L^{p} Fourier transformation on
 non-unimodular locally compact groups

by

Marianne Terp
Matematisk Institut, $H . C . \quad$ Orstedinstitutet, Universitetsparken 5, DK-2100 København \emptyset.

Abstract. Let G be a locally compact group with modular function Δ and left regular representation λ. We define the L^{p} Fourier transform of a function $f \in L^{P}(G), 1 \leq p \leq 2$, to be essentially the operator $\lambda(f) \Delta^{1 / q}$ on $L^{2}(G)$ (where $\frac{1}{p}+\frac{1}{q}=1$) and show that a generalized Hausdorff-Young theorem holds. To do this, we first treat in detail the spatial L^{p} spaces $L^{P}\left(\psi_{0}\right)$, $1 \leq p_{2} \leq \infty$, associated with the von Neumann algebra $M=\lambda(G)^{n}$ on $L^{2}(G)$ and the canonical weight ψ_{0} on its commutant. In particular, we discuss isometric isomorphisms of $L^{2}\left(\psi_{0}\right)$ onto $L^{2}(G)$ and of $L^{1}\left(\psi_{0}\right)$ onto the Fourier algebra $A(G)$. Also, we give a characterization of positive definite functions belonging to $A(G)$ among all continuous positive definite functions.

Introduction.

Suppose that G is an abelian locally compact group with dual group \hat{G}. Then the Hausdorff-Young theorem states that if $f \in L^{P}(G)$, where $1 \leq p \leq 2$, then its Fourier transform
$\mathcal{F}(f)$ belongs to $L^{q}(\hat{G})$, where $\frac{1}{p}+\frac{1}{q}=1$ (cf. [23, p. 117]). In the case of Fourier series, i.e. when G is the circle group and \hat{G} the integers, this is a classical result due to F. Hausdorff and W. H. Young [24, p. 101]. An extension of this theorem to all unimodular locally compact groups was given by R. A. Kunze [14]. In this paper we shall treat the case of a general, i.e. not necessarily unimodular, locally compact group.

In order to describe our results, we first briefly recall those of [14]. Suppose that f is an integrable function on a unimodular group G. Then we consider the Fourier transform $\mathcal{F}(f)$ to be the operator $\lambda(f)$ of left convolution by f on $L^{2}(G)$. (As pointed out by Kunze [14], this point of view is justified by the fact that in the abelian case $\lambda(f)$ is unitarily equivalent to the operator on $L^{2}(\hat{G})$ of multiplication by the (ordinary) Fourier transform \hat{f}.) The Fourier transformation maps $L^{1}(G)$ into the space $L^{\infty}\left(G^{\prime}\right)$, defined as the von Neumann algebra M generated by $\lambda\left(L^{1}(G)\right)$. More generally, one can define $\lambda(f)$ as an (unbounded) operator on $L^{2}(G)$ even for functions f not in $L^{1}(G)$. It then turns out that λ maps each $L^{P}(G), 1 \leq p \leq 2$, norm-decreasingly into a certain space $L^{q}\left(G^{\prime}\right)$ of closed densely defined operators on $L^{2}(G)$ (where $\frac{1}{p}+\frac{1}{q}=1$). This is the Hausdorff-loung theorem. Kunze introduced the spaces $L^{G}\left(G^{\circ}\right)$ as spaces
of measurable operators (in the sense of [21]) with respect to the canonical gage on $M \quad[14, p .533]$. An equivalent but simpler way of introducing the $L^{q}\left(G^{\prime}\right)$ is to consider the trace φ_{0} on M characterized by $\varphi_{0}(\lambda(h) * \lambda(h))=\|h\|_{2}^{2}$ for certain functions h, and then take $L^{q}\left(G^{\prime}\right)$ to be $L^{q}\left(N, \varphi_{0}\right)$ as defined by E. Nelson [15], viewing it as a space of " φ_{0}-measurable" operators [15, Theorem 5]. (In either case, the L^{q} spaces obtained are isomorphic to the abstract L^{9} spaces of J. Dixmier [5] associated with a trace on a von Neumann algebra.)

In the general (non-unimodular) case, φ_{0} is no longer a trace, and the lack of adequate spaces L^{q} into which the $L^{p}(G)$ were to be mapped for a long time prevented the formulation of a Hausdorff-Young theorem, except for some special cases ([7, §8], [20, Droposition 15]). In [10], however, U. Haagerup constructed abstract L^{P} spaces corresponding to an arbitrary von Neumann algebra, and combining methods from [10] with the recent theory of spatial derivatives by A. Connes [2], M. Hilsum has developed a spatial theory of L^{p} spaces [12]. If M is a von Neumann algebra acting on a Hilbert space H and ψ is a weight on its commutant M^{\prime}, then the elements of $L^{\mathrm{p}}(\mathrm{M}, \mathrm{H}, \psi)$ are (in general unbounded) operators on H satisfying a certain homogeneity property with respect to . We snall see that when using these spaces (in the particular case of $M=\lambda(G) ", H=L^{2}(G)$, and $\psi=$ the canonical weight on M^{\prime}) and when defining the L^{p} Fourier transform of an L^{p} function f to be the operator $\because \leftrightarrow f^{*} J^{1 / G}$ on $L^{2}(G)$ where Δ is the modular function of the group), one aets a nice L^{j} Fourier transformation theory and in particular a Hatisucief-Young theorem.

The paper is organized as follows. In Section 1 we fix the notations and describe our set-up. In Section 2, we study the L^{p} spaces of [12] in our particular case; we give a reformulation of the α-homogeneity property appearing in [2] that does not involve modular automorphism groups and we characterize ${ }^{\mathrm{P}}\left(\psi_{0}\right)$ operators among all ($-\frac{1}{p}$)-homogeneous operators. In Section 3 , we treat the case $p=2$ and obtain explicit expressions for the L^{2} Fourier transformation $\mathcal{F}_{2}=\mathcal{P}$, called the plancherel transformation, as well as for its inverse.

Next, in Section 4, we deal with the case of a general $p \in[1,2]$; we define the L^{p} Fourier transformation \mathcal{F}_{p}, and using interpolation (specifically, the three lines theorem) we prove our version of the Hausdorff-Young theorem.

Finally, in Section 5, we define an L^{p} Fourier cotransformation $\overline{\mathcal{F}}_{\mathrm{p}}$ taking $\mathrm{L}^{\mathrm{P}}\left(\psi_{0}\right), 1 \leq \mathrm{p} \leq 2$, into $\mathrm{L}^{G}(G)$ and we investigate the relations between cotransformation and Fourier inversion. A detailed study of the $p=1$ case gives a new characterization of $A(G)+$ functions among all continuous positive definite functions on G .

1. Preliminaries and notation.

Let G be a locally compact group with left Haar measure $d x$. We denote by $\mathcal{K}(G)$ the set of continuous functions on G with compact support and by $L^{\mathrm{p}}(\mathrm{G}), 1 \leq \mathrm{p} \leq \infty$, the ordinary Libcsgue spaces with respect to dx . The modulax function Δ on G is given by

$$
\int E\left(x a^{-1}\right) d x=\Delta(a) \int E(x) d x
$$

for all $f \in \mathcal{K}(G)$ and $a \in G$. For functions f on G we put

$$
\begin{aligned}
& v(x)=f\left(x^{-1}\right), \tilde{E}(x)=\overline{f\left(x^{-1}\right)}, \\
& f *(x)=\Delta^{-1}(x) \overline{f\left(x^{-1}\right)},(J f)(x)=\Delta^{-\frac{1}{2}}(x) \overline{f\left(x^{-1}\right)},
\end{aligned}
$$

for all $x \in G$. More generally, for each $p \in[1, \infty]$, we define

$$
\left(J_{p} f\right)(x)=\Delta^{-1 / P}(x) \overline{f\left(x^{-1}\right)}, \quad x \in G
$$

Then in particular $J_{1} f=f^{*}, J_{2} f=J f, J_{\infty} f=\tilde{\mathbf{F}}$. Note that for each $p \in[1, \infty]$, the operation J_{p} is a conjugate linear isometric involution of $L^{P}(G)$.

We shall often make use of the following non-unimodular version of Young's inequalities for convolution:

Lemma 1.1. (Young's convolution inequalities.) Let $p_{1}, p_{2}, p \in[1, \infty]$ and $\frac{1}{p_{1}}+\frac{1}{q_{1}}=1$. Assume that $\frac{1}{p_{1}}+\frac{1}{P_{2}}-\frac{1}{p}=1$. Then for all $f_{1} \in L^{p_{1}}(G)$ and $f_{2} \in L^{p_{2}}(G)$ the convolution product $f_{1} * \Delta{ }^{q_{1}} f_{2}$ exists and belongs to $L^{P}(G)$, and

$$
\left\|f_{1} * \Delta{ }^{1 / q_{1}} f_{2}\right\| p\left\|f_{1}\right\| p_{1}\left\|f_{2}\right\|_{p_{2}}
$$

This theorem is well-known in the unimodular case as well as in the special cases $\left(p_{1}, p_{2}, p\right)=\left(p_{1}, q_{1}, \infty\right)$ (where it follows from Holder's inequality $)\left(p_{1}, p_{2}, p\right)=(1, p, p)$ or $\left(p, p_{2}, p\right)=(p, 1, p)$ [11, (20.14)]. The general case has also been noted [13, Remark 2.2]. It can be proved by modifying the proof of [11, (20.18)] or by interpolation from the special cases mentioned above.

For operators T on the Hilbert space $L^{2}(G)$ we use the notation $D(T)$ (domain of T) , $R(T)$ (range of T), $N(T)$ (kernel of T). If T is preclosed, we denote by [T] the closure of T. If T is a positive self-adjoint operator and P the projection onto $N\left(T^{\perp}\right)^{\perp}$, then by definition $T^{i t}, t \in \mathbb{R}$, is the partial isometry coinciding with the unitary $(T P)^{i t}$ on $N(T)^{\perp}$ and O on $N(T)$. By convention, when speaking of operators, "bounded" always means "bounded and everywhere defined".

We denote by λ and ρ the left and right regular representations of G on $L^{2}(G)$, i.e. the unitary representations given by

$$
\begin{aligned}
& (\lambda(x) f)(y)=f\left(x^{-1} y\right) \\
& (\rho(x) f)(y)=\Delta^{\frac{1}{2}}(x) f(y x)
\end{aligned}
$$

for all $x, y \in G$ and $f \in L^{2}(G)$. The corresponding representations of the algebra $L^{i}(G)$ (as in [4, 13.3]) are given by

$$
\begin{aligned}
& \lambda(h) f=h * f \\
& \rho(h) f=f * \Delta^{-\frac{1}{2} v} h,
\end{aligned}
$$

for all $h \in L^{1}(G)$ and $f \in L^{2}(G)$.
We denote by M the von Neumann algebra of operators on $L^{2}(G)$ generated by $\lambda(G)$ (or $\lambda(\mathcal{K}(G))$, or $\left.\lambda\left(L^{1}(G)\right)\right)$. In other words, M is the left von Neumann algebra of $K(G)$, where $\mathcal{K}(G)$ is considered as a left Hilbert algebra [3, Definition 2.1] with convolution, involution * , and the ordinary inner product in $L^{2}(G)$. The commutant M^{\prime} of M is the von Neumann algebra generated by $\rho(G)$, and $M^{\prime}=J M J$.
f function $\xi \in L^{2}(G)$ is called left (resp. right) bounded if left (resp. right) convolution with ξ on $\mathcal{K}(G)$ extends to a bounded operator on $L^{2}(G)$, i.e. if there exists a bounded operator $\lambda(\xi)$ (resp. $\lambda^{\prime}(\xi)$) such that $\forall k \in \mathcal{K}(G): \lambda(\xi) k=\xi ⿻ k$ (resp. $\left.\lambda^{\prime}(\xi) k=k * \xi\right)$: The set of left (resp. right) bounded $L^{2}(G)$-functions is denoted a_{k} (resp. a_{r}). Obviousiy, $K(G) \subseteq a_{\ell}, K(G) \subseteq a_{I}$, and for $\xi \in K(G)$ we have $\lambda^{\prime}(\xi)=$ $\rho\left(\Delta^{-\frac{1}{2}} \stackrel{\vee}{\xi}\right)$. Note that $\xi \in L^{2}(G)$ is left bounded if and only if the operator $\eta \mapsto \lambda^{\prime}(\eta) \xi: a_{r} \rightarrow L^{2}(G)$ extends to a bouraicu raw rator on $L^{2}(G)$; if this is the case, we have $\lambda(\xi) \eta=\lambda^{\prime}(\eta) \xi$ for all $n \in A_{r}$. (Our definition of left-boundedness therefore agrees with $\left\{1\right.$, Définition 2.1]). If $\xi \in G_{\ell}$ and $T \in M$. then $T \xi \in Q_{\ell}$ and $\lambda(T \xi)=T \lambda(\xi)$.

We denote by φ_{0} the canonical weight on $M[1$, Définition 2.12]. Then the weight ψ_{0} or M^{\prime} given by $\psi_{0}(y)=\varphi_{0}\left(J y^{\prime} J\right)$ for all $y \in\left(M^{\prime}\right)+$ is called the canonical weight on M^{\prime}. The corresponding modular automorphism groups are given by

$$
\begin{aligned}
& \sigma_{t}{ }_{t}^{\varphi_{0}}(x)=\Delta^{i t} \Delta^{-i t}, x \in M, \\
& \sigma_{t}{ }^{\psi_{0}}(y)=\Delta^{-i t} y \Delta^{i t}, y \in M^{\prime},
\end{aligned}
$$

for all $t \in \mathbb{R}$. Here, Δ denotes the multiplication operator on $L^{2}(G)$ by the function Δ (note that we shall not distinguish in our notation between the function Δ and the corresponding multiplication operator). With this definition, Δ is in fact the modular operator of $K(G)(a s$ defined in $[3$, Lema 2.2]).

It follows from the defining property of φ_{0} [1, Théoreme 2.11] that for all $y \in M^{\prime}$ we have

$$
\Psi_{0}\left(y^{*} y\right)= \begin{cases}\|\eta\|_{2}^{2} & \text { if } y=\lambda^{\prime}(\eta) \text { for some } \eta \in a_{r} \\ \infty & \text { otherwise }\end{cases}
$$

We identify the Hilbert space completion ${ }^{H_{~_{0}}}$ of ${ }^{n} \psi_{0}=$ $\left\{y \in M^{\prime} \mid \Psi_{0}\left(y^{*} y\right)<\infty\right\}$ with $L^{2}(G)$ via $\eta_{0} \mapsto \lambda^{\prime}(\eta)$.

Now recall that by definition [2, Definition 1], $D\left(L^{2}(G), \psi_{0}\right.$) is the set of $\xi \in L^{2}(G){ }_{\psi_{0}}$ such that $y \leftrightarrow Y \xi: n_{\psi_{0}} \rightarrow L^{2}(G)$ extends to a bounded operator $R^{\psi_{0}}(\xi): H_{\psi_{0}} \rightarrow L^{2}(G)$, i.e.. in view of the identification of $H_{\psi_{0}}$ with $L^{2}(G)$, such that $\eta \mapsto \lambda^{\prime}(\eta) \xi$: $a_{r} \rightarrow L^{2}(G)$ extends to a bounded operator on $L^{2}(G)$. Thus $D\left(L^{2}(G), \psi_{0}\right)=O_{\ell}$, and for all $\xi \in D\left(L^{2}(G), \psi_{0}\right)$ we have $\mathrm{R}^{\psi}(\xi)=\lambda(\xi)$.

If φ is a normal semi-finite weight on M, then by definition [2], $\frac{d \varphi}{d \psi_{0}}$ is the unique positive self-adjoint operator T satisfying

$$
\forall \xi \in O_{i}: \varphi(\lambda(\xi) \lambda(\xi) *)= \begin{cases}\left\|T^{\frac{1}{2}} \xi\right\|^{2} & \text { if } \xi \in D\left(T^{\frac{1}{2}}\right) \\ \infty & \text { otherwise }\end{cases}
$$

and

$$
T^{\frac{1}{2}}=\left[T^{\frac{1}{2}} 1 a_{i} \cap D\left(T^{\frac{1}{2}}\right)\right]
$$

In particular, we have

$$
\frac{d \varphi_{0}}{d \varphi_{0}}=د
$$

(cf, [2, Lemma $10(b)]$ together with the proof of $[2$, Lemma 10 (a) $]$).

If φ is a functional, then by the definition of $\frac{d \varphi}{d \psi_{0}}$ we have $a_{\ell} \subseteq D\left(\left(\frac{d \varphi}{d \psi_{0}}\right)^{\frac{1}{2}}\right)$ and $\left(\frac{d_{\varphi}}{\alpha_{0}}\right)^{\frac{1}{2}}=\left[\left.\left(\frac{d \varphi}{d_{0}}\right)^{\frac{1}{2}}\right|_{a_{\ell}}\right]$.

Finally, we note that the predual space M_{*} of the von Neumann aigebra M may be, viewed as a space of functions on the group in the following manner: for each $\varphi \in M_{*}$, define $u: G \rightarrow \mathbb{C}$ bs

$$
u(x)=\varphi(\lambda(x)), \quad x \in G .
$$

Then u is a continuous function on the group determining completely. The linear space of such functions, normed by $\|u\|=\|\varphi\|$, is exactly the Fourier algebra $A(G)$ of G introduced by P. Eymard [6] (this follows from [6, Théorème (3.10)]). The identification of $A(G)$ with M_{*} is such that

$$
<\varphi, \lambda(f)\rangle=\int \varphi(x) f(x) d x
$$

for all $\varphi \in M_{*} \simeq A(G)$ and all $f \in L^{1}(G)$.
Recall that by $[4,13.4 .4]$ a continuous function φ on G is positive definite if and only if

$$
\forall \vdots \in \mathcal{K}(G): \int \varphi(x)\left(\xi * \xi^{*}\right)(x) d x \geq 0
$$

i.e., if and only if

$$
\forall E \in \mathcal{K}(G): \iint \varphi\left(y x^{-1}\right) \xi(y) \overline{\sum(x)} d y d x \geq 0 .
$$

If $\varphi \in A(G)$, then φ is positive definite if and only if the corresponding functional $\varphi \in N_{*}$ is positive. We denote by $A(G)+$ the set of positive definite w e $A(G)$.
2. Homogeneous operators on $L^{2}(G)$ and the syaces $L^{5}\left(\sigma_{j}\right)$. Definition. Let $a \in \mathbb{R}$. An operator T on $L^{2}(G)$ is called a-homogeneous if
$\forall x \in G: \rho(x) T \subseteq \Delta^{-a}(x) T p(x)$.

Remarks. (1) The 0-homogeneous operators are precisely the operators affiliated with M .
(2) If T is α-homogeneous, then actually $\rho(x) T=$ $\Delta^{-a}(x) T \rho(x)$ for all $x \in G$ (to see this, replace x by x^{-1} in the definition).
(3) If T and S are both α-homogeneous, then $T+S$ is α-homogeneous. If T is α-homogeneous and S is β-homogeneous, then $T S$ is $(\alpha+\beta)$-homogeneous. If T is ciensely defined and α-nomogeneous, then $T *$ is also α-nomoceneous. If T is positive self-adjoint and α-nomogeneous and $\beta \in \mathbb{R}_{+}$, then T^{β} is ($\alpha \beta$) homogeneous (use $\left.\rho(x) T^{\beta} \rho\left(x^{-1}\right)=\left(\rho(x) T_{\rho}\left(x^{-1}\right)\right)^{\beta}\right)$.
(4) If T is α-homogeneous for some $a \in \mathbb{R}$, then the projection onto $N(T)^{\perp}$ belongs to M (since NiT) is invariant under all $f(x), x \in G)$.
(5) If a preclosed operator T is α-homogeneous, then its closure $[T]$ is also α-homoteneous.
(6) For each $a \in \mathbb{R}, s^{-a}$ is a-homagemeous.

Proof. If T is a-homogeneous, then, by Remark (3), $|T|=(T * T)^{\frac{1}{2}}$ is also α-homogeneous. Then for all $x \in G$ and $\xi \in D(|T|)$ we have $\rho(x) \cup|T| \xi=\rho(x) T \xi=\Delta^{-\alpha}(x) T \rho(x) \xi=\Delta^{-\alpha}(x) U|T| \rho(x) \xi=$ $U 0(x)|T| \xi$, i.e. $\rho(x) U \subseteq U_{p}(x)$ on $R(|T|)$. Since the projection onto $R(|T|)=N(|T|)^{\perp}$ belongs to M, we conclude that U commutes with all $f(x)$; thus $U \in M$.

```
The "if"-part follows directly from Remarks (3) and (1).
```

Lemma 2.2. Let T be a closed densely defined operator on $L^{2}(G)$, and let $a \in \mathbb{C}$. Suppose that

$$
\forall x \in G: \rho(x) T \subseteq \Delta^{-a}(x) T p(x)
$$

Then

$$
\forall f \in K(G): \lambda^{\prime}(f) T \subseteq \mathbb{T}^{\prime}\left(\Delta^{\alpha} f\right)
$$

Proof. Let $f \in \mathcal{K}(G)$ and $\xi \in D(T)$. Then for all $\eta \in D\left(T^{*}\right)$ we have

$$
\begin{aligned}
(\rho(f) T \xi \mid \eta) & =\int f(x)(\rho(x) T \xi \mid \eta) d x \\
& =\int f(x) \Delta^{-\alpha}(x)(T \rho(x) \xi \mid \eta) d x \\
& =\int \Delta^{-\alpha}(x) f(x)(\rho(x) \xi \mid T * \eta) d x \\
& =\left(\rho\left(\Delta^{-\alpha} f\right) \xi \mid T_{n}\right)
\end{aligned}
$$

This shows that $f\left(\Delta^{-\alpha} f\right) E \in D\left(T^{* *}\right)=D(T)$ and $T_{p}\left(\Delta^{-\alpha} f\right) E=$ $\rho(f) T E$ for all $\varepsilon \in D(T)$, i.e.

$$
\rho(f) \mathrm{T} \subseteq \mathrm{~T} \subseteq\left(\Delta^{-\alpha_{f}}\right)
$$

Hence for all $f \in \mathcal{K}(G)$ we have

Lemma 2.3. Let T be a closed aensely defined operator on $L^{2}(G)$, α-homogeneous for some $a \in \mathbb{R}$. Let $\xi \in G_{i}$. Then for all $t \in \mathbb{R}$ we have $|T|^{i t} \xi \in O_{\ell}$ and

$$
\left\|\lambda\left(\mid T \|^{i t} \xi\right)\right\| \leq\|(\xi)\|
$$

Proof. By Lemma 2.1, we have $\rho(x)|T| \rho\left(x^{-1}\right)=\Delta^{-\alpha}(x)|T|$ for all $x \in G$, whence $\rho(x)|T|^{i t} \rho\left(x^{-1}\right)=\Delta^{-i \alpha t}(x)|T|^{i t}$ for all $x \in G$ and all $t \in \mathbb{R}$. Then, applying the preceding lemma to $|T|^{i t}$, we obtain for all $n \in \mathcal{K}(G)$ that
and thus

We conclude that $|T|^{i t} \bar{\xi}$ is left bounded anc that

$$
\left\|\lambda\left(|T|^{i t} \xi\right)\right\| \leq\|\lambda(\xi)\|
$$

Remark. In particular, $\Delta^{i t} \xi \in A_{\hat{i}}$ with $\left\|\lambda\left(\Delta^{i t} \xi\right)\right\| \leq\|\lambda(\xi)\|$ for all $\xi \in O_{\hat{\lambda}}$ and $t \in \mathbb{R}$.

Our next lemma shows that α-homogeneity as defined here is equivalent to homogeneity of degree a kith respect to $\dot{\%}$ as defined in [2, Definition 17].

Lemma 2.7. Let $a \in \mathbb{K}$, anci let T bo a closed densely defined operator on $L^{2}(G)$ with polar decomposition $T=\||T|$. Then the
following conditions are equivalent:
(i) T is α-homogeneous,
(ii) $U \in M$ and $\forall y \in M^{\prime} \forall t \in \mathbb{R}:{ }_{\alpha}^{\sigma_{0}}(y)|T|^{i t}=|T|^{i t} y$.

Proof. By Lemma 2.1, we may assume that T is positive self-adjoi
Denote by P the projection onto $N(T)^{\perp}$. If either (i) or (ii) holds, then P is in M, and thus the subspace $P L^{2}(G)$ is invariant under all operators considered. Therefore, we may suppose that $D \in M$, and the lema is proved when we have shown the equivalence of

$$
\begin{equation*}
\forall X \in G: \rho(x) T \rho\left(x^{-1}\right) P=\Delta^{-\alpha}(x) T P \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall t \in \mathbb{R} \forall y \in M^{\prime}: \sigma_{\alpha t}^{\psi_{0}}(y) P=T^{i t} Y T^{-i t} P \tag{2}
\end{equation*}
$$

Now for all $x \in G$ we have

$$
\sigma_{\alpha t}^{\psi_{0}}(\rho(x))=\Delta^{-i \alpha t} \rho(x) \Delta^{i \alpha t}=\Delta^{i \alpha t}(x) \rho(x)
$$

since

$$
\begin{aligned}
\left(\Delta^{-i \alpha t} \rho(x) \Delta^{i \alpha t}\right. & f)(z) \\
& =\Delta^{-i t}(z) \Delta^{\frac{1}{2}}(x) \Delta^{i t}(z x) f(z x) \\
& =\Delta^{-i t}(x)(\rho(x) f)(z)
\end{aligned}
$$

for all $f \in L^{2}(G)$ and all $x, z \in G$. Then, since M^{\prime} is generated by the $\rho(x)$, the condition (2) is equivalent to

$$
\forall x \in G \quad \forall t \in \mathbb{R}: \Delta^{i \alpha t}(x)_{\rho}(x) P=T^{i t} \rho(x) T^{-i t_{p}}
$$

```
or (changing t into -t)
```

$\forall x \in G \quad \forall t \in \mathbb{P}: \quad o(x) T^{i t} C(x) P=\Delta^{-i \alpha t}(x) T^{i t} P$,
which in turn is equivalent to (1).

Now, by [2, Theorem 13] a positive self-adjoint operator on $L^{2}(G)$ is (-1)-homogeneous if and only if it has the form $\frac{d \varphi}{d \psi_{0}}$ for a (necessarily unique) normal semi-finite weight φ on M.

We define the "integral with respect to '0" of a positive self-adjoint (-1)-homogeneous operator T as

$$
\int \mathrm{T} d \psi_{0}=\varphi(1) \in[0, \infty]
$$

where $T=\frac{d \varphi}{d \psi_{0}}$. If $\int T \mathrm{~d} \psi_{0}<\infty$, i.e. if φ is a functional, we shall say that T is integrable. (These definitions agree with those given in [2, remarks following Corollary 18].)

For each $p \in\left[1, \infty\left[\right.\right.$, we denote by $L^{P}\left(\psi_{0}\right)$ the set of closed densely defined $\left(-\frac{1}{p}\right)$-homogeneous operators T on $L^{2}(G)$ satisfying

$$
\int|T|^{P} d_{\psi_{0}}<\infty
$$

(Note that $|T|^{p}$ is (-1)-homogeneous, so that $\int|T|^{p} d_{\psi}$ is defined.) We put $L^{\infty}\left(\psi_{0}^{\prime}\right)=M$.

The spaces $L^{\mathrm{p}}\left(\dot{\psi}_{0}\right)$ introduced here are special cases of the spatial L^{F}-spaces of M. Hilsum [12]. We recall their main properties (note, however, that our notation differs from that of [12] in that we maintain throughout the distinction between operators and their (losures) $=$

If $T, S \in L^{\mathrm{P}}\left(\dot{\psi}_{0}\right)$, then $T+S$ is densely defined and preclosed, and the closure $[T+S]$ belongs to $L^{D}\left(\psi_{0}\right)$. With the obvious scalar multiplication and the sum $(T, S) \leftrightarrow[T+S]$, $L^{\underline{D}}\left(\psi_{0}\right)$ is a linear space, and even a Banach space with the norm $\|\cdot\|_{p}$ defined by $\|T\|_{p}{ }^{\prime}=\left(\int|T|^{p} d \psi_{0}\right)^{1 / p}$ if $p \in[1, \infty[$ and $\|T\|_{\mathrm{p}}=\|\mathrm{T}\|$ (operator norm) if $\mathrm{p}=\infty$. The operation $T \mapsto T *$ is an isometry of $L^{\mathrm{p}}\left(\psi_{0}\right)$ onto $L^{\mathrm{p}}\left(\psi_{0}\right)$. We denote $L^{\mathrm{P}}\left(\psi_{0}\right)+$ the set of positive self-adjoint operators belonging to ${ }_{L}{ }^{\mathrm{p}}\left(\psi_{0}\right)$. By linearity, $T \mapsto \int T d \psi_{0}$ defined on $L^{1}\left(\psi_{0}\right)+$ extends to a linear form on the whole of $L{ }^{1}\left(\psi_{0}\right)$ satisfying $\int T * d \psi_{0}=\bar{T} \mathrm{~d} \psi_{0}$ and $\left|\int \mathrm{T} \mathrm{d} \psi_{0}\right| \leq\|\mathrm{T}\|_{1}$ for all $\mathrm{T} \in \mathrm{L}^{1}\left(\psi_{0}\right)$.

Let $p_{1}, p_{2}, p \in[1, \infty]$ such that $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p}$. If $T \in L^{P_{1}}\left(\psi_{0}\right)$ and $S \in L^{P_{2}}\left(\psi_{0}\right)$, then the operator $T S$ is densely defined and preclosed, its closure [TS] belongs to ${ }^{\mathrm{P}}\left(\psi_{0}\right)$, and

$$
\|[T S]\|_{p} \leq\|T\|_{p_{1}}\|S\|_{P_{2}}
$$

In particular, if $T \in L^{p}\left(\psi_{0}\right)$ and $S \in L^{q}\left(\psi_{0}\right)$ where $\frac{1}{p}+\frac{1}{q}=1$, then $[T S] \in L^{1}\left(\psi_{0}\right)$ and $\|[T S]\|_{1} \leq\|T\|_{\mathrm{p}}\|S\|_{\mathrm{q}}$ (Hölder's inequalit: furthermore, $\int[T S] d \psi_{0}=\int[S T] d \psi_{0}$.

If $p \in\left[1, \infty\left[\right.\right.$ and $\frac{1}{p}+\frac{1}{q}=1$, then we identify $L^{q}\left(\psi_{0}\right)$ wit. the dual space of $L^{\mathrm{P}}\left(\psi_{0}\right)$ by means of the form $(T, S) \mapsto \int[T S] \psi_{0}$ $T \in L^{p}\left(\psi_{0}\right), S \in L^{q}\left(\psi_{0}\right)$. In particular, $L^{1}\left(\psi_{0}\right)$ is the predual of $M=L^{\infty}\left(\psi_{0}\right)$. The space $L^{2}\left(w_{0}\right)$ is a Hilluert space with the inner product $(T \mid S)_{L^{2}\left(\psi_{0}\right)}=\int[S * T] d \psi_{0}$.

Remark. Suppose that G is unimodular. Then the α-homogeneous operators for any a are simply the onerators affiliated with M
and the canonical weight φ_{0} on M is a trace. We claim that $\int T d_{0}=\varphi_{0}(T)$ for all positive self-adjoint operators T affiliated with M, where we have written $\varphi_{0}(T)$ for the value of $\varphi=\varphi_{0}(T \cdot)$ at 1 (with $\varphi_{0}(T \cdot)$ defined as in [17, Section 4]). To see this, recall that $\frac{d \varphi_{0}}{d \psi_{0}}=\Delta=1$, so that using [2, Theorem 9, (2)], we have

$$
T^{i t}=\left(D \varphi: D \varphi_{0}\right)_{t}=\left(\frac{d \varphi}{d \psi_{0}}\right)^{i t}\left(\frac{d \varphi_{0}}{d \psi_{0}}\right)^{-i t}=\left(\frac{d \varphi}{d \psi_{0}}\right)^{i t}
$$

for all $t \in \mathbb{R}$. Thus $T=\frac{d \varphi}{d \psi_{0}}$ and $\int T d \psi_{0}=\varphi(1)=\varphi_{0}(T)$. (When proving $T=\frac{d \varphi}{d \psi_{0}}$, we implicitly assumed that T is injective so that $\varphi=\varphi_{0}(T \cdot)$ is faithful. In the general case, denote by $Q \in M$ the projection onto $N(T)$, note that $T+Q$ is positive self-adjoint, affiliated with M, and injective, and verify that

$$
T+Q=\frac{d \varphi_{0}((T+Q) \cdot)}{d \psi_{0}}=\frac{d \varphi_{0}(T \cdot)}{d \psi_{0}}+\frac{d \varphi_{0}(Q \cdot)}{d \psi_{0}} .
$$

Since the supports of $\frac{d \varphi_{0}(T \cdot)}{d \psi_{0}}$ and $\frac{d \varphi_{0}(Q \cdot)}{d \psi_{0}}$ are $1-Q$ and Q, respectively, we conclude that $T=\frac{d \varphi_{0}(T \cdot)}{d \psi_{0}}$ as desired.) It follows that in this case the spaces $L^{\mathrm{P}}\left(\psi_{0}\right)$ reduce to the ordinary $L^{p}\left(M, \varphi_{0}\right)$ (discussed in the introduction).

Returning to the general case, we now proceed to a more detailed stuay of the spaces $\mathrm{L}^{\mathrm{P}}\left(\mathrm{v}_{\mathrm{o}}\right)$. For this, we shall need the following slightly generaiized version of [12, II, Proposition 2]:

Lemma 2.5. Let T be a positive self-adjoint operator on $L^{2}(G)$, α-homogeneous for some $a \in \mathbb{R}$. Let $\vdots \in A_{\text {; }}$. Then there

(i) $\forall \mathrm{n} \in \mathbb{N}:\left\|\lambda\left(\xi_{\mathrm{n}}\right)\right\| \leq\|\lambda(\xi)\|$,
(ii) $\zeta_{n} \rightarrow \bar{\zeta}$ as $n \rightarrow \infty$,
(iii) $T^{\beta} \xi_{n} \rightarrow T^{\beta} \xi$ as $n \rightarrow \infty$ whenever ξ and $\beta \in \mathbb{R}_{+}$ satisfy $\xi \in D\left(T^{\beta}\right)$.

Proof. For each $n \in \mathbb{N}$, define $f_{n}:[0, \infty[\rightarrow \mathbb{C}$ by

$$
f_{n}(x)= \begin{cases}\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}} x^{i t / \sqrt{n}} d t & \text { if } x>0 \\ 1 & \text { if } x=0\end{cases}
$$

Since for all $x \in\left[0, \infty\left[\right.\right.$ we have $\left|f_{n}(x)\right| \leq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}} d t=1$, the operators $f_{n}(T)$ are bounded. For each $n \in \mathbb{N}$, put $\xi_{n}=f_{n}(T) \xi$.

To prove that the ξ_{n} belong to G_{ℓ} and satisfy (i), denote by P the projection onto $N(T)^{\perp}$ and observe that for all $\eta \in \mathcal{K}(G)$ we have

$$
\begin{aligned}
f_{n}(T) P \xi * \eta & =\lambda^{\prime}(\eta) f_{n}(T) P \xi \\
& =\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}} \lambda^{\prime}(n) T^{i t / \sqrt{n}} \xi d t \\
& \left.=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2} T^{i t / \sqrt{n}} \lambda^{\prime}\left(\Delta^{i \alpha t / \sqrt{n}}\right.} n\right) \xi d t \\
& \left.=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2} T^{i t / \sqrt{n}}\left(\xi * \Delta^{i \alpha t / \sqrt{n}}\right.} n\right) d t
\end{aligned}
$$

$\left\|f_{n}(T) P \xi * n\right\|_{2} \leq \frac{1}{\sqrt{\pi}} \int e^{-t^{2}}\|\lambda(\xi)\|\left\|\Delta^{i \alpha t / \sqrt{n}} n\right\|_{2} d t \leq\|\lambda(\xi)\|\|n\|_{2}$.
On the other hand,

$$
\|(1-P) \xi * n\|_{2} \leq\|\lambda((1-P) \xi)\|\|n\|_{2} \leq\|\lambda(\xi)\|\|\eta\|_{2}
$$

since $P \in M$.
In all, $f_{n}(T) \xi=f_{n}(T) P \xi+(1-P) \xi$ belongs to O_{ℓ} and $\left\|\lambda\left(E_{n}(T) \xi\right)\right\| \leq\|\lambda(\xi)\|$.

Now, to see that $\xi_{n} \in D\left(T^{\beta}\right)$ for all $\beta \in \mathbb{R}_{+}$, note that

$$
\begin{aligned}
f_{n}(x) & =\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}} e^{(i t / \sqrt{n}) \log x} d t \\
& =e^{-\frac{1}{4 n}(\log x)^{2}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\left(t-\frac{i}{2 \sqrt{n}} \log x\right)^{2}} d t \\
& =e^{-\frac{1}{4 n}(\log x)^{2}}
\end{aligned}
$$

for all $x>0$. Then $x \mapsto x^{\beta} f_{n}(x)=e^{\left(\beta \log x-\frac{1}{4 n}(\log x)^{2}\right)}$ is bounded, so that $T^{\beta} f_{n}(T)$ is a bounded operator, and thus $f_{n}(T) \xi \in D\left(T^{\beta}\right)$.

Since f_{n} is bounded and $f_{n}(x) \rightarrow 1$ as $n \rightarrow \infty$ for all $x \in[0, \infty[$, we have

$$
f_{n}(T) \zeta \rightarrow \zeta \text { as } n \rightarrow \infty
$$

for all ζ. From this, we immediately get (ii) and (iii). Indeed, $\xi_{n}=f_{n}(T) \xi \rightarrow \xi$, and if $\xi \in D\left(T^{\beta}\right)$, then

$$
T^{\beta} \xi_{n}=T^{\beta} f_{n}(T) \xi=f_{n}(T) T^{\beta} \xi \rightarrow T^{\beta} \xi
$$

Proposition 2.1. Let T be a closed densely defined (-1)-homogeneous operator on $L^{2}(G)$. Then the following conditions are equivalent:
(i) $T \in L^{1}\left(\psi_{0}\right)$,
(ii) there exists a constant $C \geq 0$ such that $\forall \xi \in O_{\ell} \cap D(T) \quad \forall n \in a_{\ell}:|(T \xi \mid \eta)| \leq C\|\lambda(\xi)\|\|\lambda(\eta)\|$,
(iii) there exists a constant $C \geq 0$ such that $\forall \xi \in A_{\ell} \cap D\left(|T|^{\frac{1}{2}}\right):\left\||T|^{\frac{1}{2}} \xi\right\|^{2} \leq C\|\lambda(\xi)\|^{2}$,
(iv) there exists an approximate identity $\left(\xi_{i}\right){ }_{i \in I}$ in $K(G)+$ such that all $\xi_{i} \in D\left(|T|^{\frac{1}{2}}\right)$ and

$$
\lim \inf \left\||T|^{\frac{1}{2}} \xi_{i}\right\|<\infty .
$$

If $T \in L^{1}\left(\psi_{0}\right)$, then $a_{\ell} \subseteq D\left(|T|^{\frac{1}{2}}\right)$, and for any approximate identity $\left(\xi_{i}\right)_{i \in I}$ in $K(G)_{+}$we have

$$
\|T\|_{1}=\operatorname{lim\| }|T|^{\frac{1}{2}} \xi_{i} \|^{2} .
$$

Furthermore, $\|T\|_{1}$ is the smallest C satisfying (ii) and the smallest C satisfying (iii).

Proof. Let $T=U|T|$ be the polar decomposition of T.
First, suppose that $T \in L^{1}\left(\sigma_{0}\right)$. Then $|T| \in L^{1}\left(\psi_{0}\right)_{+}$, and therefore $|T|=\frac{d \varphi}{d \psi_{0}}$ for some positive functional φ on M. Recall that $O_{i} \subseteq D\left(|T|^{\frac{1}{2}} ;\right.$. Thus for ail $\xi \in a_{i} \cap D(T)$ and $\eta \in a_{l}$ we have

$$
\begin{aligned}
|(T \xi \mid \eta)| & =\left|\left(\left.|T|^{\frac{1}{2}} \xi| | T\right|^{\frac{1}{2}} U^{*} \eta\right)\right| \\
& =\left|\varphi\left(\lambda(\xi) \lambda\left(U^{*} \eta\right)\right)\right| \\
& \leq\|\varphi\|\|\lambda(\xi)\|\left\|\lambda\left(U^{*} \eta\right)\right\| \\
& \leq\|T\|_{1}\|\lambda(\xi)\|\|(\eta)\|,
\end{aligned}
$$

Next, suppose that T satisfies (ii). Then for all $\xi \in \Omega_{\ell} \cap D(|T|)$ we have

$$
\begin{aligned}
\left\||T|^{\frac{1}{2}} \xi\right\|^{2} & =|(T \xi \mid U \xi)| \\
& \leq C\|\lambda(\xi)\|\|\lambda(U \xi)\| \\
& \leq C\|\lambda(\xi)\|^{2} .
\end{aligned}
$$

Now if $\xi \in \|_{\ell} \cap D\left(|T|^{\frac{1}{2}}\right)$, there exist (by Lemma 2.5) $\xi_{n} \in A_{\ell} \cap D(|T|)$ such that $|T|^{\frac{1}{2}} \xi_{n} \rightarrow|T|^{\frac{1}{2}} \xi$ and $\left\|\lambda\left(\xi_{n}\right)\right\| \leq$ $\|\lambda(\xi)\|$. Since

$$
\left\||T|^{\frac{1}{2}} \xi_{n}\right\|^{2} \leq C\left\|\lambda\left(\xi_{n}\right)\right\|^{2} \leq C\|\lambda(\xi)\|^{2},
$$

we conclude that $\left\||T|^{\frac{1}{2}} \xi\right\|^{2} \leq C\|\lambda(\xi)\|^{2}$. Thus (iii) is proved.
Now suppose that T satisfies (iii). First we show that this implies $a_{\ell} \subseteq D\left(|T|^{\frac{1}{2}}\right)$. Let $\xi \in O_{\ell}$. Then by Lemma 2.5 there exist $\xi_{n} \in O_{\ell} \cap D\left(|T|^{\frac{1}{2}}\right)$ such that $\xi_{\mathrm{n}} \rightarrow \xi$ and $\left\|\lambda\left(\xi_{\mathrm{n}}\right)\right\| \leq$ $\|\lambda(\xi)\|$. Then for all $n \in D\left(|T|^{\frac{1}{2}}\right)$ we have

$$
\begin{aligned}
\left|\left(\left.|T|^{\frac{1}{2}} \xi_{n} \right\rvert\, n\right)\right| & \leq\left\||T|^{\frac{1}{2}} \xi_{n}\right\|\|n\| \\
& \leq C^{\frac{1}{2}}\left\|\lambda\left(\xi_{n}\right)\right\|\|n\| \\
& \leq C^{\frac{1}{2}}\|\lambda(\xi)\|\|n\|
\end{aligned}
$$

and

$$
\left(\left.|T|^{\frac{1}{2}} \xi_{n} \right\rvert\, n\right)=\left(\left.\xi_{n}| | T\right|^{\frac{1}{2}} n\right) \rightarrow\left(\left.\xi| | T\right|^{\frac{1}{2}} n\right) .
$$

We conclude that

$$
\forall \eta \in D\left(|T|^{\frac{1}{2}}\right):\left|\left(\left.\xi| | T\right|^{\frac{1}{2}} \eta\right)\right| \leq C^{\frac{1}{2}}\|\lambda(\xi)\|\|n\| .
$$

Now, still assuming (iii), let us prove (iv). Let ($\left.\xi_{i}\right)_{i \in I}$ be any approximate identity in $K(G){ }_{+}$. Then automatically all $\xi_{i} \in \mathcal{K}(G) \subseteq \alpha_{l} \subseteq D\left(|T|^{\frac{3}{2}}\right)$, and $\left\|i\left(\xi_{i}\right)\right\| \leq\left\|\xi_{i}\right\|_{1}=1$ so that

$$
\left\||T|^{\frac{1}{2}} \xi_{i}\right\|^{2} \leq C\left\|\left(\xi_{i}\right)\right\|^{2} \leq C,
$$

whence $\lim \inf \left\||T|^{\frac{1}{2}} \xi_{i}\right\| \leq C^{\frac{1}{2}}<\infty$.
Finally, suppose that T satisfies (iv) for some $\left(\xi_{i}\right)_{i \in I}$. Note that since $\int\left(\xi_{i} * \xi_{i}{ }^{*}\right)(x) d x=1,\left(\xi_{i} * \xi_{i}{ }^{*}\right){ }_{i \in I}$ is again an approximate identity in $\mathcal{K}(G)_{+}$. Therefore, $\lambda\left(\xi_{i}\right) \lambda\left(\xi_{i}\right) *=$ $\lambda\left(\xi_{i} * \xi_{i}{ }^{*}\right)$ converges strongly, and hence weakly, to 1 in M. Since all $\left\|\lambda\left(\xi_{i}\right) \lambda\left(\xi_{i}\right) *\right\| \leq 1$, this convergence is also o-weak, and by the σ-weak lower semicontinuity of φ, this implies

$$
\begin{aligned}
\varphi(1) & \leq \lim \inf \varphi\left(\lambda\left(\xi_{i}\right) \lambda\left(\xi_{i}\right)^{*}\right) \\
& =\lim \inf \left\||T|^{\frac{1}{3}} \xi_{i}\right\|^{2} \\
& \leq C \lim \inf \left\|\lambda\left(\xi_{i}\right)\right\|^{2} \\
& \leq C<\infty .
\end{aligned}
$$

Since $\varphi(1)=\int|T| d \psi_{0}<\infty$, we have $T \in L^{1}\left(\psi_{0}\right)$, i.e. (i) holds
Note that once $\varphi(1)<\infty$ is established, φ is known to be o-weakly lower continuous and thus

$$
\varphi(1)=\lim \varphi\left(\lambda\left(\xi_{i}\right) \lambda\left(\xi_{i}\right)^{*}\right)=\lim \left\||T|^{\frac{1}{2}} \xi_{i}\right\|^{2}
$$

for any approximate i entity $\left(\xi_{i}\right) i \in I$, ie.

$$
\|T\|_{1}=\lim \left\||T|^{k} \xi_{i}\right\|^{2}
$$

In the course of the proof we observed that $\|T\|_{1}$ may be used as
the constant C in (ii), that every constant C satisfying (ii) also satisfies (iii), and that any C satisfying (iii) is bigger than $\operatorname{lim\| }\left\|\left.T\right|^{\frac{1}{2}} \xi_{i}\right\|^{2}$, i.e. bigger than $\|T\|_{1}$. This proves the remarks that end Proposition 2.1 .

```
As an immediate corollary, we have:
```

Proposition 2.2. Let T be a closed densely defined ($-\frac{1}{2}$)-homogeneous operator on $L^{2}(G)$. Then the following conditions are equivalent:
(i) $T \in L^{2}\left(\psi_{0}\right)$,
(ii) there exists a constant $C \geq 0$ such that $\forall \xi \in A_{\ell} \cap D(T):\|T \xi\| \leq C\|\lambda(\xi)\|$,
(iii) there exists an approximate identity $\left(\xi_{i}\right)_{i \in I}$ in $\mathcal{K}(G)_{+}$ such that all $\xi_{i} \in D(T)$ and

$$
\lim \inf \left\|T \xi_{i}\right\|<\infty
$$

If. $T \in L^{2}\left(\psi_{0}\right)$, then $O_{\ell} \subseteq D(T)$, and for any approximate identity $\left(\xi_{i}\right)_{i \in I}$ in $\mathcal{K}(G)_{+}$we have $\|T\|_{2}=\operatorname{lim\| TE} \xi_{i} \|$
furthermore, $\|T\|_{2}$ is the smallest constant C satisfying (ii).

We now come to the case of a general $p \in[1, \infty[$. Suppose that $T \in L^{p}\left(\psi_{0}\right)$ and $S \in L^{q}\left(\psi_{0}\right)$, where $\frac{1}{p}+\frac{1}{q}=1$. Then by $[12, I I$, Proposition 5,1)J, we have

$$
\left(T \xi \mid S_{\eta}\right)=\langle[S * T], \lambda(\xi) \lambda(\eta) *\rangle
$$

for all $\xi \in G_{\ell} \cap D(T)$ and $\eta \in Q_{\hat{\chi}} \cap D(S)$. (Here, $<\cdot,>$ denotes the form giving the duality of $L^{1}\left(\dot{\psi}_{0}\right)$ and M.) Using Hölder's inequality, we get

$$
|(T \xi \mid S \eta)| \leq\|[S * T]\|_{1}\|\lambda(\xi) \lambda(\eta) *\| \leq\|T\|_{p}\|S\|_{q}\|\lambda(\xi)\|\|\lambda(n)\|
$$

for all such ξ and η. This kind of inequality in fact characterizes $L^{p}\left(\psi_{0}\right)$-operators among all $\left(-\frac{1}{p}\right)$-homogeneous operators:

Proposition 2.3. Let $p \in[1, \infty]$ and define q by $\frac{1}{p}+\frac{1}{q}=1$. Let T be a closed densely defined $\left(-\frac{1}{p}\right)$-homogeneous operator on $L^{2}(G)$. Then the following conditions are equivalent:
(i) $T \in L^{p}\left(\psi_{0}\right)$,
(ii) there exists a constant $C \geq 0$ such that

$$
\begin{gathered}
\forall S \in L^{q}\left(\psi_{0}\right) \quad \forall \xi \in a_{\ell} \cap D(T) \quad \forall \eta \in a_{\ell} \cap D(S): \\
|(T \xi \mid S n)| \leq C\|S\|_{q}\|\lambda(\xi)\|\|\lambda(\eta)\| .
\end{gathered}
$$

If $T \in L^{P}\left(\psi_{0}\right)$, then $\|T\|_{P}$ is the smallest C satisfying (ii).

Proof. In view of the remarks preceding this proposition, we just have to show that if T satisfies (ii) for some constant C, then $T \in L^{p}\left(\psi_{0}\right)$ and $\|T\|_{p} \leq C$.

Therefore suppose that T with polar decomposition $T=U|T|$ satisfies (ii). Then also

$$
\begin{aligned}
\left|\left(|T| \Sigma \mid S_{\eta}\right)\right| & =\|\left(T \xi \mid U^{*} S_{\eta}\right) \mid \\
& \leq C\left\|\left[U^{*} S\right]\right\|_{\mathrm{q}}\|\lambda(\xi)\|\|\lambda(\eta)\| \\
& \leq C\|S\|_{\mathrm{q}}\|\lambda(\xi)\|\|\lambda(\eta)\|
\end{aligned}
$$

for all S., \mathcal{S}, and η chosen as in (ii). Thus we may assume that T is positive self-adjoint.

Let $S \in L^{q}\left(\psi_{0}\right)$ and $n \in a_{\ell} \cap D\left(T^{\frac{1}{2}} S\right)$. We claim that for all $\xi \in a_{\ell} \cap D\left(T^{\frac{1}{2}}\right)$ we have

$$
\begin{equation*}
\left|\left(T^{\frac{1}{2}} \xi \left\lvert\, T^{\frac{1}{2}} S \eta\right.\right)\right| \leq C\|S\|_{q}\|\lambda(\xi)\|\|(n)\| \tag{1}
\end{equation*}
$$

If $\xi \in O_{\ell} \cap D(T)$, this follows directly from the hypothesis. In case of a general $\xi \in O_{\ell} \cap D\left(T^{\frac{1}{2}}\right)$, choose (by Lemma 2.5) $\xi_{n} \in O_{\ell} \cap D(T)$ such that $T^{\frac{1}{2}} \xi_{n} \rightarrow T^{\frac{1}{2}} \xi$ and $\left\|\lambda\left(\xi_{n}\right)\right\| \leq\|\lambda(\xi)\|$. Then (1) follows by passing to the limit.

Now since T is $\left(-\frac{1}{p}\right)$-homogeneous, there exist $T_{i} \in L^{p}\left(\psi_{0}\right)+$ satisfying $T_{i}{ }^{\mathrm{p}} \leq \mathrm{T}^{\mathrm{p}}$ and $\int \mathrm{T}^{\mathrm{p}} \mathrm{d}_{0}=\sup \int \mathrm{T}_{\mathrm{i}}{ }^{\mathrm{P}} \mathrm{d}_{0}$. (To see this, recall that $\mathrm{T}^{\mathrm{p}}=\frac{d \varphi}{d \psi_{0}}$ for some normal semi-finite weight φ on M; put $T_{i}=\left(\frac{d \varphi_{i}}{d \psi_{0}}\right)^{1 / p}$ where the φ_{i} are positive normal fundtionals such that $\varphi_{i} \curvearrowright \varphi$; then $\frac{d \varphi_{i}}{d \psi_{0}} \leq \frac{d \varphi}{d \psi_{0}}$ by [2, Proposition 8], and $\left.\int \mathrm{T}^{\mathrm{P}} \mathrm{d} \psi_{0}=\varphi(1)=\sup \varphi_{i}(1)=\sup \int \mathrm{T}_{\mathrm{i}}{ }^{\mathrm{P}} \mathrm{d} \psi_{0}.\right)$

Since the function $t \mapsto t^{1 / p}$ is operator monotone on $[0, \infty[$ (by [16, Proposition 1.3.8]), we have $T_{i} \leq T$, i.e. $D\left(T_{i}^{\frac{1}{2}}\right) \supseteq$ $D\left(T^{\frac{1}{2}}\right)$ and

$$
\forall \xi \in D\left(T^{\frac{1}{2}}\right):\left\|T_{i}^{\frac{1}{2}} \xi\right\| \leq\left\|T^{\frac{1}{2}} \xi\right\|,
$$

for each i $\in I$ (cf. also the remark following this proof).
For each i, let B_{i} be the bounded operator characterized by $B_{i} T^{\frac{1}{2}} \xi=T_{i}{ }^{\frac{1}{2}} \xi$ for all $\xi \in D\left(T^{\frac{1}{2}}\right)$ and $B_{i} \xi=0$ for all $\xi \in R\left(T^{\frac{1}{2}}\right)^{\perp}$. Then $\left\|B_{i}\right\| \leq 1$. Since $B_{i} T^{\frac{1}{2}} \subseteq T_{i}^{\frac{1}{2}}$, and since $T^{\frac{1}{2}}$ and $T_{i}^{\frac{1}{2}}$ are $\left(-\frac{1}{p}\right)$-homogeneous, B_{i} is 0-homogeneous, i.e. $B_{i} \in M$. Put $A_{1}-A_{1}$ - Then $A_{1} \in M,\left\|A_{i}\right\| \leq 1$, and

$$
T_{i}^{\frac{1}{3}} \subseteq T^{\frac{1}{3}} A_{i}
$$

Using this, the fact that

$$
T_{i}^{p-1}=T_{i} p / q \in L^{q}\left(\psi_{0}\right) \text { with }\left\|T_{i}^{p-1}\right\|_{q}=\left\|T_{i}\right\|_{p}^{p-1} \text {, }
$$

and (1), we find that for all $\xi \in \Omega_{\hat{\imath}} \cap \cap_{\beta \in \mathbb{R}_{+}}^{\cap} D\left(T_{i}{ }^{\beta}\right)$, we have

$$
\begin{aligned}
\left\|T_{i}{ }^{\mathrm{P} / 2} \xi\right\|^{2} & =\left(\mathrm{T}_{i}^{\frac{1}{2}} \xi \left\lvert\, \mathrm{T}_{i}^{\frac{1}{2}} \mathrm{~T}_{i} \mathrm{p}^{-1} \xi\right.\right) \\
& =\left(\mathrm{T}^{\frac{1}{2}} A_{i} \xi \left\lvert\, T^{\frac{1}{2}} A_{i} T_{i}{ }^{\mathrm{p}-1} \xi\right.\right) \\
& \leq \mathrm{C}\left\|\left[A_{i} \mathrm{~T}_{i}{ }^{\mathrm{p}-1}\right]\right\|_{\mathrm{q}}\left\|\lambda\left(A_{i} \xi\right)\right\|\|\lambda(\xi)\| \\
& \leq C\left\|A_{i}\right\|\left\|T_{i}^{p-1}\right\|_{\mathrm{q}}\left\|A_{i}\right\|\|\lambda(\xi)\|^{2} \\
& =C\left\|T_{i}\right\|_{p}^{p-1}\|\lambda(\xi)\|^{2} .
\end{aligned}
$$

By means of Lemma 2.5, we conclude that the estimate

$$
\left\|T_{i}^{p / 2}\right\|^{2} \leq C\left\|T_{i}\right\|_{p}^{p-1}\|\lambda(\xi)\|^{2}
$$

holds for all $\xi \in O_{\mathcal{l}} \cap D\left(T_{i}^{p / 2}\right)$. Thus by proposition 2.1,

$$
\left\|T_{i}\right\|_{p}^{p}=\left\|T_{i} p_{1} \leq C\right\| T_{i} \|_{p}^{p-1}
$$

i.e.

$$
\left\|T_{i}\right\|_{p} \leq C .
$$

Since this holds for all i , we have

$$
\int \mathrm{T}^{\mathrm{P}} \mathrm{~d} \psi_{0}=\sup \int \mathrm{T}_{\mathrm{i}}{ }^{\mathrm{P}} \mathrm{~d}_{\psi_{0}} \leq \mathrm{C}^{\mathrm{p}}<\infty ;
$$

thus $T \in L^{p}\left(\psi_{0}\right)$ and $\left\|T_{i}\right\|_{p} \leq C$.
Remark. We have used the fact that if a continuous function f on $[0, \infty 1$ is operator monotone in the sense that $R \leq S$ implies $\ddagger(R) \leq f(S)$ for all fositive bounded operators R and S, then
the same is true for all - possibly unbounded - positive self-adjoint R and S. To see this, suppose that $R \leq S$. Then for all $\varepsilon \in \mathbb{R}_{+}$, we have $R(1+\varepsilon R)^{-1} \leq S(1+\varepsilon S)^{-1}$ by [17, Section 4$]$, and hence $f\left(R(1+\varepsilon R)^{-1}\right) \leq f\left(S(1+\varepsilon S)^{-1}\right)$. Now if $\xi \in D\left(f(S)^{\frac{1}{2}}\right)$, we have by spectral theory

$$
\begin{aligned}
\left(f\left(R(1+\varepsilon R)^{-1}\right) \xi \mid \xi\right) & \leq\left(f\left(S(1+\varepsilon S)^{-1}\right) \xi \mid \xi\right) \\
& \rightarrow\left\|f(S)^{\frac{1}{2}} \xi\right\|^{2} \text { as } \varepsilon \rightarrow 0 .
\end{aligned}
$$

Again by spectral theory, we conclude that $\xi \in D\left(f(R)^{\frac{1}{2}}\right)$ and that

$$
\left\|f(R)^{\frac{1}{2}} \xi\right\|^{2}=\lim _{\varepsilon \rightarrow 0}\left(f\left(R(1+\varepsilon R)^{-1}\right) \xi \mid \xi\right) \leq\left\|f(S)^{\frac{1}{2}} \xi\right\|^{2} .
$$

In all, we have proved that $f(R) \leq f(S)$.

Recall from $[12, \S 1$. Theoreme 4,1$)]$, that if T_{1} and T_{2} belong to some $L^{\mathrm{P}}\left(\dot{\psi}_{0}\right), 1 \leq \mathrm{p}<\infty$, and if $\mathrm{T}_{2} \subseteq \mathrm{~T}_{1}$, then $\mathrm{T}_{1}=\mathrm{T}_{2}$. Actually, a stronger result holds:

Lemma 2.6. Let $p \in[1, \infty]$. Let $T_{1} \in L^{p}\left(\psi_{0}\right)$ and let T_{2} be a closed densely defined ($-\frac{1}{\mathrm{p}}$)-homogeneous operator on $\mathrm{L}^{2}(\mathrm{G})$. Suppose that

$$
\mathrm{T}_{2} \subseteq \mathrm{~T}_{1} \text { or } \mathrm{T}_{1} \subseteq \mathrm{~T}_{2}
$$

Then $T_{1}=T_{2}$.

Proof: 1) First suppose that $T_{2} \subseteq T_{1}$. If $p=\infty$, the result is well-known (a closed densely defined operator having a bounded and everywhere defined extension is equal to that extension). If
$p \in\left[1, \infty\left[\right.\right.$, we conclude by Proposition 2.3 that also $T_{2} \in L^{p}(\psi$ and thus by $[12, \S 1$, Theorème 4,1$)], T_{1}=T_{2}$. (Alternatively, this can be proved directly, i.e. without using proposition 2.3, by the methods of the proof of $[12, \S 1$, Théorème 4, 1)].) If $\mathrm{T}_{1} \subseteq \mathrm{~T}_{2}$, apply the first part of the proof to $\mathrm{T}_{2}{ }^{*} \subseteq \mathrm{~T}_{1}{ }^{*}$.

A specific form of this lemma will be crucial to much of the following:

Proposition 2.4. Let $p \in[1, \infty]$.

1) Let T and S be closed densely defined $\left(-\frac{1}{p}\right)$-homogeneou operators on $L^{2}(G)$ with $\mathcal{K}(G) \subseteq D(T)$ and $\mathcal{K}(G) \subseteq D(S$ Suppose that

$$
\forall \xi \in \mathcal{K}(\mathrm{G}): \mathrm{T} \xi=\mathrm{S} \xi
$$

Then if one of the operators, say T, belongs to $L^{\mathrm{P}}\left(\psi_{0}\right)$, we may conclude that $T=S$.
2) If $T \in L^{p}\left(\psi_{0}\right)$ and $\mathcal{K}(G) \subseteq D(T)$, then $T=[T \mid \mathcal{K}(G)]$ Proof (of both parts). Suppose that $T \in L^{\mathrm{P}}\left(\psi_{0}\right)$. Then $T \mid \mathcal{K}(G)$ being a restriction of a $\left(-\frac{1}{\mathrm{P}}\right)$-homogeneous operator to a right inv. riant subspace, is itself $\left(-\frac{1}{p}\right)$-homogeneous. Therefore also $[T \mid \mathcal{K}(G)]$ is $\left(-\frac{1}{p}\right)$-homogeneous. Since $[T \mid \mathcal{K}(G)] \subseteq T$, we conclud, by the above leman that $T=[T \mid \mathcal{K}(G)]$. This proves 2). - As for 1), note that $S \geq S|\mathcal{K}(G)=T| \mathcal{K}(G)$, and thus $S \supseteq[T \mid K(G)]=T$. Again we conclude $S=T$.

Finally, for later reference, we summarize in a lemma some remarks of Hilsum [12]:

Lemma 2.7. Let $q \in\left[2, \infty\left[\right.\right.$. Let $T \in L^{q}\left(\psi_{0}\right)$. Then $a_{\dot{x}} \subseteq D(T)$, and for all $\xi \in a_{\hat{\imath}}$ we have

$$
\|T \xi\| \leq\|T\|_{\mathrm{q}}\|\lambda(\xi)\|^{2 / q}\|\xi\|^{1-2 / q} .
$$

Proof. Since $|T|^{q / 2} \in L^{q}\left(\psi_{0}\right)$, we have $O_{\hat{\ell}} \subseteq D\left(|T|^{q / 2}\right)$. Now let $\xi \in a_{\ell}$. Then by spectral theory $\xi \in D(|T|)$ and

$$
\begin{aligned}
\||T| \xi\|^{2} & \leq\left(\left\||T|^{q / 2} \xi\right\|^{2}\right)^{2 / q} \cdot\left(\|\xi\|^{2}\right)^{1-2 / q} \\
& \leq\left(\left\||T|^{q_{\|}}\right\| \lambda(\xi) \|^{2}\right)^{2 / q} \cdot\|\xi\|^{2(1-2 / q)} \\
& =\left(\|T\|_{q}\|\lambda(\xi)\|^{2 / q}\|\xi\|^{1-2 / q}\right)^{2} \cdot \text {. }
\end{aligned}
$$

3. The Plancherel transformation.

Given any functions $f \in L^{2}(G)$ and $\xi \in L^{2}(G)$, the convolution product $f * \Delta^{\frac{1}{2}} \xi$ exists and belongs to $L^{\infty}(G)$. Thus the following definition makes sense:

Definition. Let $f \in L^{2}(G)$. The Plancherel transform $\mathcal{P}(f)$ of f is the operator on $L^{2}(G)$ given by

$$
\mathcal{P}(\mathrm{f}) \xi=\mathrm{f} * \Delta^{\frac{\xi}{\xi}}, \quad \xi \in \mathrm{D}(\mathcal{P}(\mathrm{f})),
$$

where

$$
D(P(f))=\left\{E \in L^{2}(G) \left\lvert\, f * \Delta^{\frac{3}{2}} E \in L^{2}(G)\right.\right\}
$$

Theorem 3.1. (Plancherel).

1) Let $f \in L^{2}(G)$. Then $\mathcal{P}(f)$ belongs to $L^{2}\left(\psi_{0}\right)$, and

$$
\|\mathscr{P}(f)\|_{2}=\|f\|_{2}
$$

2) The Plancherel transformation $\mathcal{P}: L^{2}(G) \rightarrow L^{2}\left(\psi_{0}\right)$ is a unitary transformation of $L^{2}(G)$ onto $L^{2}\left(\psi_{0}\right)$.

Proof. 1) First note that $\mathcal{P}(f)$ is ($-\frac{1}{2}$)-homogeneous: for all $x, y \in G$ and $\xi \in D(\mathbb{P}(f))$, we have

$$
\begin{aligned}
\rho(x)(\mathcal{P}(f) \xi)(y) & =\Delta^{\frac{1}{2}}(x)\left(f * \Delta^{\frac{1}{2}} \xi\right)(y x) \\
& =\Delta^{\frac{1}{2}}(x) \int f(z) \Delta^{\frac{1}{2}}\left(z^{-1} y x\right) \xi\left(z^{-1} y x\right) d z \\
& =\Delta^{\frac{1}{2}}(x) \int f(z) \Delta^{\frac{1}{2}}\left(z^{-1} y\right)(\rho(x) \xi)\left(z^{-1} y\right) d z \\
& =\Delta^{\frac{1}{2}}(x)\left(f * \Delta^{\frac{1}{2}} \rho(x) \xi\right)(y)
\end{aligned}
$$

i.e. $\quad \rho(x) \mathcal{P}(f) \subseteq \Delta^{\frac{1}{2}}(x) \mathcal{P}(f) \rho(x)$.

We next show that $\mathcal{P}(f)$ is closed. Suppose that $\xi_{n} \rightarrow \xi$ in $L^{2}(G)$ and $\mathcal{P}(f) \xi_{n} \rightarrow \eta$ in $L^{2}(G)$, where all the $\xi_{n} \in D(\mathcal{P}(f))$ Then $f * \Delta^{\frac{1}{2}} \xi_{n} \rightarrow f * \Delta^{\frac{1}{2}} \xi$ uniformly (by a simple case of Lemma 1.1). Since $f * \Delta^{\frac{1}{2}} \xi_{n} \rightarrow r_{i}$ in $L^{2}(G)$, we conclude that $\eta=f * \Delta^{\frac{1}{2}} \xi$. Thus $\xi \in D(\mathcal{P}(f))$ and $\mathcal{P}(f) \xi=\eta$, so that $\mathcal{P}_{(f)}$ is closed. Obviously, $\mathcal{K}(G) \subseteq D(\mathcal{P}(f))$. In all, we have shown that $\mathcal{P}(f)$ is closed, densely defined, and ($-\frac{1}{2}$)-homogeneous, so that we are now in a position to apply Proposition 2.2 .

Let $\left(\xi_{i}\right)_{i \in I}$ be an approximate identity in $\mathcal{K}(G)_{+}$. Then

$$
\rho_{(f)} \xi_{i}=f * \Delta^{\frac{2}{2}} \xi_{i} \rightarrow f \quad \text { in } \quad L^{2}(G)
$$

Thus $\left\|\mathcal{P}(f) \xi_{i}\right\| \rightarrow \mathbb{f} \|_{2}$. By Proposition 2.2 we conclude that $\mathcal{P}(f) \in L^{2}\left(\psi_{0}\right)$ and that

$$
\|\mathcal{P}(f)\|_{2}=\|f\|_{2} .
$$

2) The map \mathcal{P} is linear: if $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{~L}^{2}(\mathrm{G})$, then $\left[\mathcal{P}\left(f_{1}\right)+\mathcal{P}\left(f_{2}\right)\right]$ and $\mathcal{P}\left(f_{1}+f_{2}\right)$ obviously agree on $\mathcal{K}(G)$, and therefore by Proposition 2.4, we have

$$
\mathcal{P}\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)=\left[\mathcal{P}\left(\mathrm{f}_{1}\right)+\mathcal{P}\left(\mathrm{f}_{2}\right)\right] .
$$

Now, to prove that \mathcal{P} is surjective, let $T \in L^{2}\left(\psi_{0}\right)$. We shall show that there exists a function $f \in L^{2}(G)$ such that $\mathrm{T}=\mathcal{P}(\mathrm{f})$. Let $\left(\xi_{i}\right)_{i \in I}$ be an approximate identity in $\mathcal{K}(G)_{+}$. Then for all. $n, \zeta \in \mathcal{K}(G)$ we have

$$
\begin{aligned}
\left(\left.\eta * \Delta^{-\frac{1}{2}} \tilde{\zeta} \right\rvert\, \mathrm{T} \xi_{i}\right)= & \left(\eta \left\lvert\,\left(\mathrm{T} \xi_{i}\right) * \Delta^{\frac{1}{2}} \zeta\right.\right) \\
= & \left(\eta \mid T\left(\xi_{i} * \zeta\right)\right) \\
= & \left(T * \eta \mid \xi_{i} * \zeta\right) \\
& \rightarrow(T * \eta \mid \zeta)=(\eta \mid T \zeta)
\end{aligned}
$$

(where we have used the $\left(-\frac{1}{2}\right)$-homogeneity of T and the fact that $\mathcal{K}(G) \subseteq D\left(T^{*}\right)$ since $\left.T^{*} \in L^{2}\left(\psi_{0}\right)\right)$. Thus we can define a linear functional F on the dense subspace $\mathcal{K}(G) * \mathcal{K}(G)$ of $L^{2}(G)$ by

$$
F(\xi)=\lim _{i}\left(\xi \mid T \xi_{i}\right) .
$$

Since

$$
\left\|\left(\xi \mid T \xi_{i}\right)\right\| \leq\| \|_{2}\left\|\Gamma_{i}\right\| 2 \leq\|5\| 2\|T\|_{2}\left\|\lambda\left(5_{i}\right)\right\| \leq\|T\|_{2}\|\xi\|_{2} \text {. }
$$

this functional is bounded and therefore is given by some $f \in L^{2}(G)$:

$$
\forall \xi \in \mathcal{K}(G) * \mathcal{K}(G): F(\xi)=(\xi \mid f)
$$

In particular, we have

$$
(\eta \mid T \zeta)=F\left(\eta * \Delta^{-\frac{1}{2}} \tilde{\zeta}\right)=\left(\left.\eta * \Delta^{-\frac{1}{2}} \tilde{\zeta} \right\rvert\, f\right)
$$

for all $n, \zeta \in K(G)$. Since

$$
\left(\left.\eta * \Delta^{-\frac{1}{2}} \tilde{\zeta} \right\rvert\, f\right)=\left(\eta \left\lvert\, f * \Delta^{\frac{1}{2}} \zeta\right.\right)=(\eta \mid \mathcal{P}(f) \zeta)
$$

this implies

$$
\forall \zeta \in \mathcal{K}(G): T \zeta=\mathcal{P}(f) \zeta
$$

and we conclude by Proposition 2.4 that $T=\mathcal{P}(f)$.

Proposition 3.1. 1) For all $T \in M$ and all $f \in L^{2}(G)$, we have

$$
\mathcal{P}(T f)=[T \mathcal{P}(f)]
$$

2) For all $f \in L^{2}(G)$, we have

$$
\mathcal{P}(J f)=\mathcal{P}(f)^{*} .
$$

Proof. 1) Let $f \in L^{2}(G)$ and $T \in M$. Then $[T \mathcal{P}(f)]$ and $\mathcal{P}(T f)$ both belong to $L^{2}\left(\psi_{0}\right)$, and for all $\xi \in \mathcal{K}(G)$ we have

$$
\mathcal{P}(T f) \xi=(T f) * \Delta^{\frac{1}{2}} \xi=T\left(f * \Delta^{\frac{1}{2}} \xi\right)=[T \mathcal{P}(f)] \xi,
$$

since T commutes with right convolution. By Proposition 2.4 we conclude that $\mathcal{P}(T f)=[T \mathcal{P}(f)]$.
2) Let $f \in L^{2}(G)$. Then for all $\xi, \eta \in \mathcal{K}(G)$ we have

$$
\begin{aligned}
(\mathcal{P}(J f) \xi \mid \eta) & =\left(\left.J f * \Delta^{\frac{1}{2}} \xi \right\rvert\, \eta\right) \\
& =\left(J f \left\lvert\, \eta * \Delta^{-\frac{1}{2}} \tilde{\xi}\right.\right) \\
& =\left(\left.J\left(\eta * \Delta^{-\frac{1}{2}} \tilde{\xi}\right) \right\rvert\, f\right) \\
& =\left(\left.\xi * \Delta^{-\frac{1}{2}} \tilde{\eta} \right\rvert\, f\right) \\
& =\left(\xi \left\lvert\, f * \Delta^{\frac{1}{2}} \eta\right.\right)=(\xi \mid \mathcal{P}(f) \eta)
\end{aligned}
$$

so that $\mathcal{P}(J f) \mid \mathcal{K}(G) \subseteq\left(\mathcal{P}(f) \mid \mathcal{K}(G)^{*}=[\mathcal{P}(f) \mid \mathcal{K}(G)]^{*}=\mathcal{P}(f) *\right.$ (since $\mathcal{P}(f)=[\mathcal{P}(f) \mid \mathcal{K}(G)])$. We conclude by proposition 2.4 that $\mathcal{P}(J f)=\mathcal{P}(f) *$.

Proposition 3.2. Let $f \in L^{2}(G)$. Then $\mathcal{P}(f) \geq 0$ if and only if

$$
\int f(x)(\xi * J \xi)(x) d x \geq 0
$$

for all $\xi \in \mathcal{K}(G)$.

Proof. For all $\xi \in \mathcal{K}(G)$ we have

$$
\int f(x)(\xi * J \xi)(x) d x=\left(f \left\lvert\, \bar{\xi} * \Delta^{-\frac{1}{2} \vee} \xi\right.\right)=(f * \bar{\xi} \mid \bar{\xi})=(\mathcal{P}(f) \bar{\xi} \mid \bar{\xi})
$$

Since $\mathcal{P}(f)=[\mathcal{P}(f) \mid \mathcal{K}(G)]$, we have $\mathcal{P}(f) \geq 0$ if and only if $(\mathcal{P}(f) \eta \mid n) \geq 0$ for all. $\eta \in \mathcal{K}(G)$, and the result follows.

By [10, Theorem 1.21 , (3)] (or, to be precise, its spatial analoge obtained by the methods of [12, §1] connecting abstract [10] and spatial [12] L^{p} spaces), $L^{2}\left(\psi_{0}\right)+$ is a selfdual cone in $L^{2}\left(\psi_{0}\right)$. By Proposition 3.2 and the unitarity of \mathcal{F} we conclude that

$$
P_{0}=\left\{f \in L^{2}(G) \mid \forall \xi \in \mathcal{K}(G): \int f(x)(\xi * J \xi)(x) \geq 0\right\}
$$

is a selfdual cone in $L^{2}(G)$. Denote by P the ordinary selfdual cone in $L^{2}(G)$ associated with the achieved left Hilbert algebra $\alpha_{\ell} \cap \Omega_{\ell}{ }^{*}$, i.e. let p be the closure in $L^{2}(G)$ of the $\operatorname{set}\left\{\lambda(\xi)(J \xi) \mid \xi \in \alpha_{\ell} \cap \sigma_{\ell}{ }^{*}\right\} \quad$ (see $[8$, Section 1]). Since P is selfdual, we have

$$
P=\left\{f \in L^{2}(G) \mid \forall \xi \in a_{\ell} \cap a_{\ell} *:(f \mid \lambda(\xi)(J \xi)) \geq 0\right\} .
$$

Thus $P \subseteq P_{0}$. Since P and P_{0} are both selfdual, this implie that $P=P_{0}$. We have proved

Corollary. A function $f \in L^{2}(G)$ belongs to the positive selfdual cone of $L^{2}(G)$ if and only if

$$
\forall \xi \in \mathcal{K}(G): \int f(x)(\xi * J \xi)(x) d x \geq 0
$$

Remark. This result is similar to the characterization of the cone p^{6} given in [18, p. 392] and proved in general in [9, Corollary 8]. The methods of [9] would also apply for our result. Our proof is based on the fact that $\mathcal{P}(f)=[\mathcal{P}(f) \mid \mathcal{K}(G)]$.

Note. We have proved that $\mathcal{P}: L^{2}(G) \rightarrow L^{2}\left(\psi_{0}\right)$ carries the left regular representation on $L^{2}(G)$ into left multiplication on $L^{2}\left(\psi_{0}\right)$, takes J into ${ }^{*}$, and maps the positive selfdual cor of $L^{2}(G)$ onto $L^{2}\left(\psi_{0}\right)+$. That a unitary transformation $L^{2}(G) \rightarrow L^{2}\left(\psi_{0}\right)$ having these properties exists (and is unique) a. follows from [8, Theorem 2.3], since both representations of M are standard (by the spatial analogue of [10, Theorem 1.21 , (3)] In our approach, we have given a simple and direct definition of

We can give an explicit description of the inverse of \mathcal{P} :

Proposition 3.3. Let $T \in L^{2}\left(\psi_{0}\right)$, and let $\left(\xi_{i}\right)_{i \in I}$ be an approximate identity in $\mathcal{K}(G)_{+} \cdot$ Then

$$
\mathcal{P}^{-1}(\mathrm{~T})=\lim _{\mathrm{i} \in \mathrm{I}} T \xi_{i}
$$

Proof. Let $\mathrm{f}=\mathcal{P}^{-1}(\mathrm{~T})$. Then

$$
T \xi_{i}=\mathcal{P}(f) \xi_{i}=f * \Delta^{\frac{1}{2}} \xi_{i} \rightarrow f
$$

in $L^{2}(G)$.

Remark. From Proposition 2.2 we already knew that for any approximate identity $\left(\xi_{i}\right)_{i \in I}$, the $\left\|T \xi_{i}\right\|$ tend to a limit and that this limit is independent of the choice of $\left(\xi_{i}\right)_{i \in I}$. Now, using that $L^{2}\left(\psi_{0}\right)=\mathcal{P}\left(L^{2}(G)\right)$, we have proved that the same holds for the $T \xi_{i}$ themselves.

As a corollary, we have the following characterization of the inner product in $L^{2}\left(\psi_{0}\right)$, generalizing the formula for $\|T\|_{2}$ given in Proposition 2.2:

Corollary. Let $T, S \in L^{2}\left(\psi_{0}\right)$. Then

$$
(T \mid S)_{L^{2}\left(\psi_{0}\right)}=\lim _{i \in I}\left(T \xi_{i} \mid S \xi_{i}\right)
$$

for any approximate identity $\left(\xi_{i}\right)_{i \in I}$ in $K(G){ }_{+}$.
Proof. Since \mathcal{P} is unitary, we have

$$
\operatorname{TTSS}_{L^{2}\left(U_{0}\right)}=\left(\mathcal{P}^{-1}(T) \mid \mathcal{P}^{-1}(S)\right)_{L^{2}(G)}=\lim _{i \in I}\left(T \xi_{i} \mid S \xi_{i}\right)_{L^{2}(G)}
$$

4. The L^{P} Fourier transformations.

Let $p \in[1,2]$ and define $q \in[2, \infty]$ by $\frac{1}{p}+\frac{1}{q}=1$.

Definition. Let $f \in L^{p}(G)$. The L^{p} Fourier transform of f is the operator $\mathcal{F}_{p}(f)$ on $L^{2}(G)$ given by

$$
\mathcal{F}_{p}(f) \xi=\mathrm{f} * \Delta^{1 / q_{\xi}}, \xi \in D\left(\mathcal{F}_{p}(f)\right)
$$

where $D\left(\mathcal{F}_{p}(f)\right)=\left\{\xi \in L^{2}(G) \mid f * \Delta^{\left.1 / q_{\xi} \in L^{2}(G)\right\} .}\right.$

Note that by Lemma 1.1 the convolution product $f * \Delta^{1 / q}$ exist and belongs to $L^{r}(G)$, where $r \in[2, \infty]$ is given by $\frac{1}{p}+\frac{1}{2}-\frac{1}{r}=1$, whenever $f \in L^{p}(G)$ and $\xi \in L^{2}(G)$, so that the definition of $D\left(\mathcal{F}_{p}(f)\right)$ makes sense.

Remark. For $p=1$, we write $\mathcal{F}_{1}=\mathcal{F}$; we have $\mathcal{F}(f) \xi=$ $f * \xi$ and $D(\mathcal{F}(f))=L^{2}(G)$, so that $\mathcal{F}(f)$ is simply $\lambda(f)$. For $p=2$, we have $\mathcal{F}_{2}(f)=\mathcal{P}(f)$.

Now again let $p \in[1,2]$. Let $f \in L^{p}(G)$. Then the operator $\mathcal{F}_{\mathrm{p}}(f)$ is closed. To see this, suppose that $\xi_{i} \in D\left(\mathcal{F}_{\mathrm{p}}(f)\right)$ converges in $L^{2}(G)$ to some $\xi \in L^{2}(G)$ and $\mathcal{F}_{p}(f) \xi_{i}$ converges in $L^{2}(G)$ to some $\eta \in L^{2}(G)$. Now by Lemma 1.1 we have
 Therefore $f * \Delta^{1 / q_{\xi}}=\eta$, so that $f * \Delta^{1 / q_{\xi} \in L^{2}(G) \text {, i.e. }}$ $\xi \in D\left(\mathcal{F}_{p}(f)\right)$ and $\mathcal{F}_{p}(f) \xi=\eta$ as wanted.

Next we show that $\mathcal{F}_{p}(f)$ is $\left(-\frac{1}{q}\right)$-homogeneous. For all
$\xi \in D\left(F_{p}(f)\right)$ and all $x, y \in G$ we have

$$
\begin{aligned}
\rho(x)\left(\mathcal{F}_{p}(f) \xi\right)(y) & =\Delta^{\frac{1}{2}}(x)\left(f * \Delta^{1 / q^{\prime}} \xi\right)(y x) \\
& =\Delta^{\frac{1}{2}}(x) \int f(z) \Delta^{1 / q}\left(z^{-1} y x\right) \xi\left(z^{-1} y x\right) d z \\
& =\Delta^{1 / q}(x) \int f(z) \Delta^{1 / q}\left(z^{-1} y\right) \Delta^{\frac{1}{2}}(x) \xi\left(z^{-1} y x\right) d z \\
& =\Delta^{1 / q}(x) \int f(z) \Delta^{1 / q}\left(z^{-1} y\right)(\rho(x) \xi)\left(z^{-1} y\right) d z \\
& =\Delta^{1 / q}(x)\left(f * \Delta^{1 / q_{\rho}} \rho(x) \xi\right)(y) \\
& =\Delta^{1 / q}(x)\left(\mathcal{F}_{p}(f) \rho(x) \xi\right)(y)
\end{aligned}
$$

i.e.

$$
\rho(x) \mathcal{F}_{p}(f) \subseteq \Delta^{1 / q}(x) \mathcal{F}_{p}(f) \rho(x)
$$

for all $x \in G$ as wanted.
Finally, note that if $\xi \in L^{2}(G) \cap L^{s}(G)$ where $s \in[1,2]$ is given by $\frac{1}{p}+\frac{1}{s}-\frac{1}{2}=1$, then $\xi \in D\left(\mathcal{F}_{p}(f)\right)$ by Lemma 1.1. In particular, $\mathcal{K}(G) \subseteq D\left(\mathcal{F}_{p}(f)\right)$.

In all, we have proved that for all $f \in L^{p}(G), \mathcal{F}_{p}(f)$ is closed, densely defined, and $\left(-\frac{1}{q}\right)$-homogeneous. We shall see, using the criterion from Proposition 2.3, that actually $\mathcal{F}_{p}(f) \in L^{q}\left(\psi_{0}\right)$. The proof is based on interpolation from the special cases

$$
\mathcal{F}: L^{1}(G) \rightarrow L^{\infty}\left(\psi_{0}\right)
$$

and

$$
\mathcal{P}: L^{2}(G) \rightarrow L^{2}\left(\psi_{0}\right)
$$

First we restrict our attention to $f \in \mathcal{K}(G)$.

Lemma 4.1. Let $p \in[1,2]$. Denote by A the closed strip $\left\{\alpha \in \mathbb{C} \left\lvert\, \frac{1}{2} \leq \operatorname{Re} \alpha \leq 1\right.\right\}$. Let $f \in \mathcal{K}(G)$ and $\xi \in a_{\ell}$. Then:
(i) for each $a \in A$, the convolution product

$$
\xi_{\alpha}=\operatorname{sg}(f)|f|^{p a} * \Delta^{1-\alpha_{\xi}}
$$

exists, and $\xi_{\alpha} \in L^{2}(G)$;
(ii) the function

$$
\alpha \mapsto \xi_{\alpha}, \alpha \in A
$$

with values in $L^{2}(G)$ is bounded;
(iii) for each $n \in L^{2}(G)$, the scalar function

$$
\alpha \mapsto\left(\xi_{\alpha} \mid \eta\right), \alpha \in A,
$$

is continuous on A and analytic in the interior of A

Proof. Write $g=\Delta^{-1 / P_{f}^{v}}$. Then

$$
\forall \alpha \in A: \operatorname{sg}(f)|f|^{p \alpha}=\Delta^{-\alpha}\left(\operatorname{sg}(g)|g|^{p \alpha}\right)^{v} .
$$

Note that g as well as all $s g(g)|g|^{p \alpha, \alpha \in A, ~ b e l o n g ~ t o ~}$ $\mathcal{K}(\mathrm{G})$.

For each $\eta \in \mathcal{K}(G)$, we define

$$
\begin{equation*}
H_{n}(\alpha)=\int \xi(x) \quad\left(s g(g)|g|^{p \alpha_{* \Delta}} 1-\alpha_{\eta}\right)(x) d x, \alpha \in A \tag{1}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
H_{\eta}(\alpha)=\iint \xi(x)\left(s g(g)|g|^{p \alpha}\right)(y) \Delta^{1-\alpha}\left(y^{-1} x\right) \eta\left(y^{-1} x\right) d y d x \tag{2}
\end{equation*}
$$

(later we shall recognize $H_{\eta}(\alpha)$ as simply $\left.\left(\xi_{\alpha} \mid \bar{\eta}\right)\right)$.

Note that
(3)

$$
\forall \alpha \in A: \| \operatorname{lsg}(g)|g|^{p \alpha_{|*| \Delta}}{ }^{1-\alpha_{n} \mid \|_{2}}
$$

$$
\begin{aligned}
& \leq \||g|^{p \operatorname{Re} \alpha_{\|_{1}}\left\|\Delta^{1-\operatorname{Re} \alpha_{|\eta|}}\right\|_{2}} \\
& \leq K<\infty
\end{aligned}
$$

where K is a constant independent of $\alpha \in A$. In particular, this allows us to apply Fubini's theorem to the double integral
(2) . We find

$$
\begin{aligned}
H_{\eta}(\alpha) & =\iint \xi(x)\left(\operatorname{sg}(g)|g|^{p \alpha}\right)\left(y^{-1}\right) \Delta^{1-\alpha}(y x) \eta(y x) \Delta^{-1}(y) d y d x \\
& =\iint \xi\left(y^{-1} x\right)\left(\operatorname{sg}(g)|g|^{p \alpha}\right)\left(y^{-1}\right) \Delta^{1-\alpha}(x) \eta(x) \Delta^{-1}(y) d x d y \\
& =\iint\left(\operatorname{sg}(f)|f|^{p \alpha}\right)(y) \Delta^{1-\alpha}\left(y^{-1} x\right) \xi\left(y^{-1} x\right) \eta(x) d y d x
\end{aligned}
$$

it also follows that the convolution integral

$$
\xi_{\alpha}(x)=\int\left(\operatorname{sg}(f)|f|^{p \alpha}\right)(y) \Delta^{1-\alpha}\left(y^{-1} x\right) \xi\left(y^{-1} x\right) d y
$$

exists, so that we can write

$$
H_{\eta}(\alpha)=\int \xi_{\alpha}(x) \eta(x) d x
$$

Now we shall prove that there exists a constant $C \geq 0$ independent of α such that

$$
\begin{equation*}
\forall \eta \in \mathcal{K}(G): \int \xi_{\alpha}(x) \eta(x) d x \mid \leq C\|\eta\|_{2} . \tag{4}
\end{equation*}
$$

This will imply that each $\xi_{\alpha}, \alpha \in A$, is in $L^{2}(G)$ with $\left\|\xi_{\alpha}\right\|_{2} \leq C$, ie. (i) and (ii) will be proved.

Let us prove (4). Without loss of generality, we may assume that $\|f\|_{p}=1$. We want to show then that

$$
\begin{equation*}
\forall \eta \in \mathcal{K}(G):\left\|H_{\eta}(\alpha) \mid \leq\left(\|\lambda(\xi)\|+\|\xi\|_{2}\right)\right\| \eta \|_{2} . \tag{5}
\end{equation*}
$$

To do this, we shall apply the Phragmen-Lindelöf principle [24, p 93].

Fix $\eta \in \mathcal{K}(G)$. By (2), H_{η} is continuous on A and analy tic in the interior of A (the integrand in (2) can be majorized by an integrable function that is independent of α) . Furthermore, H_{η} is bounded (use (3) and (1)). Finally, we shall estimate H_{η} on the boundaries of A.

Let $t \in \mathbb{R}$. Then $\Delta^{-i t} \xi \in a_{\ell}$ and $\left\|\lambda\left(\Delta^{-i t} \xi\right)\right\| \leq\|\lambda(\xi)\|$. Now

$$
\begin{aligned}
& \mathcal{P}\left(\operatorname{sg}(f)|f|^{p\left(\frac{1}{2}+i t\right)}\right)\left(\Delta^{-i t} \xi\right) \\
& \quad=\operatorname{sg}(f)|f|^{p\left(\frac{1}{2}+i t\right)} * \Delta^{1-\left(\frac{1}{2}+i t\right)} \xi=\xi_{\frac{1}{2}+i t},
\end{aligned}
$$

so that $\xi_{\frac{1}{2}+i t} \in L^{2}(G)$ with

$$
\begin{aligned}
\left\|\xi_{\frac{1}{2}+i t}\right\|_{2} & \leq\left\|\mathcal{P}\left(\operatorname{sg}(f)|f|^{p\left(\frac{1}{2}+i t\right)}\right)\right\|_{2}\left\|\lambda\left(\Delta^{-i t} \xi\right)\right\| \\
& \leq\left\|s g(f)|f|^{p\left(\frac{1}{2}+i t\right)}\right\|_{2}\|\lambda(\xi)\| \\
& =\left\||f|^{p / 2}\right\|_{2}\|\lambda(\xi)\| \\
& =\|\lambda(\xi)\|
\end{aligned}
$$

(where we have used Proposition 2.2, the fact that \mathcal{P} is unital and the hypothesis $\left.\|f\|_{p}=1\right)$. Similarly,

$$
\begin{aligned}
& \mathcal{F}\left(\operatorname{sg}(f)|f|^{p(1+i t)}\right)\left(\Delta^{-i t} \xi\right) \\
& =\operatorname{sg}(f)|f|^{p(1+i t)} * \Delta^{1-(1+i t)} \xi_{5}=\xi_{1+i t}
\end{aligned}
$$

so that $\xi_{1+i t} \in L^{2}(G)$ with

$$
\begin{aligned}
\left\|\xi_{1+i t}\right\|_{2} & \leq\left\|\mathcal{F}\left(s g(f)|f|^{p(1+i t)}\right)\right\|_{\infty}\left\|\Delta^{-i t} \xi\right\|_{2} \\
& \leq\left\|s g(f)|f|^{p(1+i t)}\right\|_{1}\|\xi\|_{2} \\
& =\||f|^{p_{\|_{1}}\|\xi\|_{2}} \\
& =\|\xi\|_{2}
\end{aligned}
$$

(where we have used that $\mathcal{F}: L^{1}(G) \rightarrow L^{\infty}\left(\psi_{0}\right)$ is norm-decreasing).
It follows that

$$
\begin{aligned}
\forall t \in \mathbb{R}: & \left|H_{\eta}\left(\frac{1}{2}+i t\right)\right|=\left|\int \xi_{\frac{1}{2}+i t}(x) \eta(x) d x\right| \\
& \leq\left\|\xi_{\frac{1}{2}+i t}\right\|_{2}\|\eta\|_{2} \leq\|\lambda(\xi)\|\|\eta\|_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \forall t \in \mathbb{R}: \quad\left|H_{\eta}(1+i t)\right|=\left|\int \xi_{1+i t}(x) \eta(x) d x\right| \\
& \leq\left\|\xi_{1+i t}\right\|_{2}\|\eta\|_{2} \leq\|\xi\|_{2}\|\eta\|_{2} .
\end{aligned}
$$

Then by the Phragmen-Lindelöf principle, we have established (5) and thus (i) and (ii).

Finally, (iii) is easy. Indeed, since $\alpha \mapsto \xi_{\alpha}$ is bounded, each $\alpha \mapsto\left(\xi_{\alpha} \mid \eta\right)$, where $\eta \in L^{2}(G)$, can be uniformly approximated by functions $\alpha \mapsto\left(\xi_{\alpha} \mid \zeta\right)$ with $\zeta \in \mathcal{K}(G)$, so we just have to prove (iii) in the case of $\eta \in \mathcal{K}(G)$. This is already done since $\left(s_{\alpha} \mid n\right)=H-(a)$.

Lemma 4.2. Let $p \in[1,2]$. Let $f \in \mathcal{K}(G)$ and $s \in L^{P}\left(\psi_{0}\right)$. Then for all $\xi \in a_{2}$ and $n \in a_{i} \cap D(S)$ we have

$$
\left|\left(\mathcal{F}_{p}(f) \xi \mid S r_{1}\right)\right| \leq\|f\|_{p}\|S\|_{p}\|\lambda(\xi)\|\|\lambda(\eta)\|
$$

Note that $\xi \in D\left(\mathcal{F}_{p}(f)\right)$ by Lemma 4.1.
Proof. We may assume that $\|f\|_{p}=1$ and $\|S\|_{p}=1$. Furthermore by Lemma 2.5, we need only consider $\eta \in a_{\ell} \cap D\left(|S|^{p}\right)$.

Let $\xi \in a_{\ell}$ and $n \in a_{\ell} \cap D\left(|S|^{p}\right)$. For each α in the closed $\operatorname{strip} A=\left\{\alpha \in \mathbb{C} \left\lvert\, \frac{1}{2} \leq \operatorname{Re} \alpha \leq 1\right.\right\}$, put $\xi_{\alpha}=\operatorname{sg}(f)|f|^{p \alpha_{* \Delta}}{ }^{1-\alpha_{\xi}}$ as in Lemma 4.1. Note that for all $\alpha \in \mathrm{A}$ we have (by spectral theory) $\eta \in D\left(U|S|^{p \alpha}\right.$) and

$$
\left\|U|S|^{p \alpha}\right\|_{2}^{2} \leq\left\||s|^{p / 2} n\right\|_{2}^{2}+\left\||S|^{p} \eta\right\|_{2}^{2},
$$

where $S=U|S|$ is the polar decomposition of S. For each $\alpha \in A, \quad$ put

$$
n_{\alpha}=u|S|^{p \alpha}
$$

Then the function $\alpha \mapsto \eta_{\alpha}$ with values in $L^{2}(G)$ is bounded on A. Furthermore, by $[22,9.15]$, it is continuous on A and anally tic in the interior of A.

Now for each $\alpha \in A$, let

$$
H(\alpha)=\left(\xi_{\alpha} \mid \eta_{-\alpha}\right) .
$$

Then obviously H is bounded on A (by Lemma 4.1 (ii), $\alpha \mapsto{ }_{a}$ is bounded). Furthermore, H is continuous on A. To see this, note that

$$
\forall \alpha, \alpha_{0} \in A:\left(\xi_{\alpha} \mid \eta_{\bar{\alpha}}\right)-\left(\xi_{\alpha_{0}} \mid \eta_{\bar{\alpha}_{0}}\right)=\left(\xi_{\alpha} \mid \eta_{\bar{\alpha}}^{-\eta_{\bar{\alpha}_{0}}}\right)+\left(\xi_{\alpha}-\xi_{\alpha_{0}} \mid \eta_{\bar{\alpha}_{0}}\right) ;
$$

the continuity follows since $\alpha \mapsto \xi_{\alpha}$ is bounded and weakly continuous (Lemma 4.1 (iii)). Finally, we claim that H is analytic in the interior of A. First note that for each $\zeta \in L^{2}(G)$ the function $\alpha \leftrightarrow\left(\zeta \mid \eta_{\bar{\alpha}}\right)$, being equal to $\alpha \mapsto\left(\overline{\eta_{-} \mid \zeta}\right)$, is analytic. Next, recall that $\alpha \mapsto \xi_{\alpha}$ is actually analytic as a function with values is $L^{2}(G)$ (by Lemma 4.1 (iii) and [19, Theorem 3.31]). Then, writing

$$
\frac{\left(\xi_{\alpha} \mid \eta_{\bar{\alpha}}\right)-\left(\xi_{\alpha_{0}}{ }^{\mid \eta_{\bar{\alpha}_{0}}}\right)}{\alpha-\alpha_{0}}=\left(\left.\frac{1}{\alpha-\alpha_{0}}\left(\xi_{\alpha}-\xi_{\alpha_{0}}\right) \right\rvert\, \eta_{\bar{\alpha}}\right)+\frac{\left(\xi_{\alpha_{0}}^{\left.\mid \eta_{-\bar{\alpha}}\right)-\left(\xi_{\alpha_{0}} \mid \eta_{-\bar{\alpha}_{0}}\right)}\right.}{\alpha-\alpha_{0}},
$$

we find that H has a derivative at each point α_{0} in the interior of A.

Now suppose that
(1) $\forall t \in \mathbb{R}:\left|H\left(\frac{1}{2}+i t\right)\right| \leq\|\lambda(\xi)\|\|\lambda(\eta)\|$
and
(2) $\quad \forall t \in \mathbb{R}:|H(1+i t)| \leq\|\lambda(\xi)\|\|\lambda(\eta)\|$.

Then by the Phragmen-Lindelöf principle [24, p. 93] we infer that

```
\forall\alpha\inA: |H(\alpha)|\leq|\lambda(\xi)||\lambda(\eta)|;
```

in particular,

$$
\left|\left(\mathcal{F}_{\mathrm{p}}(f) \xi \mid S \eta\right)\right| \leq\|\lambda(\xi)\|\|\lambda(n)\|
$$

as desired, since

$$
H\left(\frac{q}{p}\right)=\left(f * \Delta-1 / p_{\xi}|\cup| S \mid \eta\right)=\left(\mathcal{F}_{p}(f) \mid S n\right) .
$$

Since $S \in L^{P}\left(\psi_{0}\right)$ with $\|S\|_{p}=1$ we have
(3) U|S| ${ }^{\mathrm{p} / 2} \in \mathrm{~L}^{2}\left(\psi_{0}\right)$ with $\left\|\mathrm{U}|S|^{\mathrm{p} / 2}\right\|_{2}=1$
and
(4) $U|S|^{p} \in L^{1}\left(\psi_{0}\right)$ with $\left.|C| S\right|^{p_{\|}}{ }_{1}=1$.

Now let $t \in \mathbb{R}$. Then by Lemma 2.3, we have

Using this, Proposition 2.2, the estimate $\left\|\xi_{\frac{1}{2}+i t}\right\|_{2} \leq\|\lambda(\xi)\|$ givt in the proof of Lemma 4.1, and (3), we get

$$
\begin{aligned}
\left|H\left(\frac{1}{2}+i t\right)\right| & =\left\lvert\,\left(\left.\xi_{\frac{1}{2}+i t}|U| S\right|^{p / 2}|S|^{\left.-p i t_{n}\right) \mid}\right.\right. \\
& \leq\left\|\xi_{\frac{1}{2}+i t^{p}}\right\|_{2} \| U|S|^{p / 2}|S|^{-p i t_{n} \|_{2}} \\
& \leq\|\lambda(\xi)\|\left\|U|S|^{p / 2}\right\|_{2} \| \lambda\left(|S|^{\left.-p i t_{n}\right) \|_{2}}\right. \\
& \leq\|\lambda(\xi)\|\|\lambda(\eta)\|,
\end{aligned}
$$

i.e., (1) is proved. To prove (2), note that

$$
\begin{aligned}
\xi_{1+i t} & =\operatorname{sg}(f)|f|^{p(1+i t)} * \Delta^{1-(1+i t)} \xi \\
& =\lambda\left(\operatorname{sg}(f)|f|^{p(1+i t)}\right) \Delta^{-i t} \xi \in a_{\ell}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\lambda\left(\xi_{1+i t}\right)\right\| & \leq\left\|\lambda\left(s g(f)|f|^{p(1+i t)}\right)\right\|\left\|\lambda\left(\Delta^{-i t} \xi\right)\right\| \\
& \leq\left.\|s g(f)\| f\right|^{p(1+i t)}\left\|_{1}\right\| \lambda(\xi) \| \\
& \leq\|\lambda(\xi)\|
\end{aligned}
$$

since $\left\|s q(f)|f|^{p(1+i t)}\right\|_{1}=\||f|^{P_{\|}}{ }_{1}=1$. Using this together with (5), Proposition 2.1, and (4), we find

$$
\begin{aligned}
|H(1+i t)| & =\left|\left(\left.\xi_{1+i t}|U| S\right|^{p}|S|^{-p i t} r_{r}\right)\right| \\
& \leq\left\|\lambda\left(\xi_{1+i t}\right)\right\|\left\|U|S|^{p}\right\|_{1} \| i\left(|S|^{\left.-p i t_{r_{1}}\right) \|}\right. \\
& \leq\|\lambda(\xi)\|\|\lambda(\eta)\|,
\end{aligned}
$$

so that (2) is proved.

In the formulation of the following theorem we include the case $p=2$. Note however that the proof is based on the results for this special case (they were used for the preceding lemmas).

Theorem 4.1. (Hausdorff-Young). Let $p \in 31,2]$ and $\frac{1}{p}+\frac{1}{q}=1$.

1) Let $f \in L^{p}(G)$. Then $\mathcal{F}_{p}(f) \in L^{q}\left(\dot{\psi}_{0}\right)$ and

$$
\left\|\mathcal{F}_{p}(f)\right\|_{q} \leq\|f\|_{p}
$$

2) The mapping

$$
\mathcal{F}_{\mathrm{p}}: \mathrm{L}^{\mathrm{p}}(\mathrm{G}) \rightarrow \mathrm{L}^{q}\left(\psi_{0}\right)
$$

is linear, norm-decreasing, injective, and has dense range.
3) For all $h \in L^{1}(G)$ and $f \in L^{D}(G)$, we have

$$
\mathcal{F}_{p}(h * f)=\left[\lambda(h) \mathcal{F}_{p}(f)\right] .
$$

4) For all $f \in L^{p}(G)$, we have

$$
\mathcal{F}_{p}\left(J_{p} f\right)=\mathcal{F}_{p}(f)^{*}
$$

Proof. 1) First suppose that $f \in \mathcal{K}(G)$. Then, using proposition 2.3, we conclude from Lemma 4.2 that $\mathcal{F}_{i^{\prime}}(f) \in L^{q}\left(w_{0}\right)$ with
$\left\|\mathcal{F}_{\mathrm{p}}(\mathrm{f})\right\|_{\mathrm{q}} \leq\|f\|_{\mathrm{p}}$. Thus we have defined a norm-decreasing mapping

$$
\mathcal{F}_{\mathrm{P}} \mid \mathcal{K}(\mathrm{G}): \mathrm{L}^{\mathrm{p}}(\mathrm{G}) \rightarrow \mathrm{L}^{\mathrm{q}}\left(\psi_{0}\right) .
$$

Furthermore $\mathcal{F}_{p} \mid \mathcal{K}(G)$ is linear: for all $f_{1}, f_{2} \in \mathcal{K}(G)$ and all $\xi \in \mathcal{K}(\mathrm{G})$ we have

$$
\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right) * \Delta^{1 / \mathrm{q}_{\xi}}=\mathrm{f}_{1} * \Delta^{1 / \mathrm{q}_{\xi}+\mathrm{f}_{2} * \Delta^{1 / \mathrm{q}_{\xi}}, ~}
$$

so that $\mathcal{F}_{p}\left(f_{1}+f_{2}\right)=\left[\mathcal{F}_{p}\left(f_{1}\right)+\mathcal{F}_{p}\left(f_{2}\right)\right]$ by Proposition 2.4.
Now $\quad \mathcal{F}_{\mathrm{p}} \mid \mathcal{K}(\mathrm{G})$ extends by continuity to a norm-decreasing linear mapping

$$
\mathcal{F}_{\mathrm{p}}{ }^{\prime}: \mathrm{L}^{\mathrm{p}}(\mathrm{G}) \rightarrow \mathrm{L}^{\mathrm{q}}\left(\psi_{0}\right)
$$

We claim that for all $f \in L^{P}(G)$, we have

$$
\mathcal{F}_{p}^{\prime}(f)=\mathcal{F}_{p}(f)
$$

This will prove 1).
Let $f \in L^{p}(G)$. Then $\mathcal{F}_{p}^{\prime}(f) \in L^{q}\left(\psi_{0}\right)$ and $\mathcal{K}(G) \subseteq$ D($\left.\mathcal{F}_{\mathrm{p}}^{\prime}(\mathrm{f})\right)$ by Lemma 2.7. On the other hand, by the remarks at t) beginning of this section, $\mathcal{F}_{p}(f)$ is closed, densely defined, and $\left(-\frac{1}{q}\right)$-homogeneous, and $\mathcal{K}(G) \subseteq D\left(\mathcal{F}_{p}(f)\right)$. Thus by Lemma 2.. to conclude that $\mathcal{F}_{p}^{\prime}(f)=\mathcal{F}_{F}(f)$ we just have to show that

$$
\forall \xi \in \mathcal{K}(G): \mathcal{F}_{p}^{\prime}(f) \xi=\mathcal{F}_{p}(f) \xi
$$

Now, take $f_{n} \in \mathcal{K}(G)$ such that $f_{n} \rightarrow f$ in $L^{p}(G)$. Then for all $\xi \in \mathcal{K}(G)$, we have

$$
\begin{aligned}
\mathcal{F}_{p}\left(f_{n}\right) \xi & =f_{n} * \Delta^{1 / q_{\xi}} \\
& \rightarrow f * J^{1 / q_{\xi}}=\mathcal{F}_{p}(f) \xi \quad \text { in } \quad L^{p}(G) .
\end{aligned}
$$

on the other hand, since \mathcal{F}_{p} ' is continuous,

$$
\mathcal{F}_{p}\left(f_{n}\right) \xi=\mathcal{F}_{p}^{\prime}\left(f_{n}\right) \xi \rightarrow \mathcal{F}_{p}^{\prime}(f) \xi \text { in } L^{2}(G)
$$

by Lemma 2.7. We conclude that $\mathcal{F}_{p}(f) \xi=\mathcal{F}_{p}{ }^{\prime}(f) \xi$ as desired. Thus 1) is proved.
2) By the proof of 1), we just have to show that \mathcal{F}_{p} is injective and has dense range. The injectivity is evident: if $\mathcal{F}_{\mathrm{p}}(\mathrm{f})=0$ for some $\mathrm{f} \in \mathrm{L}^{\mathrm{p}}(\mathrm{G})$, then $\mathrm{f} * \Delta^{1 / q_{\xi}=0}$ for all $\xi \in \mathcal{K}(G)$, and thus $\mathrm{f}=0$. That $\mathcal{F}_{\mathrm{p}}\left(\mathrm{L}^{\mathrm{P}}(\mathrm{G})\right)$ is dense will be proved later.
3) For all $h \in L^{1}(G), f \in L^{p}(G)$, and $\xi \in \mathcal{K}(G)$ we have

$$
h *\left(f * \Delta^{1 / q_{\xi}}\right)=(h * f) * \Delta^{1 / q_{\xi}}
$$

(in $\left.L^{P}(G)\right)$. Thus by Proposition 2.4,

$$
\left[\lambda(h) \mathcal{F}_{p}(f)\right]=\mathcal{F}_{p}(h * f)
$$

4) Let $f \in \mathcal{K}(G)$. Then for $\xi, \eta \in \mathcal{K}(G)$ we have

$$
\begin{aligned}
\left(\mathcal{F}_{p}\left(J_{p} f\right) \xi \mid n\right) & =\left(J_{p}^{f * \Delta^{1 / q}} \xi \mid n\right) \\
& =\left(\Delta^{\left.1 / q_{\xi \mid \Delta^{-1}}\left(J_{p} f\right)^{\sim_{* n}}\right)}\right. \\
& =\left(\xi \mid \Delta^{1 / q}\left(\Delta^{-1} \Delta^{1 / p_{f}}{ }_{f n}\right)\right) \\
& =\left(\xi \mid f * \Delta^{1 / q_{n}}\right) \\
& =\left(\xi \mid \mathcal{F}_{p}(f) n\right),
\end{aligned}
$$

so that $\mathcal{F}_{\mathrm{p}}\left(\mathrm{J}_{\mathrm{p}} \mathrm{f}\right) \mid \mathcal{K}(\mathrm{G}) \subseteq\left(\mathcal{F}_{\mathrm{p}}(\mathrm{f}) \mid \mathcal{K}(G)^{\prime}\right)^{*}$. By Proposition 2.4, we conclude that

$$
F_{p}\left(J_{p} f\right)=F_{p}(f) *
$$

By the continuity of J_{p}, \mathcal{F}_{p}, and ${ }^{*}$, this holds for all $f \in L^{P}(G)$.

Finally, let us show that $\mathcal{F}_{\mathrm{p}}\left(\mathrm{L}^{\mathrm{p}}(\mathrm{G})\right)$ is dense in $\mathrm{L}^{\mathrm{q}}\left(\psi_{0}\right)$. By the duality between ${ }^{\mathrm{L}}{ }^{\mathrm{q}}\left(\psi_{0}\right)$ and $\mathrm{L}^{\mathrm{P}}\left(\psi_{0}\right)$, this is equivalen to proving that if $T \in L^{p}\left(\psi_{0}\right)$ satisfies $\int\left[\mathcal{J}_{\mathrm{p}}(£) T\right] d \psi_{0}=0 \quad \mathrm{fc}$ all $f \in L^{p}(G)$, then $T=0$.

Suppose that $T \in L^{p}\left(\psi_{0}\right)$ is such that

$$
\forall f \in L^{P}(G): \int\left[\mathcal{F}_{\mathrm{P}}(f) \mathrm{T}\right] d \psi_{0}=0 .
$$

Let $f \in L^{P}(G)$. Then for all $h \in L^{1}(G)$ we have

$$
\int\left[\mathcal{F}_{\mathrm{p}}(\mathrm{~h} * \mathrm{f}) \mathrm{T}\right] d \psi_{0}=0
$$

Alternatively stated, since $\left[\mathcal{F}_{\mathrm{p}}(\mathrm{h} * \mathrm{f}) \mathrm{T}\right]=\left[\left[\lambda(\mathrm{h}) \mathcal{F}_{\mathrm{p}}(\mathrm{f})\right] \mathrm{T}\right]=$ $\left[\lambda(h)\left[\mathcal{F}_{\mathrm{p}}(f) T\right]\right]$, we have

$$
\forall h \in L^{1}(G): \int\left[\lambda(h)\left[F_{p}(f) T\right]\right] d \psi_{0}=0 .
$$

We conclude that the normal functional on M defined by $\left[\mathcal{F}_{p}(f) T\right] \in L^{1}\left(\psi_{0}\right)$ is 0 , so that

$$
\left[\mathcal{F}_{\mathrm{p}}(\mathrm{f}) \mathrm{T}\right]=0
$$

Changing f into $J_{p} f$ and using 4) this gives

$$
\forall f \in L^{P}(G):\left[\mathcal{F}_{p}(f) * T\right]=0
$$

Now let $\xi \in D(T)$. Then using [12, II, Proposition 5, 1)], we find that

$$
\begin{aligned}
\forall f, \eta \in \mathcal{K}(G) & :\left(T \xi \mid f * \Delta^{\left.1 / q_{r_{1}}\right)}\right. \\
& =\left(T \xi \mid \mathcal{F}_{p}(f) \eta\right) \\
& =\left\langle\left[\mathcal{F}_{p}(f) * T\right], \quad i(\xi) \lambda(-) *\right\rangle=0 .
\end{aligned}
$$

Thus $T \xi=0$. This proves that $T=0$ as wanted.

Proposition 4.1. Let $p \in[1,2]$. Let $f \in L^{p}(G)$. Then $F_{p}(f) \geq 0$ if and only if

$$
\forall \xi \in \mathcal{K}(G): \int f(x)\left(\xi * J_{p} \xi\right)(x) d x \geq 0 .
$$

Proof. We have

$$
\begin{aligned}
\left(\mathcal{F}_{p}(f) \xi \mid \xi\right) & =\int\left(f * \Delta^{\left.1 / p_{\xi}\right)(x)} \overline{\xi(x)} d x\right. \\
& =\int f(x)\left(\bar{\xi}_{*}-\Delta^{-1 / p} p_{\xi}^{v}\right)(x) d x
\end{aligned}
$$

for all $\xi \in \mathcal{K}(G)$. . The result follows by changing ξ into $\bar{\xi}$ and recalling that $\mathcal{F}_{p}(f)=\left[\mathcal{F}_{p}(f) \mid \mathcal{K}(G)\right]$.

The L^{P} Fourier transformations are well-behaved with respect to convolution as the following proposition shows. The result generalizes 3) of the theorem.

Proposition 4.2. Let $p_{1}, p_{2}, p \in[1,2]$ such that $\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{1}{p}=1$. Define $p_{2} q_{1} \in[2, \infty]$ by $\frac{1}{p_{1}}+\frac{1}{q_{1}}=1$. Let $f_{1} \in L^{p_{1}}(G)$ and $f_{2} \in L^{p_{2}}(G)$. Then

$$
\mathcal{F}_{p}\left(f_{1} * \Delta^{1 / q_{1}} f_{2}\right)=\left\{\mathcal{F}_{\mathrm{F}_{1}}\left(E_{1}\right) \mathcal{F}_{F_{2}}\left(f_{2}\right)\right\}
$$

Proof. By Lemma 1.1, we have $f_{1} * \Delta^{1 / q_{1}} f_{2} \in L^{p}(G)$, and $\left(f_{1}, f_{2}\right) \mapsto \mathcal{F}_{p}\left(f_{1} * \Delta^{1 / q_{1}} f_{2}\right)$ maps $L^{p_{1}}(G) \times L^{p_{2}}(G)$ continuously into $L^{q}\left(\psi_{0}\right)$ (where $\frac{1}{p}+\frac{1}{q}=1$). Also $\left[\mathcal{F}_{p_{1}}\left(f_{1}\right) \mathcal{F}_{p_{2}}\left(f_{2}\right)\right]$ is continuous as a function of $\left(f_{1}, f_{2}\right) \in L^{p_{1}}(G) \times L^{p_{2}}(G)$ with values in $L^{q}\left(\psi_{0}\right)$. Thus we need only prove the statement for $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathcal{K}(\mathrm{G})$. Since

$$
\left(\mathrm{f}_{1} * \Delta^{1 / \mathrm{q}_{1}} \mathrm{f}_{2}\right) * \Delta^{\left.\left.1 / \mathrm{q}_{\xi}=\mathrm{f}_{1} * \Delta^{1 / \mathrm{q}_{1}}\left(\mathrm{f}_{2} * \Delta^{1 / \mathrm{q}_{2}}\right)\right), ~\right)}
$$

(where $\frac{1}{p_{2}}+\frac{1}{q_{2}}=1$) for all $f_{1}, f_{2}, \xi \in \mathcal{K}(G)$, the result follows by Proposition 2.4 as usual.

We conclude this section by the following characterization of the image of $L^{p}(G)$ under \mathcal{F}_{p} :

Proposition 4.3. Let $p \in 11,2]$ and $\frac{1}{p}+\frac{1}{q}=1$. Let $T \in L^{q}(1$

1) If $T=\mathcal{F}_{p}(f)$ for some $f \in L^{P}(G)$, then for any appr ximate identity $\left(\xi_{i}\right)_{i \in I}$ in $\mathcal{K}(G)_{+}$we have

$$
\mathrm{T} \xi_{i} \rightarrow \mathrm{f} \quad \text { in } \quad L^{\mathrm{p}}(\mathrm{G})
$$

In particular, $\quad \operatorname{lim\| } T \xi_{i}\left\|_{p}=\right\| f \|_{p}<\infty$.
2) Conversely, suppose that for some approximate identity $\left(\xi_{i}\right)_{i \in I}$ in $\mathcal{K}(G)_{+}$we have $T \xi_{i} \in L^{p}(G)$ for all $i \in$ and

$$
\lim \operatorname{inf\| Ts} \|_{p}<\infty .
$$

Then $T \in \mathcal{F}_{\mathrm{p}}\left(\mathrm{L}^{\mathrm{P}}(\mathrm{G})\right)$.
proof. The first part is obvious since $T_{i}=f * \Delta^{1 / q_{F_{i}} \rightarrow f}$ in ${ }_{L}{ }^{P}(G)$ and therefore $\left\|T \xi_{i}\right\|_{p} \rightarrow\|f\|_{p}$. Now suppose that the hypothesis of 2) holds for some $\left(\xi_{i}\right)_{i \in I}$. We then proceed as in the proof of the surjectivity of P (Theorem 3.1). For all $\eta, \zeta \in \mathcal{K}(G)$ we have

$$
\begin{aligned}
\left(\eta * \Delta^{-1 / q} \tilde{\zeta}_{\zeta} \mid T \xi_{i}\right)= & \left(\eta \mid\left(T \xi_{i}\right) * \Delta^{1 / q_{\zeta}}\right) \\
= & \left(\eta \mid T\left(\xi_{i} * \zeta\right)\right) \\
= & \left(T * \eta \mid \xi_{i} * \zeta\right) \\
& \rightarrow(T * \eta \mid \zeta)=(\eta \mid T \zeta) .
\end{aligned}
$$

Thus we can define a linear functional F on $\mathcal{K}(G) * \mathcal{K}(G)$ by

$$
F(\xi)=\lim _{i} \int \xi(x)\left(\overline{\left.T \xi_{i}\right)(x)} d x\right.
$$

Since

$$
\mid \int \xi(x)\left(\overline{T \xi_{i}}\right)(x) d x\|\leq\| \xi\left\|_{q}\right\| T \xi_{i} \|_{p}
$$

we have

$$
|F(\xi)| \leq\left(\lim \inf \left\|T \xi_{i}\right\|_{p}\right) \cdot\|\xi\|_{q}
$$

Now since $\mathcal{K}(G) * \mathcal{K}(G)$ is dense in $L^{q}(G), F$ extends to a bounded functional on $L^{q}(G)$ and therefore is given by some $\bar{f} \in L^{p}(G):$

$$
F(\xi)=\int \xi(x) \overline{f(x)} d x
$$

In particular,

$$
(n \mid T \zeta)=F\left(n * \Delta^{\left.-1 / q_{\tilde{\zeta}}\right)}=\int\left(n * \Delta^{\left.-1 / q_{\tilde{\zeta}}\right)(x) \overline{f(x)} d x}\right.\right.
$$

for all $n, \zeta \in \mathcal{K}(G)$. Since

$$
\int\left(\eta * \Delta^{-1 / q} q_{\zeta}\right)(x) \overline{f(x)} d x=\int \eta(x) \overline{\left(f * \Delta^{1 / q_{\zeta}}(x)\right.} d x=\left(\eta \mid \mathcal{F}_{p}(f) \zeta\right)
$$

this implies that

$$
\forall \zeta \in \mathcal{K}(G): T \zeta=\mathcal{F}_{p}(f) \zeta
$$

and we conclude by Proposition 2.4 that. $T=\mathcal{F}_{p}(f)$.

Remark. For $p=1$, part 2) of the above proposition fails. (For a counter-example, take $T=\lambda(x), x \in G$.)

5. The L^{P} Fourier cotransformations.

Definition. Let $p \in[1,2]$ and $\frac{1}{p}+\frac{1}{q}=1$. For each $T \in L^{p}(\psi$ denote by $\overline{\mathcal{F}}_{P}(T)$ the unique function in $L^{q}(G)$ such that

$$
\int h(x) \overline{\mathcal{F}}_{p}(T)(x) d x=\int\left[\mathcal{F}_{p}(h) T\right] d \psi_{0}
$$

for all $h \in L^{P}(G) \quad$ (or just $h \in \mathcal{K}(G)$, or $h \in \mathcal{K}(G) * \mathcal{K}(G)$). The mapping

$$
\overline{\mathcal{F}}_{\mathrm{p}}: \mathrm{L}^{\mathrm{p}}\left(\psi_{0}\right) \rightarrow \mathrm{L}^{\mathrm{q}}(\mathrm{G})
$$

thus defined will be called the L^{p}. Fourier cotransformation. For $p=1$, we write $\overline{\mathcal{F}}=\overline{\mathcal{F}}_{1}$.

Note that if $1<\mathrm{p} \leq 2$, then \bar{F}_{p} is simply the transpose ,f $\mathcal{F}_{\dot{p}}: L^{p}(G) \rightarrow L^{q}\left(\psi_{0}\right)$ when we identify the dual spaces of ${ }^{\mathrm{P}}(\mathrm{G})$ and $L^{q}\left(\psi_{0}\right)$ with $L^{q}(G)$ and $L^{p}\left(\psi_{0}\right)$, respectively. The mapping $\overline{\mathcal{F}}$ takes an element $T \in L^{1}\left(\%_{0}\right)$ into the unique function $\varphi \in A(G)$ that defines the same element of M_{*} as T does; in particular,

$$
\overline{\mathcal{F}}\left(\frac{d \varphi}{d \psi_{0}}\right)=\varphi
$$

for all $\varphi \in\left(M_{*}\right)^{+} \simeq A(G)_{+}$.
In view of these remarks, we obviously have

Theorem 5.1.

1) Let $p \in[1,2]$ and $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\overline{\mathcal{F}}_{\mathrm{p}}: \mathrm{L}^{\mathrm{p}}\left(\dot{\psi}_{0}\right) \rightarrow \mathrm{L}^{\mathrm{q}}(\mathrm{G})
$$

is linear, norm-decreasing, injective, and has dense range.
2) The mapping

$$
\begin{gathered}
\overline{\mathcal{F}}: L^{1}\left(\psi_{0}\right) \rightarrow A(G) \\
\text { is an isometry of } L^{1}\left(\psi_{0}\right) \text { onto } A(G) .
\end{gathered}
$$

Remark. With our definition of the cotransformations, $\overline{\mathcal{F}}_{2}$ is not exactly the inverse of \mathcal{P}; they are related by the formula

$$
\forall T \in L^{2}\left(\psi_{0}\right): \overline{\mathcal{F}}_{2}(T)=\overline{\mathcal{P}-1\left(T^{*}\right)}
$$

(since for all $h \in L^{2}(G)$ we nave $\int n(x) \bar{F}_{z}(T)(x) d x=$
$\int\left[\mathcal{F}_{2}(\mathrm{~h}) \mathrm{T}\right] \mathrm{d}_{0}^{*}=\left(\mathcal{F}_{2}(\mathrm{~h}) \mid \mathrm{T}^{*}\right)_{L^{2}\left(\sigma_{0}\right)}=\left(\mathrm{n} \mid \mathrm{p}^{-1}\left(\mathrm{~T}^{*}\right)\right)_{L^{2}(G)}=$
 unitary.

The classical Hausdorff-Young theorem $[24, ~ p .101]$ has a second part, stating that with each $c \in \ell_{p}(\mathcal{Z}), 1 \leq p \leq 2$, we can isocrate a function $f \in L^{q}(\mathbb{I})$ with $\|f\|_{q} \leq\|C\|_{p}$, such that c is the sequence of Fourier coefficients of f. Theorem 5.1 is a generalization of this result. Indeed, let $T \in L^{P}\left(\psi_{0}\right)$ and put $g=\Delta^{-1 / q} \overline{\mathcal{F}}_{p}(T)^{v}$. Then $g \in L^{q}(G)$ and $\|g\|_{q}=\left\|\overline{\mathcal{F}}_{p}(T)\right\|_{q} \leq$ $\|T\|_{p}$, and we shall see that T is close to being the "L Fourier transform" of g in the sense that $T \xi=g^{*} \Delta^{1 / p_{\xi}}$ for certai ξ (note that we do not in general define L^{q} Fourier transforms $q \geq 2)$.

Proposition 5.1. Let $p \in[1,2]$ and $\frac{1}{p}+\frac{1}{q}=1$.. Then for all $T \in L^{P}\left(\psi_{0}\right)$, we have

$$
\overline{\mathcal{F}}_{p}\left(T^{*}\right)=J_{q}\left(\overline{\mathcal{F}}_{p}(T)\right)
$$

Proof. For all $h \in L^{p}(G)$ we have

$$
\begin{aligned}
\int h(x) \overline{\mathcal{F}}_{p}\left(T^{*}\right)(x) d x & =\int\left[\mathcal{F}_{p}(h) T^{*}\right] d \psi_{0} \\
& =\overline{\int\left[T \mathcal{F}_{p}(h) *\right] d \dot{\psi}_{0}}=\overline{\int\left[T \mathcal{F}_{p}\left(J_{p} h\right)\right] d \psi_{0}} \\
& =\int \overline{\mathcal{F}_{p}(T)(x) \Delta^{-1 / p}(x) h\left(x^{-1}\right) d x} \\
& =\int \Delta^{-1 / q}(x) \overline{\mathcal{F}_{p}(T)\left(x^{-T}\right) h(x) d x}
\end{aligned}
$$

ama 5.1. Let $h, k \in \mathcal{K}(G)$ and put $\varphi=\dot{r}_{1} \tilde{\dot{x}}$. Then $\nu(\nu) \Delta] \in L^{1}\left(\psi_{0}\right)$ and

$$
\int[\lambda(\varphi) \Delta] d \psi_{0}=\varphi(\mathrm{e})
$$

roof. Since

$$
\begin{aligned}
\lambda(\varphi) \Delta & =\lambda(h) \lambda(\tilde{k}) \Delta^{\frac{1}{2}} \Delta^{\frac{1}{2}} \\
& \subseteq \lambda(h) \Delta^{\frac{1}{2}} \lambda\left(\Delta^{-\frac{1}{2}} \tilde{k}\right) \Delta^{\frac{1}{2}} \subseteq \mathcal{P}(h) \mathcal{P}(k)^{*}
\end{aligned}
$$

the closure $[\lambda(\varphi) \Delta]$ exists and $[\lambda(\varphi) \Delta] \subseteq[\mathcal{P}(h) \mathcal{P}(k) *]$. One easily checks that for all $x \in G$ we have rix)i($\varphi, \Delta \subseteq$ $\Delta(x) \lambda(\varphi) \Delta \rho(x)$, i.e. that $\lambda(\varphi) \Delta$ is (-1)-homogeneous. Then also $[\lambda(\varphi) \Delta]$ is (-1)-homogeneous, and we conclude by proposition 2.4 that $[\lambda(\varphi) \Delta]=\left[\mathcal{P}(h) \mathcal{P}(k)^{*}\right]$, so that $[\lambda(\varphi) \Delta] \in L^{1}\left(\psi_{0}\right)$ and

$$
\begin{aligned}
\int[\lambda(\varphi) \Delta] d \psi_{0} & =(\mathcal{P}(h) \mid \mathcal{P}(k)) L^{2}\left(\psi_{0}\right) \\
& =\int h(x) \overline{k(x)} d x=(h * \widetilde{k})(e)=\varphi(e)
\end{aligned}
$$

Suppose that $f_{1} \in L^{P_{1}}(G)$ and $f_{2} \in L^{p_{2}}(G)$, where $p_{1}, p_{2} \in[1,2]$. In Proposition 4.2, a formula relating $\mathrm{f}_{1} * \Delta^{1 / \mathrm{q}_{1}} \mathrm{f}_{2}$ and $\left[\mathcal{F}_{\mathrm{p}_{1}}\left(\mathrm{f}_{1}\right) \mathcal{F}_{\mathrm{p}_{2}}\left(\mathrm{f}_{2}\right)\right]$ was given in the case where $\frac{1}{p_{1}}+\frac{1}{p_{2}} \geq \frac{3}{2}$ (under this assumption, $p \in[1,2]$ satisfying $\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{1}{p}=1$ exists). The following proposition takes care of the case where $\frac{1}{p_{1}}+\frac{1}{p_{2}} \leq \frac{3}{2}$.

Proposition 5.2. Let $p_{1}, P_{2} \in[1,2]$ ard $\Xi \in[2, \infty]$ such that $\frac{1}{F_{1}}+\frac{1}{P_{2}}-\frac{1}{q}=1$. Let $f_{1} \in L^{F_{1}}(G)$ and $f_{2} \in L^{P_{2}}(G)$. Then

$$
\overline{\mathcal{F}}_{\mathrm{p}}\left(\left[\mathcal{F}_{\mathrm{p}_{1}}\left(\mathrm{f}_{1}\right) \mathcal{F}_{\mathrm{p}_{2}}\left(\mathrm{f}_{2}\right)\right]\right)=\Delta^{-1 / \mathrm{q}}\left(\mathrm{f}_{1} * \Delta^{\left.1 / \mathrm{q}_{\mathrm{f}_{2}}\right)^{v}},\right.
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and $\frac{1}{p_{1}}+\frac{1}{q_{1}}=1$.
Proof. Both expressions exist, belong to $L^{q}(G)$, and are continuours as functions of $\left(f_{1}, f_{2}\right) \in L^{p_{1}}(G) \times L^{P_{2}}(G)$. Thus we need only prove the formula for $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathcal{K}(\mathrm{G})$. In this case, for all $h \in \mathcal{K}(G)$ and $\xi \in \mathcal{K}(G)$ we have

$$
\mathrm{h} * \Delta^{1 / \mathrm{q}}\left(\mathrm{f}_{1} * \Delta^{1 / \mathrm{q}_{1}}\left(\mathrm{f}_{2} * \Delta^{1 / \mathrm{q}_{2}} \xi\right)\right)=\mathrm{h} * \Delta^{1 / \mathrm{q}}\left(\mathrm{f}_{1} * \Delta^{1 / \mathrm{q}_{1}} \mathrm{f}_{2}\right) * \Delta \xi,
$$

where $\frac{1}{p_{2}}+\frac{1}{q_{2}}=1$. We conclude by Proposition 2.4 that

$$
\forall h \in \mathcal{K}(G):\left[\mathcal{F}_{\mathrm{p}}(\mathrm{~h})\left[\mathcal{F}_{\mathrm{p}_{1}}\left(\mathrm{f}_{1}\right) \mathcal{F}_{\mathrm{p}_{2}}\left(\mathrm{f}_{2}\right)\right]\right]=\left[\lambda\left(\mathrm{h} * \Delta \Delta_{\mathrm{f}}\right) \Delta\right]
$$

where we have written $\mathrm{f}=\mathrm{f}_{1} * \Delta^{1 / \mathrm{q}_{1}} \mathrm{f}_{2}$. Using this and Lemma 5.1, we find

$$
\begin{aligned}
\forall h \in \mathcal{K}(G) & : \int\left[\mathcal{F}_{p}(h)\left[\mathcal{F}_{p_{1}}\left(f_{1}\right) \mathcal{F}_{p_{2}}\left(f_{2}\right)\right]\right] d \psi_{0} \\
& =\int\left[\lambda\left(h * \Delta^{1 / q_{f}}\right) \Delta\right] d_{\psi} \\
& =\left(h * \Delta^{1 / G_{f}}\right)(e) \\
& =\int h(x) \Delta^{1} I_{\left(x^{-1}\right) f\left(x^{-1}\right) d x}
\end{aligned}
$$

We conclude that

$$
\overline{\mathcal{F}}_{\mathrm{p}},\left[\mathcal{F}_{\mathrm{p}_{1}}\left(\mathrm{f}_{1}\right) \mathcal{F}_{\mathrm{F}_{2}}\left(\mathrm{I}_{2},\right]\right)=د^{-1} \mathrm{q}_{\mathrm{f}}^{\mathrm{L}} .
$$

Corollary. Let $f, g \in L^{2}(G)$. Then

$$
\mathrm{f} * \tilde{\mathrm{~g}}=\overline{\mathcal{F}}\left(\left[\mathcal{P}(\overline{\mathrm{g}}) \mathcal{P}(\overline{\mathrm{f}})^{*}\right]\right) .
$$

Proof. Letting $p_{1}=p_{2}=2$ and $q=\infty$ in Proposition 5.2, we obtain

$$
\begin{aligned}
\overline{\mathcal{F}}([\mathcal{P}(\bar{g}) \mathcal{P}(\bar{f}) *]) & =\overline{\mathcal{F}}\left(\left[\mathcal{F}_{2}(\bar{g}) \mathcal{F}_{2}(\overline{\mathrm{f}})\right]\right) \\
& =\left(\overline{\mathrm{g}} * \Delta^{\frac{1}{2}} \mathrm{~J} \bar{f}\right)^{v}=\mathrm{f} * \tilde{\mathrm{~g}}
\end{aligned}
$$

Remark. Since $A(G)=\overline{\mathcal{F}}\left(L^{1}\left(\psi_{0}\right)\right)$ and since every $T \in L^{1}\left(\psi_{0}\right)$ can be written $T=\left[R S *\right.$ where $R, S \in L^{2}\left(\psi_{0}\right)=P\left(L^{2}(G)\right)$ (just put $R=U|T|^{\frac{1}{2}}$ and $S^{*}=|T|^{\frac{1}{2}}$, where $T=U|T|$ is the polar decomposition of T) , we have reproved the fact [6, Théorème, p. 218] that $A(G)=\left\{f * \tilde{g} \mid f, g \in L^{2}(G)\right\}$. It also follows that $\|\varphi\|_{A(G)} \leq\|f\|_{2}\|g\|_{2}$ whenever $\varphi=f * \tilde{g}, f, g \in L^{2}(G) \quad$ (since $\left.\left\|\left[\mathcal{P}(\overline{\mathrm{g}}) \mathcal{P}(\overline{\mathrm{f}})^{*}\right]\right\|_{1} \leq\|\mathcal{P}(\overline{\mathrm{g}})\|_{2}\|\mathcal{P}(\overline{\mathrm{f}})\|_{2}\right)$, and that, given $\varphi \in A(G)$, there exist $f, g \in L^{2}(G)$ with $\varphi=f * \tilde{g}$ such that $\|\varphi\|_{A(G)}=\|f\|_{2}\|g\|_{2}$ (use that $\|T\|_{1}=\left\|U|T|^{\frac{1}{2}}\right\|_{2}\left\||T|^{\frac{1}{2}}\right\|_{2}$ for $T \in L^{1}\left(\psi_{0}\right)$.
proposition 5.3. Let $p \in[1,2]$ and $q_{q}, q_{2} \in[2, \infty]$ such that $\frac{1}{q_{1}}+\frac{1}{q_{2}}=\frac{1}{p} \quad$ Let $T \in L^{q_{1}}\left(\psi_{0}\right)$ and $s \in L^{q_{2}}\left(\psi_{0}\right)$. Then

$$
(T \xi \mid S \eta)=\int \overline{\mathcal{F}}_{p}\left(\left[S^{*} T\right]\right)(x)\left(\xi * J J^{\eta}\right)(x) d x
$$

for all $\xi, \eta \in \mathcal{K}(G)$.

Proof. By Lemma 2.7, the left hand side of the equation to be proved is a continuous function of T and S. The same is true of the right hand side. Therefore it is enough to prove the statement for T and S belonging to the (dense) sets $\mathcal{F}_{p_{1}}(\mathcal{K}(G)$; and $\mathcal{F}_{p_{2}}(\mathcal{K}(G))$ (where, as usual, $\frac{1}{p_{1}}+\frac{1}{q_{1}}=1, \frac{1}{p_{2}}+\frac{1}{q_{2}}=1$). Now suppose that $T=\mathcal{F}_{\mathrm{p}_{1}}(\mathrm{~h})$ and $\mathrm{S}=\mathcal{F}_{\mathrm{p}_{2}}(\mathrm{k})$ where $h, k \in \mathcal{K}(G)$. Then

$$
\begin{aligned}
& (T \xi \mid S n)=\left(h * \Delta^{1 / q_{1}} \xi \mid k * \Delta^{1 / q_{2}}\right) \\
& =\left(\Delta^{1 / q_{1}}{ }_{\xi \Delta \Delta}^{-1 / q_{2}}{\tilde{n} / \Delta^{-1}}_{n}^{n} * k\right) \\
& =\left(\xi * \Delta^{-1 / q_{1}-1 / q_{2}} \tilde{\eta} \mid \Delta^{-1 / p_{1}} \tilde{h} * \Delta^{-1 / q_{1}}{ }_{k}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& \overline{\mathcal{F}}_{p}([S * T])=\overline{\mathcal{F}}_{p}\left(\left[\mathcal{F}_{p_{2}}\left(J_{p_{2}} k\right) \mathcal{F}_{p_{1}}(h)\right]\right) \\
& =\Delta^{-1 / q}\left(J_{p_{2}} k * \Delta^{1 / q_{2}}\right)^{v} \\
& =\Delta^{-1+1 / p} \quad \Delta^{-1 / q} 2_{h * \Delta^{-1+1 / p}}^{v} \Delta^{1 / p_{2}} \\
& =\Delta^{-1 / p_{1 v}^{v}} \underset{h *}{-1 / q_{1}}
\end{aligned}
$$

we have proved the formula.

Proposition 5.4. Let $p \in[1,2]$ and $\frac{1}{p}+\frac{1}{q}=1$. Let $T \in L^{p}\left(\psi_{0}\right.$ with polar decomposition $T=U|T|$. Put $g=\Delta^{-1 / \mathcal{T}_{\mathcal{F}}}(T)^{v}$. Then

$$
\left(\left|\eta^{\frac{b}{E}}\right||T|^{\frac{3}{3}}\left(i n_{n}\right)=\int\left(g * \Delta^{\left.1 / P_{E}\right)(x) \overline{n(x)} d x}\right.\right.
$$

20E. Put $q_{1}=q_{2}=2 p$. Then $|T|^{\frac{i}{2}} \in L^{q_{1}}\left(q_{0}\right)$ and $1^{\frac{\xi}{2}} \mathrm{U}^{*} \in \mathrm{~L}^{\mathrm{q}_{2}}\left(\psi_{0}\right)$, and by Proposition 5.3 we get

$$
\left(\left.|T|^{\frac{1}{2}} \xi| | T\right|^{\frac{1}{2}} U^{*} \Pi\right)
$$

$$
\begin{aligned}
& =\int \overline{\mathcal{F}}_{\mathrm{p}}(T)(x)\left(\xi * J_{p} \because\right)(x) d x \\
& =\int \overline{\mathcal{F}}_{\mathrm{p}}(T)\left(x^{-1}\right)\left(\Delta^{1 / \tilde{p}_{n}^{*}}{ }^{v}\right)\left(x^{-1}\right) \Delta^{-1}(x) d x \\
& =\int g(x)\left(\bar{\eta} * \Delta^{-1 / p k}\right)(x) d x \\
& =\int\left(g * \Delta^{1 / 0} \xi\right)(x) \overline{\eta(x)} d x .
\end{aligned}
$$

rEposition 5.5. Let $p \in[1,2]$ and $T \in \mathcal{I}=0)$. Put $j=\Delta^{-1 / q} \overline{\mathcal{F}}_{p}(T)^{\vee}$. Let $\xi \in \mathcal{K}(G)$. Then $\xi \in D(T)$ if and only

$$
T \xi=\mathrm{G} * \Delta^{1 / \mathrm{P}_{\xi}}
$$

roof. First suppose that $\xi \in D(T)$. Then for all $\eta \in K(G)$ we have

$$
\begin{aligned}
\int(T \xi)(x) \overline{n(x)} d x & =(T \xi i \eta) \\
& =\left(\left.|T|^{\frac{1}{2}} \xi| |\right|_{1} ^{\frac{1}{2}}\left(U^{*} r_{1}\right)\right. \\
& =\int\left(\underline{q} \Delta^{1} \tilde{F}_{\xi}\right)(x) \overline{n(x)} d x
\end{aligned}
$$

Hence $g * \Delta^{1 / P_{\xi}=T \xi}$ and thus $q * \Delta^{1 / F_{\xi} \in L^{2}(0) \text {. }}$
Conversely, if $G * s^{1 / P_{\zeta}} \in L^{2}(G)$, then

$$
\begin{aligned}
\left\lvert\,\left(\left.|T|^{\frac{\dot{z}}{\xi}} \xi \right\rvert\,\right.\right. & \left.|T|^{\frac{1}{2}} U^{*} n\right) \mid \\
& =1 \int\left(g * \Delta^{\left.1 / p_{\xi}\right)(x)} \overline{r_{i}(x)} \mathrm{d} x \mid\right. \\
& \leq H g * \Delta^{1 / p_{5} H_{2} h+\|_{2}}
\end{aligned}
$$

for all $n_{i} \in \mathcal{K}(G)$. We conclude that $|T|^{\frac{1}{2}} \xi \in D\left(\left[\left.|T|^{\frac{1}{2}} U^{*} \right\rvert\, \mathcal{K}(G)\right]^{*}\right)$. Now $\left[\left.|T|^{\frac{1}{2}} U^{*}\left|\mathcal{K}(G)^{*}=\left[|T|^{\frac{1}{2}} U^{*}\right]^{*}=U\right| T\right|^{\frac{1}{2}}\right.$, so that
$|T|^{\frac{1}{2}} \xi \in D\left(U|T|^{\frac{1}{2}}\right)$, whence $\xi \in D(T)$.

Theorem 5.2. Let $p \in[1,2]$ and $T \in L^{p}\left(\psi_{0}\right)$. Put $g=\Delta^{-1 / q} \overline{\mathcal{F}}_{p}(T)^{\vee}$. Suppose that $g \in L^{2}(G)$. Then T is the closure of the operator

$$
\xi \mapsto g * \Delta^{1 / F_{\xi}}, \xi \in K(G)
$$

Proof. When $g \in L^{2}(G)$, we have $g * \Delta^{1 / P} p_{\xi} \in L^{2}(G)$ for all $\xi \in \mathcal{K}(\mathrm{G})$. Thus, by Proposition 5.5, $\mathcal{K}(\mathrm{G}) \subseteq D(T)$, and $T \xi=\mathrm{g} * \Delta^{1 / P_{\xi}}$ for all $\xi \in \mathcal{K}(G)$. since $T=[T \mid \mathcal{K}(G)]$ by proposition 2.4 , the theorem is proved.

As a corollary, we have

Theorem 5.3. (Fourier inversion). Let $p \in[1,2]$ and $\frac{1}{p}+\frac{1}{\mathrm{c}}=1$

1) Let $T \in L^{F}\left(\psi_{0}\right)$. Put $g=s^{-1, G} \bar{F}_{\mathrm{G}}(\mathrm{T})^{\vee}$. If

$$
\begin{aligned}
& \left.g \in L^{r}, G\right) \text { for some } z \in(1,2] \text {, then } \mathcal{F}_{r}(g) \Delta^{1 r-1 / q} \\
& i s \text { closable, ant }
\end{aligned}
$$

$$
w=\left[\mathcal{F}_{: ~}()^{1 \cdot r-1 a_{j}}\right.
$$

2) Let $f \in L^{P}(G)$. If for some $\mathrm{f} \in[1,2\}$, the closure $s=\left[\mathcal{F}_{\mathrm{p}}(f) \Delta^{1 / r-1 / q}\right]$ exists and belongs to $L^{r}\left(q_{\mathrm{O}}\right)$, then

$$
\bar{f}=\Delta^{-1 / s} \overline{\mathcal{F}}_{r}(S)^{v}
$$

where $\frac{1}{r}+\frac{1}{s}=1$.
roof. 1) Since $g \in L^{r}(G) \cap L^{G}(G)$, we also nave $G \in L^{2}(G)$. Fen by Theorem 5.2 we have
or all $\xi \in \mathcal{K}(G)$. Thus $\mathrm{T} \mid \mathcal{K}(\mathrm{G}) \subseteq \mathcal{F}_{\mathrm{r}}(\mathrm{g}) \Delta^{1 / \mathrm{r}-1 / \mathrm{q}}$. As is asily seen $\mathcal{F}_{\mathrm{r}}(\mathrm{g}) \Delta^{1 / \mathrm{r}-1 / q}$ is $\left(-\frac{1}{\mathrm{p}}\right)$-homogeneous. It in also closole, since its adjoint is densely defined (indeed, $\left(\mathcal{F}_{r}(\mathrm{~g}) \Delta^{1 / \mathrm{r}-1 / \mathrm{q}}\right)^{*} \subseteq\left(\mathrm{~T} \mid \mathcal{K}(G)^{* *}=\mathrm{T}^{*}\right.$ so that
$\left.\left(\mathcal{F}_{\mathrm{r}}(\mathrm{g}) \Delta^{1 / \mathrm{r}-1 / \mathrm{G}}\right)^{*}=\mathrm{T}^{*}\right) \cdot$ he conclude that $\mathrm{T}=\left[\mathcal{F}_{\mathrm{r}}(\mathrm{S}) \Delta^{1 / r-1 / \mathrm{G}}\right]$ (since $\left.T \subseteq\left[\mathcal{F}_{r}(g) \Delta^{1 / r-1 / G}\right]\right)$.
2) For all $\xi \in \mathcal{K}(G)$, we have $\xi \in D(S)$ and by Proposition 5.5,

$$
\mathrm{f} * \Delta^{1 / r_{\xi}}=\mathcal{F}_{\mathrm{p}}(\mathrm{f}) \mathrm{s}^{1 / r-1 / q_{\xi}}=\mathrm{s}_{\xi}=\Delta^{-1 / \mathrm{s}} \overline{\mathcal{F}}_{r}(S)^{v} * \xi .
$$

The result follows.

Putting $p=r=1$ in the first part of Theorem: 5.2 and recalling that $\overline{\mathcal{F}}\left(\frac{d v}{d d_{0}}\right)=0$ for $w \in A(G)+$ we obtain
"oroliary. Let $\sigma \in A(0)+$ If \& $E L^{\prime}(b)$, then

$$
\left.\frac{d v}{d v_{0}}=\| w د\right\rangle .
$$

Finally we shall give some results on positive operators $T \in L^{P}\left(\psi_{0}\right)$ valid without any restriction on $\mathcal{F}_{p}(T)$. Note that for all $f \in L^{q}(G)$ and $\xi, \eta \in \mathcal{K}(G)$ we have

$$
\begin{aligned}
\int f(x)(\xi & \left.\neq J_{p} \eta\right)(x) d x \\
& =\iint f(x) \xi(y) \Delta^{-1 / p}\left(y^{-1} x\right) \tilde{\eta}\left(y^{-1} x\right) d y d x \\
& =\iint f(y x) \xi(y) \Delta^{-1 / p}(x) \tilde{\eta}(x) d x d y \\
& =\iint f\left(y x^{-1}\right) \xi(y) \Delta^{1 / q}(x) \overline{\eta(x)} d x d y
\end{aligned}
$$

Proposition 5.6. Let $p \in[1,2]$ and $\frac{1}{p}+\frac{1}{q}=1$. Let $T \in L^{P}\left(\psi_{0}\right)+$ Put $\mathrm{E}=\overline{\mathcal{F}}_{\mathrm{p}}(\mathrm{T})$. Let

$$
\begin{aligned}
q(\xi) & =\int f(x)\left(\xi * J J_{p} \xi(x) d x\right. \\
& =\iint f\left(y x^{-1}\right) \Delta^{1 / q}(x) \xi(y) \overline{\xi(x)} d y d x
\end{aligned}
$$

for all $\xi \in \mathcal{K}(G)$. Then q is a closable positive quadratic form, and the positive self-adjoint operator associated with its closure is T.

Proof. By (the proof of) Proposition 5.4, we have

$$
\left(\left.T^{\frac{1}{2}} \xi \right\rvert\, T^{\frac{1}{2}} \xi\right)=\int f(x)\left(\xi{ }^{5}{ }^{\xi}\right)(x) d x=q(\xi)
$$

for all $\xi \in \mathcal{K}(G)$, and $T^{\frac{1}{2}}=\left[\left.T^{\frac{1}{2}} \right\rvert\, \mathcal{K}(G)\right]$. Thus q is a closable positive quadratic form with closure corresponding to T.

Corollary. Let $\varphi \in A(G)+$ Then $\frac{d y}{d \psi_{0}}$ is the positive self-adjoint operator associated with the closure of the positive quadratic form
given by

$$
\begin{aligned}
q(\xi) & =\int \varphi(x)\left(\xi * \xi^{*}\right)(x) d x \\
& =\iint \rho\left(y x^{-1}\right) \xi(y) \overline{\xi(x)} d y d x
\end{aligned}
$$

Eor all $\xi \in \mathcal{K}(G)$.

Remark. This result also follows directiy from the definition of $\frac{d \varphi}{3 \psi_{0}}$. Indeed,

$$
\left\|\left(\frac{d \varphi}{d \psi_{0}}\right)^{\frac{1}{2}} \xi\right\|^{2}=\varphi(\lambda(\xi) \lambda(\xi) *)=\int \varphi(x)\left(\xi * \xi^{*}\right)(x) d x
$$

for all $\xi \in \mathcal{K}(G)$, and we have $\left(\frac{d \varphi}{d \psi_{0}}\right)^{\frac{1}{2}}=\left[\left.\left(\frac{d \varphi}{d \psi_{0}}\right)^{\frac{1}{2}} \right\rvert\, \mathcal{K}(G)\right]$ by Proposition 2.4 (or, alternatively, by an application of [9, Theorem] together with the fact that $\left(\frac{d \varphi}{d_{\psi_{0}}}\right)^{\frac{1}{2}}=\left[\left.\left(\frac{d \varphi}{d_{0}}\right)^{\frac{1}{2}}\right|_{a_{i}}\right]$). Actually, the property of defining closable quadratic forms on $\mathcal{K}(G)$ characterizes $A(G)_{+}$-functions among all positive defiaite continuous functions. The precise statement is as follows:

Theorem 5.4. Let φ be a positive definite continuous function. Define q on $K(G)$ by

$$
\begin{aligned}
q(\xi) & =\int w(x)\left(\xi * \xi^{*}\right)(x) d x \\
& \left.=\iint w\left(y x^{-1}\right) \xi(y) \bar{\xi}\right) \text { y } \dot{d} x, i, \in \mathcal{K}(G) .
\end{aligned}
$$

Then \mathcal{q} is a positive quadratic form on $\mathcal{K}(心)$, and q is closable if and only if of $\mathrm{A}(\mathrm{G})$.

Proof. That q is a quadratic form is obvious, and since φ is positive definite, q is positive.

Now suppose that q is closable. Denote by T the positive self-adjoint operator associated with its closure; then T is characterized by the properties $\mathcal{K}(G) \subseteq D\left(T^{\frac{1}{2}}\right)$, $\mathrm{T}^{\frac{1}{2}}=\left[\left.\mathrm{T}^{\frac{1}{2}} \right\rvert\, \mathcal{K}(\mathrm{G})\right]$, and

$$
\forall \xi \in \mathcal{K}(G):\left\|T^{\frac{3}{2}} \xi\right\|^{2}=q(\xi)
$$

Let us show that T is (-1)-homogeneous. Let $x \in G$. Then $T_{x}=\Delta^{-1}(x) \rho(x) T \rho\left(x^{-1}\right)$ is positive self-adjoint and $T_{x}^{\frac{1}{2}}=\Delta^{-\frac{1}{2}}(x) \rho(x) T^{\frac{1}{2}} \rho\left(x^{-1}\right)$. Therefore $K(G) \subseteq D\left(T_{x}^{\frac{1}{2}}\right)$ and $T_{x}^{\frac{1}{2}}=\left[T_{x}{ }^{\frac{1}{2}} / \mathcal{K}(G)\right]$. Furthermore, for all $\xi \in \mathcal{K}(G)$ we have

$$
\left\|T_{x}^{\frac{1}{2}} \xi\right\|^{2}=\left\|\Delta^{-\frac{1}{2}}(x) \rho(x) T^{\frac{1}{2}} \rho\left(x^{-1}\right) \xi\right\|^{2}
$$

$$
=\Delta^{-1}(x)\left\|T^{\frac{1}{2}} \rho\left(x^{-1}\right) \xi\right\|^{2}
$$

$$
=\Delta^{-1}(x) q\left(\rho\left(x^{-1}\right) \xi\right)
$$

$$
=\Delta^{-1}(x) \iint \varphi\left(y z^{-1}\right)\left(\rho\left(x^{-1}\right) \xi\right)(y) \overline{\left(\rho\left(x^{-1} ; \xi\right)(z)\right.} d y d z
$$

$$
=\iint \Delta^{-1}(x) \varphi\left(y z^{-1}\right) \Delta^{\frac{1}{2}}\left(x^{-1}\right) \xi\left(y x^{-1}\right) \Delta^{\frac{1}{2}}\left(x^{-1}\right) \xi\left(z x^{-1}\right) d y d z
$$

$$
=\Delta^{-1}(x) \iint \varphi\left(y x z^{-1}\right) \xi(y) \xi\left(z x^{-1}\right) d y d z
$$

$$
=\iint \varphi\left(y z^{-1}\right) \xi(y) \overline{\xi(z)} d z d y
$$

$$
=q(\xi)
$$

We conclude from the characterization of T that $T_{X}=T$, so that

$$
\forall x \in G: \Delta^{-1}(x) \rho(x) T \rho\left(x^{-1}\right)=T,
$$

ie. T is (-1)-homogeneous.
Now let $\left(\xi_{i}\right)_{i \in I}$ be an approximate identity in $\mathcal{K}(G)_{+}$. Then

$$
\begin{aligned}
\left\|T^{\frac{1}{2}} \xi_{i}\right\|^{2} & =q\left(\xi_{i}\right) \\
& =\int \varphi(x)\left(\xi_{i} * \xi_{i}\right)(x) d x \\
& \leq \sup \left\{|\varphi(x)| \mid x \in \operatorname{supp}\left(\xi_{i} * \xi_{i}^{*}\right)\right\} \cdot\left\|\xi_{i} * \xi_{i}\right\|_{i} \\
& \leq \sup \left\{|\varphi(x)| \mid x \in \operatorname{supp}\left(\xi_{i} * \xi_{i}^{*}\right)\right\} .
\end{aligned}
$$

inge φ is continuous and the supports of the $\xi_{i} * \xi_{i} *$ tend to e) , we get

$$
\underset{i \in I}{\lim \inf \left\|T^{\frac{1}{2}} \xi_{i}\right\|^{2} \leq \varphi(e)}
$$

7 Proposition 2.1, this shows that $T \in L^{1}\left(\psi_{0}\right)$.
Put $\varphi_{1}=\overline{\mathcal{F}}(T) \in A(G)$. Then

$$
\begin{gathered}
\forall \xi \in \mathcal{K}(G): \int \varphi_{1}(x)\left(\xi * \xi^{*}\right)(x) d x=\left\|T^{\frac{1}{2}} \xi\right\|^{2}=q(\xi) \\
=\int \varphi(x)\left(\xi * \xi^{*}\right)(x) d x .
\end{gathered}
$$

\geq conclude that $\varphi=\varphi_{1}$ and thus $\varphi \in A(G)$.
acknowledgement.
ae author is indebted to Uffe Haagerup for many helpful discuscons on the subject of this paper.

References.

1. F. Combes: Poids associe à une algebre hilbertienne à gauche. Compositio Math. 23 (1971), 49-77.
2. A. Connes: On the spatial theory of von Neumann algebras. J. Functional Analysis 35 (1980), 153-164.
3. A. van Daele: A new approach to the Tomita-Takesaki theory of generalized Hilbert algebras. J. Functional Analysis 15 (1974), 378-393.
4. J. Dixmier: Les C*-algebres et leurs représentations. Gau-thier-Villars, Paris 1964.
5. J. Dixmier: Formes linéaires sur un anneau d'opérateurs. Bull. Soc. Math. France 81 (1953), 9-39.
6. P. Eymard: L'algèbre de Fourier d'un groupe localement compact. Bul.1. Soc. Math. France 92 (1964), 181-236.
7. P. Eymard \& M. Terp: La transformation de Fourier et son inverse sur le groupe des $a x+b$ d'un corps local. Lecture Notes in Mathematics 739 (Analyse Harmonique sur les Groupes de Lie II, Seminaire Nancy-Strasbourg 1976-78, Ed.: P. Eymard et al.), 207-248. Springer, Berlin-Heidelberg-New York 1979.
8. U. Haagerup: The standard form of von Neumann algebras. Math. Scand. 37 (1975), 271-283.
9. U. Haagerup: A density theorem for left Hilbert algebras. Lecture Notes in Mathematics 725 (Algèbres d'Opérateurs, Séminaire, Les Plans-sur-Bex, Suisse 1978, Éd.: P. de la Harpe), 170-179. Springex, Berlin-Heidelberg-New York 1979.
10. U. Haagerup: L^{P}-spaces associated with an arbitrary von Neumann algebra. Algèbres d'opérateurs et leurs applications en physique mathématique (Colloques internationaux du CNRS, No. 274, Marseille 20-24 juin 1977), 175-184. Editions du CNRS, Paris 1979.
11. E. Hewitt \& K. A. Ross: Abstract harmonic analysis I. Springer, Beriin-Göttingen-Heidelberg 1963.
M. Hilsum: Les espaces L^{p} d'une aigebre de von Neumann (théorie spatiale). Preprint, Publications mathématiques de 1'univerisité Pierre et Marie Curie, No. 15, juin 1979. A. Klein \& B. Russo: Sharp inequalities for Weyl operators and Heisenberg groups. Math. Ann. 235 (1978), 175-194.

* R. A. Kunze: L_{p} Fourier transforms on locally compact unimodular groups. Trans. Amer. Math. Soc. 89 (1958), 519-540.
E. Nelson: Notes on non-commutative integration. J. Functional Analysis 15 (1974), 103-116.

刀. G. K. Pedersen: C*-algebras and their automorphism groups. Academic Press, London-New York-San Francisco 1979.
P. G. K. Pedersen \& M. Takesaki: The Radon-Nikodym tineorem for von Neumann algebras. Acta Math. 130 (1973), 53-87.
3. J. Phillips: Positive integrable elements relative to a left Hilbert algebra. J. Functional Analysis 13 (1973), 390-409.
3. W. Rudin: Functional analysis. Mc Graw-Hill 1973.
0. B. Russo: On the Hausdorff-Young theorem for integral operators. Pacific J. Math. 68 (1977), 241-253.

1. I. E. Segal: A non-commatative extension of abstract integration. Ann. of Math. 57 (1953), 401-457. S. Strǎtilă \& L. Zsidó: Lectures on von Neumann algebras. Abacus Press, Kent 1979.
2. A. Weil: L'intégration dans ies groupes topoloqiques et ses applications. Hermann, Faris lo40.
3. A. Zygmund: Trigonometric series II. Cambridge University press 1959.
