf{L}^{\mathbf{p}}(\mathbf{G}) \to \mathbf{L}^{\mathbf{q}}(\psi_{0})$$

Furthermore $\mathcal{F}_{p}|_{\mathcal{K}(G)}$ is linear: for all $f_1, f_2 \in \mathcal{K}(G)$ and all $\xi \in \mathcal{K}(G)$ we have

$$(f_1+f_2)*\Delta^{1/q}\xi = f_1*\Delta^{1/q}\xi + f_2*\Delta^{1/q}\xi$$

so that $\mathcal{F}_{p}(f_1+f_2) = [\mathcal{F}_{p}(f_1) + \mathcal{F}_{p}(f_2)]$ by Proposition 2.4.

Now $\mathcal{F}_{p}|_{\mathcal{K}(G)}$ extends by continuity to a norm-decreasing linear mapping

$$\mathcal{F}_{\mathbf{p}}': \mathbf{L}^{\mathbf{p}}(\mathbf{G}) \rightarrow \mathbf{L}^{\mathbf{q}}(\psi_{0})$$

We claim that for all f $\in L^p(G)$, we have

$$\mathcal{F}_{p}'(f) = \mathcal{F}_{p}(f)$$

This will prove 1).

Let $f \in L^p(G)$. Then $\mathcal{F}_p'(f) \in L^q(\psi_0)$ and $\mathcal{K}(G) \subseteq D(\mathcal{F}_p'(f))$ by Lemma 2.7. On the other hand, by the remarks at the beginning of this section, $\mathcal{F}_p(f)$ is closed, densely defined, and $(-\frac{1}{q})$ -homogeneous, and $\mathcal{K}(G) \subseteq D(\mathcal{F}_p(f))$. Thus by Lemma 2.7 to conclude that $\mathcal{F}_p'(f) = \mathcal{F}_p(f)$ we just have to show that

$$\forall \xi \in \mathcal{K}(G): \mathcal{F}_{p}'(f)\xi = \mathcal{F}_{p}(f)\xi$$

Now, take $f_n \in \mathcal{K}(G)$ such that $f_n \to f$ in $L^P(G)$. Then for all $\xi \in \mathcal{K}(G)$, we have

$$\mathcal{F}_{p}(f_{n})\xi = f_{n} * \Delta^{1/q} \xi$$

$$\rightarrow f * \Delta^{1/q} \xi = \mathcal{F}_{p}(f)\xi \text{ in } L^{p}(G)$$

$$\mathcal{F}_{p}(f_{n})\xi = \mathcal{F}_{p}'(f_{n})\xi \rightarrow \mathcal{F}_{p}'(f)\xi \text{ in } L^{2}(G)$$

by Lemma 2.7. We conclude that $\mathcal{F}_p(f)\xi = \mathcal{F}_p'(f)\xi$ as desired. Thus 1) is proved.

2) By the proof of 1), we just have to show that \mathcal{F}_p is injective and has dense range. The injectivity is evident: if $\mathcal{F}_p(f) = 0$ for some $f \in L^p(G)$, then $f * \Delta^{1/q} \xi = 0$ for all $\xi \in \mathcal{K}(G)$, and thus f = 0. That $\mathcal{F}_p(L^p(G))$ is dense will be proved later.

3) For all $h \in L^{1}(G)$, $f \in L^{p}(G)$, and $\xi \in \mathcal{K}(G)$ we have

$$h*(f*\Delta^{1/q}\xi) = (h*f)*\Delta^{1/q}\xi$$

(in $L^p(G)$). Thus by Proposition 2.4,

$$[\lambda(h) \mathcal{F}_{p}(f)] = \mathcal{F}_{p}(h*f)$$

4) Let $f \in \mathcal{K}(G)$. Then for $\xi, \eta \in \mathcal{K}(G)$ we have

$$(\mathcal{F}_{p}(J_{p}f)\xi|n) = (J_{p}f*\Delta^{1/q}\xi|n)$$

$$= (\Delta^{1/q}\xi|\Delta^{-1}(J_{p}f)^{\sim}*n)$$

$$= (\xi|\Delta^{1/q}(\Delta^{-1}\Delta^{1/p}f*n))$$

$$= (\xi|f*\Delta^{1/q}n)$$

$$= (\xi|\mathcal{F}_{p}(f)n),$$

so that $\mathcal{F}_{p}(J_{p}f)|_{\mathcal{K}(G)} \subseteq (\mathcal{F}_{p}(f)|_{\mathcal{K}(G)})^{*}$. By Proposition 2.4, We conclude that

$$\mathcal{F}_{p}(J_{p}f) = \mathcal{F}_{p}(f) *$$
.

By the continuity of $\mbox{J}_{\rm p}$, $\mbox{$\mathcal{F}_{\rm p}$}$, and * , this holds for all f $\in \mbox{${\rm L}^{\rm p}(G)$}$.

Finally, let us show that $\mathcal{F}_{p}(L^{p}(G))$ is dense in $L^{q}(\psi_{0})$. By the duality between $L^{q}(\psi_{0})$ and $L^{p}(\psi_{0})$, this is equivalen to proving that if $T \in L^{p}(\psi_{0})$ satisfies $\int [\mathcal{F}_{p}(f)T]d\psi_{0} = 0$ for all $f \in L^{p}(G)$, then T = 0.

Suppose that $T \in L^{p}(\psi_{0})$ is such that

$$\forall f \in L^{p}(G): \int [\mathcal{F}_{p}(f)T]d\psi_{0} = 0$$
.

Let $f \in L^p(G)$. Then for all $h \in L^1(G)$ we have

$$\int \left[\mathcal{F}_{p}(h*f)T \right] d\psi_{0} = 0$$

Alternatively stated, since $[\mathcal{F}_{p}(h*f)T] = [[\lambda(h) \mathcal{F}_{p}(f)]T] = [\lambda(h)[\mathcal{F}_{p}(f)T]]$, we have

$$\forall h \in L^{1}(G): \int [\lambda(h) [\mathcal{F}_{p}(f)T]] d\psi_{0} = 0$$
.

We conclude that the normal functional on M defined by [$\mathcal{F}_{p}(f)T$] $\in L^{1}(\psi_{0})$ is 0, so that

 $[\mathcal{F}_{p}(f)T] = 0.$

Changing f into $J_n f$ and using 4) this gives

$$\forall f \in L^{p}(G): [\mathcal{F}_{p}(f) * T] = 0$$

Now let $\xi \in D(T)$. Then using [12, II, Proposition 5, 1)], we find that

$$\forall \mathbf{f}, \mathbf{\eta} \in \mathcal{K}(\mathbf{G}): (\mathbf{T}\xi | \mathbf{f} * \Delta^{1/\mathbf{q}}_{\mathbf{r}_{i}})$$

$$= (\mathbf{T}\xi | \mathcal{F}_{\mathbf{p}}(\mathbf{f}) \mathbf{\eta})$$

$$= \langle [\mathcal{F}_{\mathbf{p}}(\mathbf{f}) * \mathbf{T}], \lambda(\xi) \lambda(\mathbf{r}) * \rangle = 0 .$$

Thus $T\xi = 0$. This proves that T = 0 as wanted.

<u>Proposition 4.1</u>. Let $p \in [1,2]$. Let $f \in L^{p}(G)$. Then $\mathcal{F}_{p}(f) \geq 0$ if and only if

$$\forall \xi \in \mathcal{R}(G): \int f(x) \left(\xi * J_p \xi\right)(x) dx \ge 0.$$

Proof. We have

$$(\mathcal{F}_{p}(f)\xi|\xi) = \int (f*\Delta^{1/p}\xi)(x)\overline{\xi(x)}dx$$
$$= \int f(x)(\overline{\xi}*\Delta^{-1/p}\xi)(x)dx$$

for all $\xi \in \mathcal{K}(G)$. The result follows by changing ξ into $\overline{\xi}$ and recalling that $\mathcal{F}_{p}(f) = [\mathcal{F}_{p}(f) | \mathcal{K}(G)]$.

The L^p Fourier transformations are well-behaved with respect to convolution as the following proposition shows. The result generalizes 3) of the theorem.

<u>Proposition 4.2</u>. Let $p_1, p_2, p \in [1,2]$ such that $\frac{1}{p_1} + \frac{1}{p_2} - \frac{1}{p} = 1$. Define $q_1 \in [2,\infty]$ by $\frac{1}{p_1} + \frac{1}{q_1} = 1$. Let $f_1 \in L^{p_1}(G)$ and $f_2 \in L^{p_2}(G)$. Then

 $\mathcal{T}_{p}(\mathbf{f}_{1} \ast \Delta^{1/\mathbf{q}_{1}} \mathbf{f}_{2}) = [\mathcal{T}_{p_{1}}(\mathbf{f}_{1}) \mathcal{T}_{p_{2}}(\mathbf{f}_{2})] .$

<u>Proof</u>. By Lemma 1.1, we have $f_1 * \Delta^{1/q_1} f_2 \in L^p(G)$, and $(f_1, f_2) \mapsto \mathcal{F}_p(f_1 * \Delta^{1/q_1} f_2)$ maps $L^{p_1}(G) \times L^{p_2}(G)$ continuously into $L^q(\psi_0)$ (where $\frac{1}{p} + \frac{1}{q} = 1$). Also $[\mathcal{F}_{p_1}(f_1) \mathcal{F}_{p_2}(f_2)]$ is continuous as a function of $(f_1, f_2) \in L^{p_1}(G) \times L^{p_2}(G)$ with values in $L^q(\psi_0)$. Thus we need only prove the statement for $f_1, f_2 \in \mathcal{K}(G)$. Since

$$(f_1 * \Delta^{1/q_1} f_2) * \Delta^{1/q_{\xi}} = f_1 * \Delta^{1/q_1} (f_2 * \Delta^{1/q_2} \xi)$$

(where $\frac{1}{P_2} + \frac{1}{q_2} = 1$) for all $f_1, f_2, \xi \in \mathcal{K}(G)$, the result follows by Proposition 2.4 as usual.

We conclude this section by the following characterization of the image of ${\rm L}^{\rm p}({\rm G})$ under ${\cal F}_{\rm p}$:

<u>Proposition 4.3</u>. Let $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$. Let $T \in L^{q}(1)$ 1) If $T = \mathcal{F}_{p}(f)$ for some $f \in L^{p}(G)$, then for any approximate identity $(\xi_{i})_{i \in T}$ in $\mathcal{K}(G)_{+}$ we have

 $T\xi_i \rightarrow f$ in $L^p(G)$.

In particular, $\lim ||T\xi_i||_p = ||f||_p < \infty$.

2) Conversely, suppose that for some approximate identity $(\xi_i)_{i \in I}$ in $\mathcal{K}(G)_+$ we have $T\xi_i \in L^p(G)$ for all $i \in and$

 $\lim \inf \|T\xi_i\|_{\mathcal{D}} < \infty .$

Then $T \in \mathcal{F}_{D}(L^{p}(G))$.

<u>Proof</u>. The first part is obvious since $T\xi_i = f * \Delta^{1/q} \xi_i \to f$ in $L^p(G)$ and therefore $\|T\xi_i\|_p \to \|f\|_p$. Now suppose that the hypothesis of 2) holds for some $(\xi_i)_{i \in I}$. We then proceed as in the proof of the surjectivity of \mathcal{P} (Theorem 3.1). For all $\eta, \zeta \in \mathcal{X}(G)$ we have

$$(\eta * \Delta^{-1/q} \widetilde{\zeta} | T\xi_{i}) = (\eta | (T\xi_{i}) * \Delta^{1/q} \zeta)$$
$$= (\eta | T(\xi_{i} * \zeta))$$
$$= (T*\eta | \xi_{i} * \zeta)$$
$$\rightarrow (T*\eta | \zeta) = (\eta | T\zeta) .$$

Thus we can define a linear functional F on $\mathcal{K}(G) * \mathcal{K}(G)$ by

$$F(\xi) = \lim_{i} \int \xi(x) (\overline{T\xi_{i}})(x) dx .$$

Since

$$|\xi(\mathbf{x})(\overline{\mathsf{T}\xi_{\mathbf{i}}})(\overline{\mathbf{x}})d\mathbf{x}| \leq ||\xi||_{q} ||\mathsf{T}\xi_{\mathbf{i}}||_{p}$$

we have

$$|F(\xi)| \leq (\liminf \inf ||T\xi_i||_p) \cdot ||\xi||_q$$

Now since $\mathcal{K}(G) * \mathcal{K}(G)$ is dense in $L^{q}(G)$, F extends to a bounded functional on $L^{q}(G)$ and therefore is given by some $\overline{f} \in L^{p}(G)$:

$$\mathbf{F}(\xi) = \int \xi(\mathbf{x}) \overline{\mathbf{f}(\mathbf{x})} d\mathbf{x}$$

In particular,

$$(\eta | T\zeta) = F(\eta * \Delta^{-1/q} \widetilde{\zeta}) = \int (\eta * \Delta^{-1/q} \widetilde{\zeta}) (x) \overline{f(x)} dx$$

for all $\eta, \zeta \in \mathcal{K}(G)$. Since

$$\int (\eta * \Delta^{-1/q} \zeta) (\mathbf{x}) \overline{f(\mathbf{x})} d\mathbf{x} = \int \eta (\mathbf{x}) (\overline{f * \Delta^{1/q} \zeta}) (\mathbf{x}) d\mathbf{x} = (\eta | \mathcal{F}_{p}(f) \zeta)$$

this implies that

$$\forall \zeta \in \mathcal{K}(G): T\zeta = \mathcal{F}_{D}(f)\zeta$$
,

and we conclude by Proposition 2.4 that $T = \mathcal{F}_p(f)$.

<u>Remark</u>. For p = 1, part 2) of the above proposition fails. (For a counter-example, take $T = \lambda(x)$, $x \in G$.)

5. The L^P Fourier cotransformations.

<u>Definition</u>. Let $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$. For each $T \in L^{p}(\psi)$ denote by $\overline{\mathcal{F}}_{p}(T)$ the unique function in $L^{q}(G)$ such that

$$\int h(x) \overline{\mathcal{F}}_{p}(T)(x) dx = \int [\mathcal{F}_{p}(h)T] d\psi_{0}$$

for all $h \in L^p(G)$ (or just $h \in \mathcal{K}(G)$, or $h \in \mathcal{K}(G) * \mathcal{K}(G)$). The mapping

$$\overline{\mathcal{F}}_{p}: L^{p}(\psi_{0}) \rightarrow L^{q}(G)$$

thus defined will be called the L^p Fourier cotransformation. For p = 1, we write $\overline{\mathcal{F}} = \overline{\mathcal{F}}_1$. Note that if $1 , then <math>\overline{\mathcal{F}}_p$ is simply the transpose of \mathcal{F}_p : $L^p(G) \to L^q(\psi_0)$ when we identify the dual spaces of $J^p(G)$ and $L^q(\psi_0)$ with $L^q(G)$ and $L^p(\psi_0)$, respectively. The mapping $\overline{\mathcal{F}}$ takes an element $T \in L^1(\psi_0)$ into the unique function $\varphi \in A(G)$ that defines the same element of M_* as T does; in particular,

$$\overline{\mathcal{F}}\left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi_{0}}\right) = \varphi$$

for all $\varphi \in (M_*)^+ \simeq A(G)_+$.

In view of these remarks, we obviously have

Theorem 5.1.

1) Let $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then $\overline{\mathcal{F}}_p: L^p(\psi_0) \to L^q(G)$

is linear, norm-decreasing, injective, and has dense range. 2) The mapping

 $\overline{\mathcal{F}}: L^{1}(\psi_{0}) \rightarrow A(G)$

is an isometry of $L^{1}(\psi_{0})$ onto A(G).

<u>Remark</u>. With our definition of the cotransformations, $\overline{\mathcal{F}}_2$ is not exactly the inverse of $\mathcal P$; they are related by the formula

$$\forall \mathbf{T} \in \mathbf{L}^{2}(\psi_{0}): \overline{\mathcal{F}}_{2}(\mathbf{T}) = \overline{\mathcal{P}^{-1}(\mathbf{T}^{*})}$$

(since for all $h \in L^{2}(G)$ we have $\int h(x) \overline{\mathcal{F}}_{2}(T)(x) dx = \int [\overline{\mathcal{F}}_{2}(h)T] d\psi_{0} = (\overline{\mathcal{F}}_{2}(h)|T^{*})_{L^{2}(U_{0})} = (h|\mathcal{P}^{-1}(T^{*}))_{L^{2}(G)} =$

 $\int h(x) \overline{\mathcal{P}^{-1}(T^*)(x)} \, dx) \ . \ \text{It follows that} \ \overline{\mathcal{F}}_2 \colon L^2(\psi_0) \to L^2(G) \ \text{is}$ unitary.

The classical Hausdorff-Young theorem [24, p. 101] has a second part, stating that with each $c \in \ell_p(\mathbb{Z})$, $1 \leq p \leq 2$, we can associate a function $f \in L^q(\mathbb{T})$ with $\|f\|_q \leq \|c\|_p$, such that c is the sequence of Fourier coefficients of f. Theorem 5.1 is a generalization of this result. Indeed, let $T \in L^p(\psi_0)$ and put $g = \Delta^{-1/q} \overline{\mathcal{F}}_p(T)^{\vee}$. Then $g \in L^q(G)$ and $\|g\|_q = \|\overline{\mathcal{F}}_p(T)\|_q \leq \|T\|_p$, and we shall see that T is close to being the "L^q Fourier transform" of g in the sense that $T\xi = g^*\Delta^{1/p}\xi$ for certain ξ (note that we do not in general define L^q Fourier transforms $q \geq 2$).

<u>Proposition 5.1.</u> Let $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then for all $T \in L^{p}(\psi_{0})$, we have

$$\overline{\mathcal{F}}_{p}(T^{*}) = J_{q}(\overline{\mathcal{F}}_{p}(T))$$

<u>Proof</u>. For all $h \in L^{p}(G)$ we have

$$\int h(x) \overline{\mathcal{F}}_{p}(T^{*})(x) dx = \int [\mathcal{F}_{p}(h)T^{*}] d\psi_{0}$$

$$= \overline{\int [T \mathcal{F}_{p}(h)^{*}] d\psi_{0}} = \overline{\int [T \mathcal{F}_{p}(J_{p}h)] d\psi_{0}}$$

$$= \overline{\int \mathcal{F}_{p}(T)(x) \Delta^{-1/p}(x) \overline{h(x^{-1})} dx}$$

$$= \int \Delta^{-1/q}(x) \overline{\mathcal{F}_{p}(T)(x^{-1})} h(x) dx \quad . \quad \blacksquare$$

- 53 -

Emma 5.1. Let h, k $\in \mathcal{K}(G)$ and put $\varphi = h \ast \widetilde{k}$. Then $\lambda(\varphi)\Delta \in L^{1}(\psi_{0})$ and

 $\left[[\lambda(\phi) \Delta] d\psi_0 = \phi(e) \right].$

roof. Since

$$\begin{split} \lambda(\varphi)\Delta &= \lambda(\mathbf{h})\lambda(\widetilde{\mathbf{k}})\Delta^{\frac{1}{2}}\Delta^{\frac{1}{2}} \\ &\subseteq \lambda(\mathbf{h})\Delta^{\frac{1}{2}}\lambda(\Delta^{-\frac{1}{2}}\widetilde{\mathbf{k}})\Delta^{\frac{1}{2}} \subseteq \mathcal{P}(\mathbf{h})\mathcal{P}(\mathbf{k})* \end{split}$$

the closure $[\lambda(\varphi)\Delta]$ exists and $[\lambda(\varphi)\Delta] \subseteq [\mathcal{P}(h) \mathcal{P}(k)*]$. One easily checks that for all $x \in G$ we have $\varphi(x)\lambda(\varphi)\Delta \subseteq \Delta(x)\lambda(\varphi)\Delta\rho(x)$, i.e. that $\lambda(\varphi)\Delta$ is (-1)-homogeneous. Then also $[\lambda(\varphi)\Delta]$ is (-1)-homogeneous, and we conclude by Proposition 2.4 that $[\lambda(\varphi)\Delta] = [\mathcal{P}(h) \mathcal{P}(k)*]$, so that $[\lambda(\varphi)\Delta] \in L^{1}(\psi_{0})$ and

$$\int [\lambda(\varphi)\Delta] d\psi_0 = (\mathcal{P}(h) + \mathcal{P}(k)) L^2(\psi_0)$$
$$= \int h(x) \overline{k(x)} dx = (h * \widetilde{k})(e) = \varphi(e) . \blacksquare$$

Suppose that $f_1 \in L^{p_1}(G)$ and $f_2 \in L^{p_2}(G)$, where $p_1, p_2 \in [1, 2]$. In Proposition 4.2, a formula relating $f_1 * \Delta^{1/q_1} f_2$ and $[\mathcal{F}_{p_1}(f_1) \mathcal{F}_{p_2}(f_2)]$ was given in the case where $\frac{1}{p_1} + \frac{1}{p_2} \geq \frac{3}{2}$ (under this assumption, $p \in [1, 2]$ satisfying $\frac{1}{p_1} + \frac{1}{p_2} - \frac{1}{p} = 1$ exists). The following proposition takes care of the case where $\frac{1}{p_1} + \frac{1}{p_2} \leq \frac{3}{2}$. $\begin{array}{l} \underline{\operatorname{Proposition} 5.2}, \quad \operatorname{Let} \quad p_1, p_2 \in [1,2] \quad \operatorname{and} \quad g \in [2,\infty] \quad \operatorname{such} \text{ that} \\ \\ \underline{1}_{p_1} + \underline{1}_{p_2} - \underline{1}_q = 1 \quad \text{. Let} \quad f_1 \in L^{p_1}(G) \quad \operatorname{and} \quad f_2 \in L^{p_2}(G) \quad \text{. Then} \\ \\ \hline \overline{\mathcal{F}}_p([\mathcal{F}_{p_1}(f_1) | \mathcal{F}_{p_2}(f_2)]) = \Delta^{-1/q}(f_1 * \Delta^{1/q_1} f_2)^{\vee}, \\ \\ \operatorname{where} \quad \underline{1}_p + \underline{1}_q = 1 \quad \operatorname{and} \quad \underline{1}_{p_1}' + \underline{1}_q = 1 \quad \text{.} \end{array}$

<u>Proof</u>. Both expressions exist, belong to $L^{q}(G)$, and are continuous as functions of $(f_{1}, f_{2}) \in L^{p_{1}}(G) \times L^{p_{2}}(G)$. Thus we need only prove the formula for $f_{1}, f_{2} \in \mathcal{K}(G)$. In this case, for all $h \in \mathcal{K}(G)$ and $\xi \in \mathcal{K}(G)$ we have

$$h * \Delta^{1/q} (f_1 * \Delta^{1/q_1} (f_2 * \Delta^{1/q_2} \xi)) = h * \Delta^{1/q} (f_1 * \Delta^{1/q_1} f_2) * \Delta \xi$$

where $\frac{1}{P_2} + \frac{1}{q_2} = 1$. We conclude by Proposition 2.4 that

$$\forall h \in \mathcal{K}(G): [\mathcal{F}_{p}(h)[\mathcal{F}_{p_{1}}(f_{1}),\mathcal{F}_{p_{2}}(f_{2})]] = [\lambda(h*\Delta^{1/q}f)\Delta]$$

where we have written $f = f_1 * \Delta f_2^{-1/q}$. Using this and Lemma 5.1, we find

$$\forall \mathbf{h} \in \mathcal{K}(\mathbf{G}) : \int [\mathcal{F}_{\mathbf{p}}(\mathbf{h}) [\mathcal{F}_{\mathbf{p}_{1}}(\mathbf{f}_{1}) \mathcal{F}_{\mathbf{p}_{2}}(\mathbf{f}_{2})] d\psi_{\mathbf{0}}$$

$$= \int [\lambda (\mathbf{h} * \Delta^{1/\mathbf{q}} \mathbf{f}) \Delta] d\psi_{\mathbf{0}}$$

$$= (\mathbf{h} * \Delta^{1/\mathbf{q}} \mathbf{f}) (\mathbf{e})$$

$$= \int \mathbf{h} (\mathbf{x}) \Delta^{1/\mathbf{q}} (\mathbf{x}^{-1}) \mathbf{f} (\mathbf{x}^{-1}) d\mathbf{x} .$$

We conclude that

$$\overline{\mathcal{F}}_{p}\left(\left[\mathcal{F}_{p_{1}}\left(f_{1}\right) | \mathcal{F}_{p_{2}}\left(f_{2}\right)\right]\right) = \Delta^{-1} q_{f}^{v}$$

as desired.

Corollary. Let f, $g \in L^2(G)$. Then

$$f * \widetilde{g} = \overline{\mathcal{F}} \left(\left[\mathcal{P}(\overline{g}) \mathcal{P}(\overline{f}) * \right] \right)$$

<u>Proof</u>. Letting $p_1 = p_2 = 2$ and $q = \infty$ in Proposition 5.2, we obtain

$$\overline{\mathcal{F}} \left(\left[\mathcal{P}(\overline{g}) \mathcal{P}(\overline{f})^* \right] \right) = \overline{\mathcal{F}} \left(\left[\mathcal{F}_2(\overline{g}) \mathcal{F}_2(J\overline{f}) \right] \right)$$
$$= \left(\overline{g}^* \Delta^{\frac{1}{2}} J\overline{f} \right)^{\vee} = f^* \widetilde{g} . \blacksquare$$

<u>Remark</u>. Since $A(G) = \overline{\mathcal{F}}(L^{1}(\psi_{0}))$ and since every $T \in L^{1}(\psi_{0})$ can be written $T = [RS^{*}]$ where $R, S \in L^{2}(\psi_{0}) = \mathcal{P}(L^{2}(G))$ (just put $R = U|T|^{\frac{1}{2}}$ and $S^{*} = |T|^{\frac{1}{2}}$, where T = U|T| is the polar decomposition of T), we have reproved the fact [6, Théorème, p. 218] that $A(G) = \{f * \widetilde{g} \mid f, g \in L^{2}(G)\}$. It also follows that $\|\phi\|_{A(G)} \leq \|f\|_{2} \|g\|_{2}$ whenever $\varphi = f * \widetilde{g}$, $f, g \in L^{2}(G)$ (since $\|[\mathcal{P}(\overline{g})\mathcal{P}(\overline{f})^{*}]\|_{1} \leq \|\mathcal{P}(\overline{g})\|_{2} \|\mathcal{P}(\overline{f})\|_{2}$), and that, given $\varphi \in A(G)$, there exist $f, g \in L^{2}(G)$ with $\varphi = f * \widetilde{g}$ such that $\|\phi\|_{A(G)} = \|f\|_{2} \|g\|_{2}$ (use that $\|T\|_{1} = \|U|T|^{\frac{1}{2}}\|_{2} \||T|^{\frac{1}{2}}\|_{2}$ for $T \in L^{1}(\psi_{0})$).

<u>Propositon 5.3</u>. Let $p \in [1,2]$ and $q_1, q_2 \in [2,\infty]$ such that $\frac{1}{q_1} + \frac{1}{q_2} = \frac{1}{p}$. Let $T \in L^{q_1}(\psi_0)$ and $S \in L^{q_2}(\psi_0)$. Then $(T\xi|Sn) = \int \overline{\mathcal{F}}_p([S^*T])(x)(\xi^*J_pn)(x) dx$ for all $\xi, n \in \mathcal{K}(G)$. <u>Proof</u>. By Lemma 2.7, the left hand side of the equation to be proved is a continuous function of T and S. The same is true of the right hand side. Therefore it is enough to prove the statement for T and S belonging to the (dense) sets $\mathcal{F}_{p_1}(\mathcal{K}(G))$ and $\mathcal{F}_{p_2}(\mathcal{K}(G))$ (where, as usual, $\frac{1}{p_1} + \frac{1}{q_1} = 1$, $\frac{1}{p_2} + \frac{1}{q_2} = 1$). Now suppose that $T = \mathcal{F}_{p_1}(h)$ and $S = \mathcal{F}_{p_2}(k)$ where h,k $\in \mathcal{K}(G)$. Then

$$(T\xi|S_{\eta}) = (h*\Delta^{1/q_{1}}\xi|k*\Delta^{1/q_{2}}\eta)$$

= $(\Delta^{1/q_{1}}\xi*\Delta^{-1/q_{2}}\eta)^{-1/q_{1}}\delta^{-1}h*k)$
= $(\xi*\Delta^{-1/q_{1}-1/q_{2}}\eta)^{-1/p_{1}}h*\Delta^{-1/q_{1}}k)$
= $\int (\xi*J_{p}\eta) (x) (\Delta^{-1/p_{1}}h*\Delta^{-1/q_{1}}k) (x) dx$.

Since

$$\overline{\mathcal{F}}_{p}([S^{*}T]) = \overline{\mathcal{F}}_{p}([\mathcal{F}_{p_{2}}(J_{p_{2}}^{k})\mathcal{F}_{p_{1}}(h)])$$

$$= \Delta^{-1/q}(J_{p_{2}}^{k*\Delta} \lambda^{-1/q} \lambda^{n})^{v}$$

$$= \Delta^{-1+1/p} \Delta^{-1/q} \lambda^{n+2} \lambda^{-1+1/p} \Delta^{1/p} \lambda^{n}$$

$$= \Delta^{-1/p} \lambda^{n+2} \lambda^{-1/q} \lambda^{n}$$

we have proved the formula.

<u>Proposition 5.4</u>. Let $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$. Let $T \in L^{p}(\psi_{0})$ with polar decomposition T = U[T]. Put $g = \Delta^{-1/q} \overline{\mathcal{F}}_{p}(T)^{v}$. Then

$$(|T|^{\frac{1}{2}}\xi| - |T|^{\frac{1}{2}}U^*\eta) = \int (g*\Delta^{1/p}\xi)(x)\overline{\eta(x)} dx$$

for all $z, n \in \mathcal{K}(G)$.

<u>pof</u>. Put $q_1 = q_2 = 2p$. Then $|T|^{\frac{1}{2}} \in L^{\frac{Q}{2}}(\psi_0)$ and $|^{\frac{1}{2}}U^* \in L^{\frac{Q}{2}}(\psi_0)$, and by Proposition 5.3 we get

 $(|T|^{\frac{1}{2}}E| |T|^{\frac{1}{2}}U^{*}n)$

$$= \int \overline{\mathcal{F}}_{p}(T)(x) (\xi^{*}J_{p}r)(x) dx$$

$$= \int \overline{\mathcal{F}}_{p}(T)(x^{-1}) (\Delta^{1/p} \frac{v}{r_{1} * \xi}) (x^{-1}) \Delta^{-1}(x) dx$$

$$= \int g(x) (\overline{r_{1}} * \Delta^{-1/p} \frac{v}{\xi})(x) dx$$

$$= \int (g* \Delta^{1/p} \xi) (x) \overline{r_{1}(x)} dx \quad . \qquad \blacksquare$$

roposition 5.5. Let $p \in [1,2]$ and $T \in L^{\mathcal{D}}(\cdot_0)$. Put $\mathfrak{f} = \Delta^{-1/q} \overline{\mathcal{F}}_p(T)^{\vee}$. Let $\xi \in \mathcal{K}(G)$. Then $\xi \in D(T)$ if and only $\mathfrak{f} = \mathfrak{g} \ast \Delta^{1/p} \xi \in L^2(G)$, and if this is the case, we have

$$T\xi = g * \Delta^{1/p} \xi .$$

<u>roof</u>. First suppose that $\xi \in D(T)$. Then for all $\eta \in \mathcal{K}(G)$ we have

$$\int (T\xi) (x) \overline{\eta} (x) dx = (T\xi | \eta)$$
$$= (|T|^{\frac{1}{2}} \xi| |T|^{\frac{1}{2}} U^* \eta)$$

 $= \left((g * \Delta^{1/F} \xi) (x) \overline{\eta}(x) dx \right).$

Hence $g * \Delta^{1/p} \xi = T \xi$ and thus $g * \Delta^{1/p} \xi \in L^2(G)$. Conversely, if $g * \Delta^{1/p} \xi \in L^2(G)$, then

ו (ודו לגו ודו (ודו ובי גו ודו) ו

$$= \iint (g * \Delta^{1/p} \xi) (x) \overline{n(x)} \tilde{a} x \|$$

$$\leq \|g * \Delta^{1/p} \xi\|_2 \|^{1-1} \|_2$$

for all $n \in \mathcal{K}(G)$. We conclude that $|T|^{\frac{1}{2}} \xi \in D([|T|^{\frac{1}{2}}U^*] \mathcal{K}(G)^{]^*}$. Now $[|T|^{\frac{1}{2}}U^*| \mathcal{K}(G)^{]^*} = [|T|^{\frac{1}{2}}U^*]^* = U|T|^{\frac{1}{2}}$, so that $|T|^{\frac{1}{2}} \xi \in D(U|T|^{\frac{1}{2}})$, whence $\xi \in D(T)$.

<u>Theorem 5.2</u>. Let $p \in [1,2]$ and $T \in L^{P}(\psi_{0})$. Put $g = \Delta^{-1/q} \overline{\mathcal{F}}_{p}(T)^{\vee}$. Suppose that $g \in L^{2}(G)$. Then T is the closure of the operator

$$\xi \mapsto g * \Delta^{1/P} \xi$$
, $\xi \in \mathcal{K}(G)$

<u>Proof</u>. When $g \in L^2(G)$, we have $g * \Delta^{1/p} \xi \in L^2(G)$ for all $\xi \in \mathcal{K}(G)$. Thus, by Proposition 5.5, $\mathcal{K}(G) \subseteq D(T)$, and $T\xi = g * \Delta^{1/p} \xi$ for all $\xi \in \mathcal{K}(G)$. Since $T = [T]_{\mathcal{K}(G)}$ by Proposition 2.4, the theorem is proved.

As a corollary, we have

<u>Theorem 5.3</u>. (Fourier inversion). Let $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$ 1) Let $T \in L^{F}(\mathfrak{r}_{0})$. Put $g = \Delta^{-1/q} \overline{\mathcal{F}}_{p}(T)^{\vee}$. If $g \in L^{r}(G)$ for some $\iota \in [1,2]$, then $\mathcal{F}_{r}(g)\Delta^{1/r-1/q}$ is closable, and

 $\mathbf{T} = \left[\left[\mathcal{F}_{\mathbf{r}}(q) \Delta^{1/(r-1)/q} \right] \right],$

2) Let $f \in L^{p}(G)$. If for some $r \in [1,2]$, the closure $S = [\mathcal{F}_{L}(f)\Delta^{1/r-1/q}]$ exists and belongs to $L^{r}(\psi_{0})$, then

$$f = \Delta^{-1/s} \overline{\mathcal{F}}_r(s)$$

where $\frac{1}{r} + \frac{1}{s} = 1$.

<u>roof</u>. 1) Since $g \in L^{r}(G) \cap L^{q}(G)$, we also have $g \in L^{2}(G)$. hen by Theorem 5.2 we have

$$T\xi = g * \Delta^{1/p} \xi = g * \Delta^{1/s} \Delta^{-1+1/r+1/p} \xi = \mathcal{F}_{r}(g) \Delta^{1/r-1/q} \xi$$

or all $\xi \in \mathcal{R}(G)$. Thus $T|_{\mathcal{R}(G)} \subseteq \mathcal{F}_{r}(g)\Delta^{1/r-1/q}$. As is asily seen $\mathcal{F}_{r}(g)\Delta^{1/r-1/q}$ is $(-\frac{1}{p})$ -nomegeneous. It is also closble, since its adjoint is densely defined (indeed, $(\mathcal{F}_{r}(g)\Delta^{1/r-1/q})^{*} \subseteq (T|_{\mathcal{R}(G)})^{*} = T^{*}$ so that $(\mathcal{F}_{r}(g)\Delta^{1/r-1/q})^{*} = T^{*})$. We conclude that $T = [\mathcal{F}_{r}(g)\Delta^{1/r-1/q}]$ (since $T \subseteq [\mathcal{F}_{r}(g)\Delta^{1/r-1/q}])$.

2) For all $\xi \in \mathcal{K}(G)$, we have $\xi \in D(S)$ and by Proposition 5.5,

$$\mathcal{F}_{*\Delta}^{1/r}\xi = \mathcal{F}_{p}(f)\Delta^{1/r-1/q}\xi = S\xi = \Delta^{-1/s} \overline{\mathcal{F}}_{r}(S)^{v}_{*}\xi$$

The result follows.

Putting p = r = 1 in the first part of Theorem 5.2 and recall-(ng that $\overline{\mathcal{F}}\left(\frac{d\varphi}{d\varphi_0}\right) = \varphi$ for $\varphi \in A(G)_+$ we obtain

 $\frac{1}{2}$ orollary. Let $\varphi \in A(G)_{+}$. If $\varphi \in L^{1}(G)$, then

 $\frac{\mathrm{d}\varphi}{\mathrm{d}\psi_0} = \left[\chi(\dot{\varphi}) \Delta \right] \ . \label{eq:delta_delta}$

Finally we shall give some results on positive operators $T \in L^{p}(\psi_{0})$ valid without any restriction on $\mathcal{F}_{p}(T)$. Note that for all $f \in L^{q}(G)$ and $\xi, \eta \in \mathcal{K}(G)$ we have

$$f(\mathbf{x}) (\xi^* \mathbf{J}_p \eta) (\mathbf{x}) d\mathbf{x}$$

$$= \iint f(\mathbf{x}) \xi(\mathbf{y}) \Delta^{-1/p} (\mathbf{y}^{-1} \mathbf{x}) \widetilde{\eta} (\mathbf{y}^{-1} \mathbf{x}) d\mathbf{y} d\mathbf{x}$$

$$= \iint f(\mathbf{y} \mathbf{x}) \xi(\mathbf{y}) \Delta^{-1/p} (\mathbf{x}) \widetilde{\eta} (\mathbf{x}) d\mathbf{x} d\mathbf{y}$$

$$= \iint f(\mathbf{y} \mathbf{x}^{-1}) \xi(\mathbf{y}) \Delta^{1/q} (\mathbf{x}) \overline{\eta} (\mathbf{x}) d\mathbf{x} d\mathbf{y} .$$

<u>Proposition 5.6</u>. Let $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$. Let $T \in L^{p}(\psi_{0})_{+}$. Put $f = \overline{\mathcal{F}}_{p}(T)$. Let

$$q(\xi) = \int f(x) (\xi * J_p \xi) (x) dx$$
$$= \iint f(yx^{-1}) \Delta^{1/q}(x) \xi(y) \overline{\xi(x)} dy dx$$

for all $\xi\in\,\mathcal{K}(G)$. Then $\,q\,$ is a closable positive quadratic form, and the positive self-adjoint operator associated with its closure is $\,T\,$.

Proof. By (the proof of) Proposition 5.4, we have

$$(T^{\frac{1}{2}}\xi | T^{\frac{1}{2}}\xi) = \int f(x) (\xi * J_{p}\xi) (x) dx = q(\xi)$$

for all $\xi \in \mathcal{K}(G)$, and $T^{\frac{1}{2}} = [T^{\frac{1}{2}}] \mathcal{K}(G)^{\frac{1}{2}}$. Thus q is a closable positive quadratic form with closure corresponding to T.

<u>Corollary</u>. Let $\varphi \in A(G)_+$. Then $\frac{d\varphi}{d\psi_0}$ is the positive self-adjoint operator associated with the closure of the positive quadratic form

given by

for all

 $q(\xi) = \int \varphi(x) (\xi \star \xi \star) (x) dx$ $= \iint \varphi(yx^{-1}) \xi(y) \overline{\xi(x)} dy dx$

for all $\xi \in \mathcal{K}(G)$.

Remark. This result also follows directly from the definition of $\frac{d\phi}{d\phi_0}$. Indeed,

$$\left\| \left(\frac{d\varphi}{d\psi_0} \right)^{\frac{1}{2}} \xi \right\|^2 = \varphi(\lambda(\xi)\lambda(\xi)^*) = \int \varphi(\mathbf{x})(\xi^*\xi^*)(\mathbf{x}) d\mathbf{x}$$

$$\xi \in \mathcal{K}(G) \quad \text{, and we have } \left(\frac{d\varphi}{d\psi_0} \right)^{\frac{1}{2}} = \left[\left(\frac{d\varphi}{d\psi_0} \right)^{\frac{1}{2}} \right| \mathcal{K}(G) \right] \quad \text{by}$$

Proposition 2.4 (or, alternatively, by an application of [9, Theorem] together with the fact that $\left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi_0}\right)^{\frac{1}{2}} = \left[\left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi_0}\right)^{\frac{1}{2}}\right]_{\mathcal{O}_{\lambda}}$.

Actually, the property of defining closable quadratic forms on $\mathcal{K}(G)$ characterizes $A(G)_+$ -functions among all positive definite continuous functions. The precise statement is as follows:

Theorem 5.4. Let φ be a positive definite continuous function. Define q on $\mathcal{K}(G)$ by

$$q(\xi) = \int \varphi(x) (\xi * \xi *) (x) dx$$
$$= \iint \varphi(yx^{-1}) \xi(y) \overline{\xi(x)} dy dx , \xi \in \mathcal{K}(G)$$

)

Then q is a positive quadratic form on $\mathcal{K}_{n,G}$, and q is closable if and only if $\omega\in A(G)$.

Now suppose that q is closable. Denote by T the positive self-adjoint operator associated with its closure; then T is characterized by the properties $\mathcal{K}(G) \subseteq D(T^{\frac{1}{2}})$, $T^{\frac{1}{2}} = [T^{\frac{1}{2}}] \mathcal{W}(G)$, and

$$\forall \xi \in \mathcal{K}(G): \|\mathbf{T}^{\frac{1}{2}}\xi\|^{2} = q(\xi)$$

Let us show that T is (-1)-homogeneous. Let $x \in G$. Then $T_x = \Delta^{-1}(x)\rho(x)T\rho(x^{-1})$ is positive self-adjoint and $T_x^{\frac{1}{2}} = \Delta^{-\frac{1}{2}}(x)\rho(x)T^{\frac{1}{2}}\rho(x^{-1})$. Therefore $\mathcal{K}(G) \subseteq D(T_x^{\frac{1}{2}})$ and $T_x^{\frac{1}{2}} = [T_x^{\frac{1}{2}}] \mathcal{K}(G)$]. Furthermore, for all $\xi \in \mathcal{K}(G)$ we have $\|T_x^{\frac{1}{2}}\xi\|^2 = \|\Delta^{-\frac{1}{2}}(x)\rho(x)T^{\frac{1}{2}}\rho(x^{-1})\xi\|^2$ $= \Delta^{-1}(x) \|T^{\frac{1}{2}}\rho(x^{-1})\xi\|^2$ $= \Delta^{-1}(x) \|T^{\frac{1}{2}}\rho(x^{-1})\xi\|^2$ $= \Delta^{-1}(x) \iint \varphi(yz^{-1})(\rho(x^{-1})\xi)(y)(\rho(x^{-1})\xi)(z)dy dz$ $= \iint \Delta^{-1}(x) \iint \varphi(yz^{-1})\Delta^{\frac{1}{2}}(x^{-1})\xi(y)\overline{\xi(zx^{-1}})dy dz$ $= \Delta^{-1}(x) \iint \varphi(yz^{-1})\xi(y)\overline{\xi(z)}dz dy$ $= \iint \varphi(yz^{-1})\xi(y)\overline{\xi(z)}dz dy$ $= q(\xi)$.

We conclude from the characterization of T that $T_{\chi} = T$, so that

$$\forall \mathbf{x} \in G: \Delta^{-1}(\mathbf{x}) \rho(\mathbf{x}) T \rho(\mathbf{x}^{-1}) = T ,$$

ie. T is (-1)-homogeneous.

Now let $(\xi_i)_{i \in I}$ be an approximate identity in $\mathcal{R}(G)_+$. Then

$$\|\mathbf{T}^{\frac{1}{2}}\boldsymbol{\xi}_{\mathbf{i}}\|^{2} = q(\boldsymbol{\xi}_{\mathbf{i}})$$

$$= \int \varphi(\mathbf{x}) (\boldsymbol{\xi}_{\mathbf{i}} \ast \boldsymbol{\xi}_{\mathbf{i}}^{\ast}) (\mathbf{x}) d\mathbf{x}$$

$$\leq \sup \left\{ |\varphi(\mathbf{x})| \mid \mathbf{x} \in \operatorname{supp}(\boldsymbol{\xi}_{\mathbf{i}} \ast \boldsymbol{\xi}_{\mathbf{i}}^{\ast}) \right\} \cdot \|\boldsymbol{\xi}_{\mathbf{i}} \ast \boldsymbol{\xi}_{\mathbf{i}}^{\ast}\|_{1}$$

$$\leq \sup \left\{ |\varphi(\mathbf{x})| \mid \mathbf{x} \in \operatorname{supp}(\boldsymbol{\xi}_{\mathbf{i}} \ast \boldsymbol{\xi}_{\mathbf{i}}^{\ast}) \right\} .$$

ince ϕ is continuous and the supports of the $\xi_{j} * \xi_{j} *$ tend to $e\}$, we get

$$\lim_{i \in I} \inf \|T^{\frac{1}{2}} \xi_i\|^2 \leq \varphi(e) .$$

 γ Proposition 2.1, this shows that $T \in L^{1}(\psi_{0})$. Put $\varphi_{1} = \overline{\mathcal{F}}(T) \in A(G)$. Then

$$\forall \xi \in \mathcal{K}(G): \int \varphi_{1}(x) (\xi * \xi *) (x) dx = \|T^{\frac{1}{2}} \xi\|^{2} = q(\xi)$$
$$= \int \varphi(x) (\xi * \xi *) (x) dx .$$

 \geq conclude that $\varphi = \varphi_1$ and thus $\varphi \in A(G)$.

cknowledgement.

we author is indebted to Uffe Haagerup for many helpful discustens on the subject of this paper.

- 64 -

References.

- F. Combes: Poids associé à une algèbre hilbertienne à gauche. Compositio Math. 23 (1971), 49-77.
- A. Connes: On the spatial theory of von Neumann algebras.
 J. Functional Analysis 35 (1980), 153-164.
- A. van Daele: A new approach to the Tomita-Takesaki theory of generalized Hilbert algebras. J. Functional Analysis 15 (1974), 378-393.
- J. Dixmier: Les C*-algèbres et leurs représentations. Gauthier-Villars, Paris 1964.
- J. Dixmier: Formes linéaires sur un anneau d'opérateurs. Bull. Soc. Math. France 81 (1953), 9-39.
- P. Eymard: L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. France 92 (1964), 181-236.
- P. Eymard & M. Terp: La transformation de Fourier et son inverse sur le groupe des ax+b d'un corps local. Lecture Notes in Mathematics 739 (Analyse Harmonique sur les Groupes de Lie II, Séminaire Nancy-Strasbourg 1976-78, Éd.: P. Eymard et al.), 207-248. Springer, Berlin-Heidelberg-New York 1979.
- U. Haagerup: The standard form of von Neumann algebras. Math. Scand. 37 (1975), 271-283.
- U. Haagerup: A density theorem for left Hilbert algebras. Lecture Notes in Mathematics 725 (Algèbres d'Opérateurs, Séminaire, Les Plans-sur-Bex, Suisse 1978, Éd.: P. de la Harpe), 170-179. Springer, Berlin-Heidelberg-New York 1979.
- U. Haagerup: L^P-spaces associated with an arbitrary von Neumann algebra. Algèbres d'opérateurs et leurs applications en physique mathématique (Colloques internationaux du CNRS, No. 274, Marseille 20-24 juin 1977), 175-184. Éditions du CNRS, Paris 1979.
- E. Hewitt & K. A. Ross: Abstract harmonic analysis I. Springer, Berlin-Göttingen-Heidelberg 1963.

M. Hilsum: Les espaces L^P d'une algèbre de von Neumann (théorie spatiale). Preprint, Publications mathématiques de l'univerisité Pierre et Marie Curie, No. 15, juin 1979.

- A. Klein & B. Russo: Sharp inequalities for Weyl operators and Heisenberg groups. Math. Ann. 235 (1978), 175-194.
- R. A. Kunze: L_p Fourier transforms on locally compact unimodular groups. Trans. Amer. Math. Soc. 89 (1958), 519-540.

2

ŧ,

ο.

- E. Nelson: Notes on non-commutative integration. J. Functional Analysis 15 (1974), 103-116.
- G. K. Pedersen: C*-algebras and their automorphism groups. Academic Press, London-New York-San Francisco 1979.
- ⁷. G. K. Pedersen & M. Takesaki: The Radon-Nikodym theorem for von Neumann algebras. Acta Math. 130 (1973), 53-87.
- 3. J. Phillips: Positive integrable elements relative to a left Hilbert algebra. J. Functional Analysis 13 (1973), 390-409.
- 9. W. Rudin: Functional analysis. Mc Graw-Hill 1973.
- B. Russo: On the Hausdorff-Young theorem for integral operators. Pacific J. Math. 68 (1977), 241-253.
- I. E. Segal: A non-commutative extension of abstract integration. Ann. of Math. 57 (1953), 401-457.
- 22. S. Strătilă & L. Zsidó: Lectures on von Neumann algebras. Abacus Press, Kent 1979.
- A. Weil: L'intégration dans les groupes topologiques et ses applications. Hermann, Paris 1940.
- A. Zygmund: Trigonometric series II. Cambridge University Press 1959.

- 66 -