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ABSTRACT OF THE DISSERTATION 

| Canonical IF -spaces Associated with 

an Arbitrary Abstract von Neumann Algebra 

by 

Hideki Kosaki 

| Doctor of Philosophy in Mathematics 

University of California, Los Angeles, 1980 | 

‘Professor Masamichi Takesaki, Chair 

The paper is devoted to a construction of canonical IF -spaces, 

l<p<w, froma given arbitrary abstract von Neumann algebra. 

We start from an abstract von Neumann algebra Mm. Namely, mM 

So is a ¢*-algebra, which is the dual space of a (unique) Banach space 

Mes the predual. Without fixing a distinguished functional on m, 

.we construct the canonical standard form (M305 Ts (3:),) and Banach 

spaces I? (Mh), 1 <p <=», the canonical mp ~spaces associated with 

the algebra M in question. Our canonical IF ~-spaces have the expected 

properties such as duality. 

: In Chapter I, for later use, we develop the relative modular oo 

theory for positive linear functionals on a von Neumann algebra, which 

are not necessarily faithful. Although the theory was originally 

studied for faithful ones, we show that, with natural modification, 

almost all properties remain valid for non-faithful ones. Especially, 

we obtain the relative K.M.S.-condition, a necessary and sufficient 
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condition for a Radon-Nikodym cocycle (DQ : DP). t € R, to admit 

certain analytic continuation, and the fact that functionals are 

"close" if and only if their Radon-Nikodym cocycles are "close." 

Chapter II is devoted to a canonical construction of the standard 

form. The algebra IM in question is not a priori represented as 

operators so that at first we give a canonical construction of a 

Hilbert space. We begin with introducing a notion of new addition 

and scalor multiplication (by positive numbers) on mks the positive 

part of Mis by making use of Radon-Nikodym cocycles studied in the 

Previous chapter. By extending these new operations linearly, we 

obtain the canonical Hilbert space H.. Thus, mr (= (),) is 

sitting inside the space as a positive cone. We then let Mn act 

on the canonical Hilbert space Ho canonically. + This action is 

constructed by modular automorphism groups associated with individual 

| functionals in mk. We thus obtain the canonical standard form 

(M25 ds (B81), )- 
The final Chapter III is devoted to a construction of the 

canonical IP -spaces, l<p<w (T°(Mm) =m). We introduce, for each 

P» a new linear structure on My, by using relative modular operators 

on Hos the canonical Hilbert space, and polar decompositions of Co 

functionals in My. The predual Mm, with the new linear structure 

is our Pm), the canonical IP-space associated with M. Since we 

deal with only relative modular operators on the single and canonical 

Hilbert space Ho our IP-spaces are functorially attached to the 

algebra itself. We then show that the canonical IP -spaces have the 

Bh expected properties. As classical IP spaces constructed. from a faithful 
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normal semi-finite trace, the duality between IP(M) and I(R), 

1/p+ 1/9 = 1, is obtained as a consequence of a certain inequality 

concerning the norm. 
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Introduction 

The thesis is devoted to a construction of the canonical standard 

form in the sense of Haagerup, [17], and canonical IP-spaces, 

1 < p<», associated with a given arbitrary abstract von Neumann 

algebra, [38]. The construction is based on the relative modular 

theory as well as the Tomita-Takesaki theory, [43], and carried out | 

without fixing a distinguished functional on the algebra in question. 

Before going into the details of the organization of the thesis, we 

examine the history and motivation of the subject. : 

The study of von Neumann algebras was initiated by Murray and 

| von Neumann, [30]. Their tool for the classification theory was a 

dimension function, or equivalently a trace. Thus a pair (M,T) 

i consisting of a von Neumann algebra and a faithful trace on it is 

naturally an important object. We may regard this pair as a non- 

commutative integration theory. In fact, when M is commutative, 

there exists a measure space (X;du) such that Mm is exactly 

IL (X;du), and the integral = = [x an gives rise to a trace on IM. 

Thus, many authors developed theories of non-commutative integrations 

based on the theory of traces. The non-commutative IP -spaces of 

Kunze, [29], Ogasawara-Yoshinaga, [32], are based on Segal's work 

| [39] (the theory of a gage and measurable operators). Later, Nelson, 

- [31], somewhat simplified the above mentioned works. At the same time 

| as Segal, Dixmier, [12], also constructed his theory of non-commutative 

Co IP-spaces using a slightly different (but equivalent) method. 

Following the development of the theory of left Hilbert algebras, 
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that is, the Tomita~-Takesaki theory, one can effectively study von 

Neumann algebras, which do not admit a trace, namely von Neumann 

algebras of type ITI. Also, we can construct successful theories of 

non-commutative IP-spaces from a truly non-commutative pair My), 

namely ® is just a faithful state, or weight, [4], on the von | 

Neumann algebra Mm in question. There are several ways to construct 

such IF -spaces: Haagerup's ® -spaces, whose Lr version was also | 

obtained by Woronowilcz, [45], rely on the crossed product technique 

Connes-Hilsum's IP-spaces, [71, [231, are constructed without using 

a crossed product. We saw that such non-commutative 1P-spaces can be 

. also obtained by making use of the complex interpolation method (due 

to Caldercn), [27], and that the study of (the positive parts of) 

LP-spaces is exactly the study of a one parameter family of positive 

cones introduced by Araki, [2], [25], [26]. 

We now examine the reason why the theory of non-commutative IP- 

spaces is important. Firstly, non-commutative LP spaces, especially 

| 12.space, provide a powerful tool for the study of a von Neumann 

algebra itself, Indeed, through the study of (quasi-) Hilbert algebra, 

many important results on a semi-finite von Neumann algebra were 

obtained, [11], [15], [35]. Furthermore, the above mentioned theory 

of left Hilbert algebras, [41], which has been playing a central role 

in the recent development of the theory of von Neumann algebras, may 

be considered as a non-commutative IZ space. Secondly, as mentioned 

i + explicitly by von Neumann in the introduction of [30], the main 

purpose of the study of von Neumann algebras is its application to 

other fields of mathematics and physics. And some important 
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applications were actually obtained through the theory of non-commuta- 

tive IP -spaces. For example, applications to unitary representation 

theory, [29], and to quantum physics, [16]. 

So far, we have some constructions of non-commutative IP.spaces. 

The next question is whether or not one can construct such IP-spaces 

in a canonical fashion. Recently, there have been many applications 

of the theory of von Neumann algebras to geometry, [8], and the 

categorical point of view is being used for the study of von Neumann : 

algebras, [37]. Thus, it is desirable to construct the canonical 

IP-spaces associated with a given von Neumann algebra Mn itself, 

~ without fixing a functional on it. In the commutative case, the CL 

von Neumann algebra Mh = L”(X;du) depends only on the measure class 

| of dM, not the measure itself, and lattice theorists constructed 

canonical IP -spaces in this set up. In a similar motivation, Blattner, 

[3], showed that one can obtain induced representations canonically, 

which was strongly influenced by Mackey's notion of the intrinsic 

‘Hilbert space (consisting of half densities). 

In the thesis, as mentioned at the beginning, we start from a 

given arbitrary abstract von Neumann algebra mM, that is, a ¢*- 

algebra, [13], which is the dual space of a (unique) Banach space m., 

the predual. (The predual m. is also considered as the space of 

o(M,M, )-continuous functionals on M.) One should note that MW is 

: not a priori represented as a space of operators on a Hilbert space. 

) Our goal is to construct the canonical IP-spaces, l<p<w, as — 

: well as the canonical Hilbert space on which I acts canonically. oT 

The thesis consists of three chapters. The material of each chapter 

: 3 |



is briefly described in what follows. 

In Chapter I, we develop the relative modular theory of positive 

functionals in mE. Although the theory was originally developed for 

only faithful functionals in me, [5], [10], it is more convenient 

to allow also non-faithful ones for our purpose. We show that, with 

natural modification, almost all known properties remain valid for 

non-faithful ones. Among them, we show the relative K.M. S. 

condition, the possibility of analytic continuation of a Radon-Nikodym 

cocycle (Dw; Do). 5 t € R, under certain conditions, and the fact that 

functionals are "close" if and only if their Radon-Nikodym cocycles 

are "close." 

Chapter II is devoted to a construction of the canonical standard 

form. At first, we define new addition, scalor multiplication (by 

. positive numbers), and an inner product on my by using Radon-Nikodym 

A cocycles. Extending these operations linearly, we obtain the canoni- 

cal Hilbert space H,.. Here, mr (= Gh),) can be imbedded into My 

as & positive cone. We then let Mm act on Hy canonically, by : 

using modular automorphism groups associated with individual function- 

als in my. We thus obtain the canonical standard form. 

(3s Is Cy), ). | | 
| Chapter IIT is devoted to a construction of the canonical P. 

spaces, 1l<p<wm, (LM) = Mm) At first, we collect some known \. 

properties on measurable operators and crossed products. Then, we 

| prove certain properties of homogeneous operators, which are indis- 

pensable in our construction of IP-spaces. After this preparation, 

we introduce, for each p, ‘a new linear structure and norm on m, 

| 4



by making use of only "canonical" relative modular operators on the 

single and canonical Hilbert space Hoo constructed in the previous 

chapter. The predual my, together with the above mentioned new 

structure is our Pm), the canonical LP-space associated with the 

algebra M in question. We show that our IP -spaces have the 

expected properties such as duality. 

Finally, our standard reference on the general theory of von 

Neumann algebras are [14], [43], while the one on the Tomita-Takesaki 

theory is [kl]. We also use freely the results and notations of 

standard forms, which are found in [2], [6], [17]. 
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Chapter I Relative Modular Theory 

In this chapter, we develop the relative modular theory for 

positive linear functionals on a von Neumann algebra, which are not 

necessarily faithful. 

Throughout the chapter, we fix a von Neumann algebra NM and a 

standard form (my, JP 1) in the sense of Haagerup, [17]. Namely, 

pl is a self-dual cone in a Hilbert space H, on which I acts. 

A unitary involution J is determined by pt and JNJ = M', the 

commutant of M. It is known that the map: £ e ple we € my is 

‘homeomorphic with respect to the norm topologies in p! and mr. 

Here, we € my is given by we (x) = (x£|€), x em. 

Let @, (resp. @) be a faithful functional (resp. functional) 

in my with a unique implementing vector € (resp. £) in P J 

that is, Py = We (resp. @ = we). We shall fix these two function- 

als in this chapter, except in Lemma 1.4.1 and Theorem 1.4.5, 1.4.6. 

§1.1 The Gelfand-Naimark-Segal Construction for a "Mixed" Functional. 

In this section, we study the Gelfand-Naimark-Segal construction 

| (abbreviated as G.N.S.-construction), determined by a "mixed" 

| functional which will be made precise shortly. 7 

At first we remark that the support projection p of @ (as a 

functional) is exactly the projection onto the smallest closed sub- 

space [ME] containing M§, and that LE and Iv €o are both 

dense in y as ? being faithful. 

Let Nh be the tensor product of M and the 2 x 2-matrix algebra 
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m,(C), realized as 

a b 
n-1 ‘3 a,b,c,d eM pr, 

c 4d 

and let Dp be a projection in Nh given by 

_ [10 | gL 
b= . 

We denote the reduced algebra h by the projection p by h_ as 

usual, that is, ’ 

a b 
(1.1.1) =] peel vem, com gam. 

P ec d 

We also consider the "mixed" functional X on n_ determined by 
bp 

‘a Db 
« ) = Pa) + 9(d) = We (a) + we (2) . 

: ec dld/ 0 

We compute 

IT ) I. alk b | 
xX =X 

c dl Le a v* a le iN 
* * * * 

(Ty we) 
= X 

* 
ba+de, bb + dd 

* * * * = gaa + ce) + Pod + dd). 

Lemma 1.1.1. The functional X on n_ is faithful. 
aR : 2 

Ks



Proof. For a, b, ¢, 4 as in (1.1.1), we assume that 

* 
a b a bd 

c d c 4d 

: * * * ~The above calculation implies: Py(a a) + Pye c)=0 and 9(b'b) + 

®(d"d) = 0. The first (resp. second) equality means a =c = 0 

(resp. b=d = 0) since Py is faithful (resp. bb, ata belong 

to php and p is the support projection of @), (Q.E.D.) 

The calculation before the Lemma. implies 

| | a bra b | a 
* * * «(| 11 1) =o av rv mo + at) 

c 4d c 4d 0 

2 2 2 = lag + leg + Intl? + flag]? 

We set p' =JpJ eM so that p' is the projection onto Mme7. 

- We notice that ct, € Brg CoH, b§ eMpé = ME C p'Y, and dé e ppt = 

oe C pp'#. Thus, the above equality shows that a pre-Hilbert space 

n_ equipped with the inner product induced by the "mixed" functional 
iY 

X 1s isometrically mapped into ¥ ® pi © p'¥ © pp'H, via 

ag, 

a b cg 
0 

M4 pe 

ke B Ny bg 

. a 

: Furthermore, the image is clearly dense in H & pf & pd & ppd so 

that the Hilbert space Hys the completion of h ,_», can be identified 
bp 

8



with H © pi © p'H ® pp'¥, which we shall actually do throughout 

the chapter. 

Next, we determine the induced representation LY of N_ on 

p 
the Hilbert space H ® pi © p'H ® pp'¥. For a, b, ¢c, 4 and e, f, g, 

h as (1.1.1), we simply compute 

(IN| (I ER (i 1) TI. = 

x c da x g h ks c da g bh 

” (ties) 

x ce + dg, cf + dh 

on the other hand, by the above identification, we get 

(ae + gE, 
([ a) (ce + dg)t, 

ks ce + dg, ef + dh (af + bh)g 

(ef + dn)é 

a b ©0 0] e€, 

le a 0° 0 gg, 

0 0 ap' bp f€ 

0 0 cp dap he 

Thus, we conclude that the induced representation is given by 

a db 0 0 

BN 1) c 4d © 0 - ] 
= ’ € h_ o 

wl, 0 0 ap' bp c 4 P 

0 0 cpt dp 

Finally, the cyclic and separating vector Ex in Hy for n, which ‘ 
p 

9



gives rise to the original X as a vector functional, is given by 

fo 

1 0 0] 
g = ] = . x= %\ Lo . ° 

€ 

§1.2 Relative Modular Operators 

By identifying ns with RAL we have the triple (nthe bc): 

Namely, the Hilbert space Hy =H opi ® pH & pp'H, the von Neumann 

algebra 

a bd 0 0 

c 4d 0 UN 
n_= “sae, behp, ce Ph, d e gp 

Pp 0 0 ap' Dp! 

: 0 0 cp' dp €o 

0 
acting on Hy naturally, and the cyclic and separating vector 

- 0 
in Hy for N_. We compute important objects associated | 5 ¢ with this triple in the Tomita-Takesaki theory, [41]. 

We set 

‘fab 0 0 £ ab 0 o07%e 
0 0 

c d O 0] 0 c 4d © 0 0 

0 0 apt bp 0) 0 O ap' Dp! 0 

0 0 cp apt g 0 0 cpt dp! £€ 

This densely-defined (conjugate linear) operator on Hy is known to 

be closable (S-operator). By looking at each component, we also set 

10 :



) * 
(1) 59,9, = So, taf) eME maf) e me, (the usual S-operator 

determined by (M,3,€.)), 

* | (11) 8, : cE, eg, ~ c¥E «Mpg = Mg, 9p, “50 © Fg 
* 

(iii) s : bE eMpt =Mé =~ bE. & Phe, 
PP 0] 0] 

. * 
(1v) Sg: 46 e HpE = fRE = A€ ¢ ppt = PE . 

(Notice that So o ond Sor are well-defined.) Since we compute 
0 

: * *  % a db 0 0 & a ¢ 0 0 & 

* 
c d 0] 0 0] b d 0 0 0 

= * * 
0 0 ap' dbp 0 0 OO ap cp 0 

0 0 cp ap | | & Lo o vp aplle J 

a", 

* 

= 3 

EY: 
* 

da € 

we get 

S 0 0 0 

0 0 8 0 5, = 9,9 
0 S 0 0 

0 0] 0] S 
oP 

As Sy being densely-defined and closable, we certainly conclude that 

(1) Sep is a densely-defined closable operator from pH 
0 . 

to p'H, } 

(ii) Sg ® is a densely-defined closable operator from p'H 
0 

: to oH, 

(iii) Sop is a densely-defined closable operator on pp'H. : 

| 11



Furthermore, we get 

8, © 0 o 1*T 5, © 0 0 
0 0 _ 

0 0) s 0 0 0) S 0 Foe 8,8, = P,? _ ?,® 

0 S 0 0 0 8 0] 0) | ALS *% _ 
0 0] 0 0 0 0 S Sop - 99 
sso o o1[5 o o oo 

Oo 0 Ss. 0 o o § 0 
= * — 

0c S 0] 0 8S 0 0 XC ? 9%, 
* i. 

0) 0] 0] S 0 0 0 S 
PP PP 

. X — 
So So 0] 0] 0 

5 ° s* 5) 0 0 
_ Pp, PP 
— 0 0 ¥* — . 

0 0 S. 5 0 
P,P PP . 

. . 0 0 0 S ) P90 

Here, the bar on the top of the S-operators means their closures. 

Definition 1.2.1. We set A = SB. , A sr 8 : ee de S = Ph) = ’ | Bo BR Wy Rw 
E— * = 

=8S_ 3 4d A =8S_8 tively. thi “o9 ox Ke an 0 PPG respectively. Among them, 

we call A. and A relative modular operators. (See Remark Py PP _— 

1.2.4, ) 

Clearly, “0, (resp. Bop,’ EX Bexp) is a non-singular 

positive self-adjoint operator on ¥ (resp. pH, p'¥, pp'H). We 

notice that 20 is exactly the usual modular operator associated : 
0 

with (Mm,%, £5), while Dog = 8 is the one associated with the cyclic 

and separating vector £ in pp'¥ for the von Neumann algebra 

p' php, which is isomorphic: to the reduced algebra Mp. The above 

12



calculation shows : 

A 0] 0 0 
% 
0 A 0] 0] 

A = ars . 

0 0] A 0 
Py? 

0 0 0) A : 
Pp 

Next, we have to determine the modular conjugation Jy which is 

the phase part of Sy To do so, we begin with computing the commutant 

nt of nh_ acting on Hy =H O® pH pHS pp'H. 
bp he 

Lemma 1.2.2. The commutant nis given by 
. p 

al 0 bt pt 0 

0 pal [0] pb? hol 

n = ; at,bt,ct,d' ent 
p p'et 0 pap 0 

0 ppc 0  pp'dp 

Proof. Let R be a von Neumann algebra acting on H @ ie 

pd & pd given by 

a db © 0 

ec 4d 0 0 
R= 3 a,b,c,d ep. 

0 OO ap' bp! 

0 O cpt dap 

We notice that our von Neumann algebra n_ is exactly the reduced 
Pp 

algebra ®_ with a projection 
q . 

LY 
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[1 00 o 

_ O p © 0 
q = in R® ’ 

: 0 0 p 0 

0 0 0 pp 

sO that Proposition II, 3.10, [43], ylelds hf = (R_)* = (R')_. 
b q q 

On the other hand, the commutant (Mh ® mc) = ® CL is 

realized as 

[at 0 bv 0] 

CC a 0 bt 

; al,btyet,dt ely , 
ct 0 a o 

O et 0 a 

and ® is the induced algebra (MW ® M,(C))_ with a projection 
Tr 

: 1 0 0 © 

_ lo 10 o 
r= in the commutant (Mm ® M.(c)) . 

: 0O 0 pt © 

O 0 0 pt 

Thus, by Proposition II, 3.10, [431], 

R= (h®M(C)) 
2 -— 

Tr 
at 0 bt pt 0 

0 at 0 bt pt 
= ; at,bt,ct,dr emt p 

pt ct [0] pt (sh pt 0 

0 pret 0 prdiptl 

so that we conclude that NW = (R')_ is exactly the set described 5 3 

14



in the lemma. (Q.E.D.) 

In the proof of the following proposition, the fact that £€ 

and & belong to PY ois essential: 

Proposition 1.2.3. The modular conjugation operator Jy deter- 

mined by EY) is 

J 0 0 O 

0 0 J 0 

| * los 00]’ 

0 0 0 J 

or more precisely, 

J 0 0 0 

Jy = 0 n° » Where J, (resp. J, J.) 
0g, 0 0 2” 3 

0 0 © I5 A Lo 

is the restriction of J to p'H (resp. pi, pp). 

Proof. According to Theorem 1, [2], Jy 1s characterized by 

the following four conditions: 

(1) Jy 1s a unitary involution, 

(11) Jy& = &» 

| (iii) Jyn J, =n, 
b Pp 

(iv) (x7, x0, 6 |€)) >0, x¢ ne 

The conditions (i), (ii) are easily checked. By the previous lemma, 

we have known the commutant Nh! so that (iii) can be also checked 
. ‘ Pp . 

15



by straight-forward calculation. Thus, it suffices to show that the 

operator Jy described in the proposition satisfies (iv). 

For any 

a b 0 0 

| c d 0 0 | 
Xx = 5 a,b,c,d as (1.1.1), 

0 0 apt bp! 

| 0 0 cpt dp 

direct computation shows 

a 0 0 JaJ 0 Jbl © ¢ 

cd 0 © 0 pla 0 pibJd || © 

“IT } 0 0 ap' dbp Jed 0 JaJ 0 0 ’ 

0 0 cp' dp 0 pJed O pJdJ g 

av 0 olf gat, 

ec 4d © 0 pJbJIE 

) 0 O ap' bp'|| Jeg iN 

0 O cp dp pJagE 

a db 0 olf Jag, 

| ca 0 ol] Joye 

) 0 O ap' bp JeJg, 

0 0 cpr dap JATE 

aJaJ + bIbJ¢ aJalt | + bIbIE 

| cJadg + dJbJe cJadé, + dJbJE 

) ap' Jed€ + bptJaJé } ap' JeJg + bJaJE 

ep! JeJf + dpf JAJE cpt JeJE + AJAJE 

Here, the third equality follows from the facts pJbd = Jbdp, : 
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pJAJ = JAJp, while the fifth follows from the fact 

JATE € JPhpIE = PMI pIE = pg C pro | 

Thus, we get 

(ah xaygy 16) = (agadt + vIbTE 60) + (optJedt, + asasgle) 

= (aJagéole,) + (babIE|6,) + (eget le) + (agasele) . 

We notice that €q and £ Tbelong to Pl which is globally 

invariant under each yJyJ, y € Ml. It follows from the self -duality 

of P' that (xT, xa, 6 |, ) > 0 as desired. (Q.E.D.) 

- Li 
Thus, the polar decomposition Sy = Ty is expressed in terms 

of 4 X 4-matrices, as follows: 

5 3 tS] 0 0 A 0 9 0 Jd 0 0 © 2 0 0 

— EY 
0] 0 i] 0 0 0 0 0 2 0) 0 9.9 _ J So - 0 = 0 1 

. 0 S 0 0 J 0 © 0 0 AZ op 0 0.9 0 
0 _ 0 1 

0 0 0 tS] 0 0 0 J 0 0 0] A2 
ep N Pp 

Jaz 0 0 0 
% Nn 

: 0 0 AZ 0 } oo 
= 1 - 

0 2 0 To, 0 

1 
0 0 0 Jaz 

PP 

By comparing each component, one gets the following polar decomposi- 

: tions: 

| 5 and, 3 Poo Poop od S., =JdA2, 8 = JA S = JAS, S._. = JAZ. % 7 Py? Ho? Ps PP PP oP 
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In what follows, we have to deal with the above operators 

simultaneously as operators on a single Hilbert space, namely ¥H, 

hence we put the following: | 

Remark 1.2.4. Unless the contrary is stated, the operator Sop 
0 

resp. A A =A is regarded as ositi self-adjoint (resp 9,7 So o g a positive J 
operator on ¥ with support pH (resp. p'H, pp'H). 

Before proceeding further, we notice that ToT = at, 
-1 -1 A =A and JA =A. In fact, th be obtained J 90,” oR 0 Xd 90, n fact, ey can be al 

by expressing the relation JA Jy = art in terms of 4 x 4-matrices. 
EY L L We also notice that A5p,%0 = g, Bo,05 = £02 and Ago = €. These 

are consequences of AZ, = JE E&, = Jy€y = £y. Here, the last 

equality follows from Proposition 1.2.3 and the fact that € and 

€ belong to pt, Finally, we notice that, from our construction, 
1 1 
2 2 mE, is a core of 5%0 (as well as a5 ,  [411). 

0 0] 

§1.3 Radon-Nikodym Cocycles. 

In this section, by considering the modular automorphism do, 

we define Radon-Nikodym cocyeles. 

For 

a b 
t eR, x= in h_, we compute 

c d P 
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it -it 

Bc mx (xy 
ag. © o ofa bv o o Tek 0 oo 

0 . 0 . | o af oo {lea o oo o att 5 
= ®o Po | 

o o af 0 0 ap bp o o aft go Pp? P® 
it -it 0 [0] 1 1 0 Bop 0 0 cp | dp 0 0 0 Bop 

Alt anit , Alt NG 0 , 0 

it -it it -it 
AC cA AC dA 0 0 
Wo Bo’ Wp PR ’ 

= it | -it it -it | °° 
A ACT bptA Oa 0s Ay FRAG pp Np PRAT | . 0 0 0 

it -it it -it 
0 ACPA A” dptA 0 2 2 QP Pp 9 3 PP Pp oP 

. . it, -it Since this must belong to N_ again, we know that A- bA € Mp, 
? % 

ALE oatit oh, and ALE gait dnp, and that, in the above 4 x k4- 
Po % Po Po 

matrix, the (i,Jj)-component, i,j = 1,2, multiplied by p' is exactly 

the (i + 2, + 2)-component. In particular, Seo ao” is exactly 
0 0 

oi(d), where ay is the modular automorphism group determined by 

the faithful functional ¢ on php, which is isomorphic to p* php. 

Definition 1.3.1. For b eMp (resp. c e gh), we set 

?.9 ca PP. . I» 
0.0 (0) = AXA (resp. a, Ofc) = af ca yt eR. t Py PP t 9 : 0 6} 0 0 

: Po? Ra ) 
By the above argument, {0 beer (resp. {o, Veer) gives 

rise to a one parameter family of isometries of the left ideal Mp 

(resp. the right ideal Hh), We also notice that the modular auto- 

morphism group o associated with (h LX) is 
: p 
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Q.. oP 
0 0 rab 0,%a) , 0° (0) 

(1.3.1) A | = . 

| 5, °c), o¥(a) 

. Definition 1.3.2 ([5], [9], [10]). For +t eR, we set 

(Do : DP.) _ Po, ) = al® AY (Radon-Nikodym cocycle (of @ PDP) = op PJ = Sop 2, adon-Ni ym cocycle 

‘with respect to Py)-) : 

- We collect some basic properties, which are easy consequences of 

the definition: : 

Lemmas 1.3.3. The Radon-Nikodym cocycle (D9 : D9). 5 t ¢ R, 

enjoys the following properties: 

(1) For each t eR, (D9 : DP). is a partial isometry in ¢h 
? 

with the initial (resp. final) projection a, (p) (resp. 

p). 

(i1) The family {(D9 : DP): tir is a strong continuous 1- 
. ® 

cocycle for ¢ 0 that is, (DQ : Do.) = 
® 0’/t+s 

(D9 : DO.).O O((po : DP.) ); t,s € R, as its name indicates. Ott O's 

(iii) The Radon-Nikodym cocycle (DQ : DPy ys t € R, 1intertwines 

ana of that 1 (20 : D9.).0.0(x)(Dp : Do)" = go, and op, at is, (DP : Py) Oy x)(DP : Dg). = 

af (pxp), x eM. 

Proof. (i) From the construction, (D9 : DR, ),, is a partial 

isometry in ©, and we simply compute 

* it -it\%, it -it | (DP: D9) (DP = DR) = (Bg Bg) (Bg 85) 
0 0 0 "0 
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it, -it, it  -it 
=A AAA 

Fo Po Mo % 
it_,-it . 

= 5p pA, (See Remark 1.2.4.) 
0 70 

) 
0 

= 9 (p) ’ 

* it -it, it, -it (DP : DP.) (DP : DP). = A- ACATUA 0% 0’t Py Py Py PP, 

it -it 
=A A =D. 

0 Po 

(ii) The statement concerning the continuity is trivial. We 

simply compute 

i(t+s), ~1(t+s) 
D + D = (DP: Die = Bop. Po 

0 0 

it ,-it, it, is ,-is,,-it = ACA TIAA ATTA 
Po % Bo RH 

. 7, 

= (D9 : DR), 0, "((DP : DP)) . 

(iii) For each x eM, we compute 

0 * it ,-it it_,-it,, it  -it 
(DP : DR), 0, (x)(DP : DP), = AL AT A xA TH (AS AY) 

| otTE OF Wo ®% RB Po 
it -it 

=A xX . 

Po 
A it _-it 9 cas Then, we notice that a Hey = co. (pxp) as remarked before Definition 

0 0 

1.3.1. (Q.E.D.) 

§1.4 Properties of Radon-Nikodym Cocycles. 

In this section, we shall obtain less obvious properties of 

Radon-Nikodym cocycles for later use. 
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Lemma 1.4.1 (cf. Theorem 15.3, [41]). Let ¢ be a faithful : 

functional in mt. “For x e ms, the following two statements are 

equivalent: 

* * Lo % (1) #(x-x") =x 4x < £y with some 4 > 0, that is, ¥(xyx') < 

L4(y) for any y emt, 

(i1) The function: +t € R + af (x) eM extends to a function 

a¥(x) which is bounded and 0-weakly continuous (resp. 

analytic) on -2<Imz <0 (resp. -1<Imz <0), and 
¥ 

<~ 4. lo? pl <a. 

Proof. Let § be a unique implementing vector in pl for ¢, 

that is ¢ = Wee Firstly, we assume that ¢(x- x") < £Z¢. Then the 

map: y€ e Mf yx ¢ € Mf extends to a bounded operator a! in Iv 

with [lat] <4. In fact, we estimate 

*,12 *,, * * % . ly="¢l= = (v= ¢lyx 6) = (xy vx ¢|¢) 

*  %* * = 4x vx) < yy) = liye)? 

Let Ay be the modular operator associated with (M,¥,£{) so that 
1 * . 1 JaZyE =y § ye. The vector atl = XE belongs to 52,2) and 

one gets 

-L Li ; : NCE a2 = Jar *t = ve, | 

with b= Jar"J em, [of <vZ. 

For e',d* eM, we introduce a function 

. 

£(t) = (o¥(x)er glare) = (ar or ¢lag®e*e), t eR. 
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: L, 

It follows from 8,%% § =bf that f(t) extends to a function f(z), 

which is bounded and continuous (resp. analytic) on -3 <Imz<O 

(resp. -3<Imz <0). In fact, the bound for |f(z)| on 

-2<Imz <0 is obtained by 

* iz * * iz % (ar "er gag"0)] < lla er glllal®e) 
* 4 o%, 0 %, 24% < lla er el (aT el + fel) 
* *, 041 

= fla "er el {Iel® + Ix"¢R)= 

Here, the second inequality is a consequence of the spectral decomposi- 

tion theorem for the positive self-adjoint operator Bye 

To get a better estimate for |£(z)|, we consider |f£(z)| 

on two boundaries. For t € R, we estimate 

26) = [(of(x)er lar )] < lod Glller eller & 

= [l=llller elif ¢ff 

On the other hand, for - 2+ t, t € R, we estimate 

. 1. 

|2(- 5+ £)] = | (a For g]a72 107) 

* it, -+ % = [Carer ga a2) 
x 4 

| = [(a er ga ot) 
* = [a er tlaf(n))] 

| = [(of(v)er tla 8) 
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< lof )lller elas 

<a ler gllar gl 

Thus, it follows from the Phrigmen-LinderSf theorem that, for 

2<Imz<O0, 

1£(2)| < vax®We, l=] lle ¢liflar gf 

Thus, the density of M{ in H yields the possibility of the desired 

analytic continuation a’ (x), and clearly we get lo? jp Goll < 

from the above estimate on one of two boundaries. 

Conversely, we assume the possibility of the analytic continuation 

obtained above. For each a e m_, we compute 

* 1%, S._ *,0 #(xax”) = [la2x"¢[° = [l7a255x¢]] 

I 1 | = lra2sraaZxt 

1 : = l|l7a27q" 2 . = loa20%, x) 

- lg Bre) = lot, jp (x)asre] 

v 2) 1aBrpl2 < lo? GlRlasre 
) 

< fla2YP = sy(a) (%.E.D.) 

Theorem 1.4.2. For c eon, the following two conditions are 

equivalent: 

(1) o(c-c")< 89, with some £30, 
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oo PP 
(11) The function: t ¢ Rw a, Oe) ¢ gh extends to a function 

P.. 
c, Oe) which is bounded and O-weakly continuous (resp. 

analytic) on -2<Imz<O0 (resp. -:<Imz <0), and 
PR... 0 (ell <¥; < . 

: Proof. At first, we assume (ii). Then the function 

y 0 0 0 0 

(1.4.1) t eR go = 

: admits an analytic continuation so that the above lemma. implies that, 
a oO 

for each e(h_), ach, one gets 0 0 7 oF + 

o ofla olfo o]* a 0 
X < , 

¢c O 0 © ¢c 0 0 © 

that is, @(cac’) < £9,(a). 

: Conversely, we now assume (i). By the previous lemma and (1.4.1), 

it suffices to show 

"0 ox yl[o o7* xy x < x , 
¢c O z wile 0] Z Ww 

a. 

for any | € (Nn). However, we simpy calculate = z wd 0p 

O Ooffx yllo ol* * 
Xx = P{exe ) 

¢c 0 zw ¢c 0 

Sx) (xem) 
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S H@(x) + ow) (vw eon p) 

X Jy 
= BX . (Q.E.D.) 

z Ww 

In particular, with c¢ = p, we have: 

Corollary 1.4.3. The following two statements are equivalent: 

(1) o< £9, with some £> 0 

(i1) The Radon-Nikodym cocycle: t & Rw (DO : DPy )y. e gn 

extends to a function (Do : Dey), which is bounded and 

o-weakly continuous (resp. analytic) on -% <Imz<0 

(resp. -1<Imz<0), and |[(DP : D%)_1 pol <+%. 

Before stating the next result, we notice 

ol P Ps Pe 0 0 0, * 0 * op (ec) = (DP : DP). 0, "(c), a (7) =0g." (vb) . 

In fact, the first equality is trivial from the definition, while the 

* second follows from the fact that 0 is *-preserving (see (1.3.1)). 

These two equalities and Lemma 1.3.3(iii) imply 

?% ?% 

[e) = | : . 
(D9 : D9_),0,%Cc), ond) 

% . % @ 
a, (a) > (DP: D9) 0 (pb) 

| ) (09 + 09,),0,%(c) a(a) | : 0/t™% ? t 

Theorem 1.4.4. (Relative Kubo-Martin-Schwinger condition). For 

b ep, c e di, there exists a function f(z) (= £.(2)) which 
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1s bounded and continuous (resp. analytic) on -1 <Imz <0 (resp. 

-1< Im z <0) with boundary values: 

% £(t) = 9, (o(DP : DP.) (¢)), t eR, 

% £(t - 1) = 9((DP : D9).0,"(c)b), t eR. 

Conversely, let {ul teR be a one parameter family of partial 

isometries in I satisfying the properties stated in Lemma 1.3.3. 

If, for each b e€ Mp, ¢c ¢ Ph, there exists a function f(z) 

(= £.(2)) which is bounded (resp. analytic) on -1 <Imz<O 

(resp. -1 < Im z <0) with the boundary values described above, 

then wu, is exactly (D9 : Dy). t ¢ R. 

Before proving the result, we remark two facts. Firstly, in 

the second half of the theorem, the continuity on -1< Im z <0 

is not assumed, which is a consequence of the other conditions. 

Secondly the above theorem (a characterization of (DO : Dy), in 

‘terms of the relative K.M.S.-condition) yields that the Radon- 

Nikodym cocycle (D@ : Dy)» t € R, does not depend on the standard 

form (M,#,J,P ) which we fixed at the beginning of the chapter. 

Actually, (Do : DP) is a canonical object attached to the pair 

(9, Py) 

0b 0 0 : 
Proof. For x = ys ¥ = in N_, straight- 

0 0 c O P 
To forward calculation shows 

Xx (y)) = @,(b(D9 : Dp) 5.%c)) t 0 : 0t™t ? 

X(GH (yx) = o((D9 : DY,),0.0(e Ib) Oy yx) =9 iP % +9 c . 
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Thus, the first half of the theorem is a special case of the usual 

K.M.S. -condition for a single functional X on h_, [hl]. 
b 

To show the second half, we assume that a family fu ler 

satisfies the properties stated in the second half of the theorem. 

We then notice that 

¢ Q 0] 0] * 
a b . Tg (a) > oF (bu, 

By ec a = , ? ’ t eR, 

uO, (e)s g.(d) 

gives rise to a one parameter family {B.} teR of mappings from n_ 

Pp 
into itself. The assumption and the usual K.M.S.-condition for 

both P and @ yield that, for each x,y ¢ ns there exists a 

function g(z) which is bounded (resp. analytic) on -1 <Imz<0 

(resp. -1< Im z <0) with boundary values: 

| g(t) = X(x8,(v)), t eR 

g(t - 1) = X(p (y)x), t eR. 

Thus, fp }, gp, satisfies the usual K.M.S.-condition for a single 

functional X so that p, must be a, by [14] (see also Theorem 1, 

[21]), that is, (Do : D9), =u. (Q.E.D.) 

Finally, we prove two theorems which assure that two functionals 

are "close" if and only if their Radon-Nikodym cocycles (with respect 

to a fixed faithful functional) are "close." 

Theorem 1.4.5. Let {eo} be a sequence in ME, If {eo } 

converges to a functional ¢ in Mise in norm, then, for each t ¢ R, 
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. * 
{(De, : DP), 1, converges to (DQ : Dy) in the strong -topology. 

Furthermore, the convergence is uniform on t in each finite interval. : 

Proof. We notice that LES is a common core for positive self- 
1 Li 

adjoint operators 2% and 2% pr 0 = ,2,3,... . In particular, 
1 0 n'Q 1 
2 . — 2 - . (0, + 1mé, is dense. For ¢§ = “50, + 1)xEq, x el, in this 

: dense subspace, we compute 

1 - py - fez #1) (8 Fe 
no 0 

(62 + 17HaZ, + 1ty - xt = (A + 1 A + 1)xE. - x 
| *%o *%o © 70 

| (08 o + 1V0E, + Lt, - (8 ov hz) = (A + 1 A + L)xE. - (A + 1)x 
?.% PP 0 ?.% 0 

(82 + 1)7VeZ, xe, - aE x) = (A + 1 DS XE = A X | ?.% PP, =O ?.% 0 

i ~1_ * = (82 5 + 1) (gy - € ) 
no n 

where Eo R Eo are unique implementing vectors in pl for ?. Q 
o i 

‘respectively. The positivity of each a9 0 guarantees 
. 1 - - no 

(a2 +1) 4 <1 and {€,] converges to £_ by the assumption ?.% - Pn ? 
(see [2], [17]) so that the above quantity converges to O for each 

1 - CL - (, that is, (AZ = + 1)™1} converges to (82. + 1)"% in the 
%a% on o 

strong topology. We set a bounded continuous function f on [0,1] 

by 

0, if t=0 
£(t) = | 

(Log(t™ - 1)2 + 1) ir o<t <1 

Kaplansky's argument, [24] (see also Theorem II, 4.7, [43]), shows 
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1 a. 1 - © that {£((a2 +1) 113 converges to f£((A2_ + 1) 1 in the 
?.% n Ps 

strong topology, that is, a sequence {log So ® 1, of (unbounded) 
nO 

self-adjoint operators converges to log Boo in the strong resolvent 
0 

sense. Thus, the result follows from Trotter's theorem on the 

resolvent convergence, [36]. 

The following result, which will not be used later, is of 

independent interest, and is inspired by [21]. 

Theorem l.4.6. Let fo tna,2,3,... be a sequence of faithful 

functionals in me satisfying ?, < 49, with some 4 > 0. If, 

for each t € R, a sequence f(D, : 0%). 1, is convergent in the « : 
strong -topology, then there exists a faithful ¢ in MY such that 

{eo} converges to ¢ in (Mm ,M)-topology, and, for each t ¢ R, 

(DP : DP), is the strong -limit of {(DP. : Dp.),} P 2 DP) is e strong -limit o DP, = DR). 

* 
Proof. Let Uy 5 t € R, denote the strong -limit of the 

J . . . : 0 _ ‘sequence f(D, : DPy). de Since each (Do, : DP, ),, is © 1 

cocycle, so is u_. Also, f{u alt is a weakly measurable one t t Ps teR 

parameter group of unitaries, that is, (9,808 17) is a measurable 
0] 

function on t for any §,m e¢ H. It follows from a result of von 

Neumann, [36], that fu lr is a continuous cocycle. We thus 

conclude that there exists a unique faithful semi-finite normsl weight 

w on M satisfying (Iw : DR), =u, teR. 

Let t+ be an arbitrary accumulation point of the weakly relatively 

o(My,M)-compact set fo, Pyreeel in mr. It suffices to show ¢ = w. 

(Then, {ey, Pseesl admits a unique accumulation point.) By passing 

to a subsequence, we may assume that | ®,} converges to ¢ in 
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a(m,,M)-topology. 

For each x,y eM, let f(z) (= £29(2)), n=1,2,..., denote 

the relative K.M.S. function determined by (9 Pgs X57) with boundary 

values: 

®, | 
£,(t) = 9y(x(D@ : DP ),0.°(¥)), t eR, 

% Cd 
f(t - 1) = 9, ((D9, : DR) "(¥)x), t eR. 

Firstly, we examine the behavior of the sequence fr (2)} on two 

boundaries. On the boundary z = t € R, the sequence {£ (£)}, 

of the functions converges to Py (x(w : 292,507) since 

{(pe, : D9) 1, tends to (Iw : DPy)y in the strong” topology 

and % is g-weakly continuous. On the boundary z = t - i, t ¢R, 

the sequence ff (t - 1)}, of the functions converges to 

oo y((w 59), 2, 0()x) due to [1]. Secondly, we examine the behavior 

of the sequence ff (z)] on -1<Imz<O0. Since {9} is uniformiy 

‘bounded, the sequence £,(z)}, is uniformly bounded on -1< Im z < O. 

In particular, the sequence is a normal family on -1<TImz<O. 

Thus, by passing to a subsequence, we may assume that F (2) converges 

to f(z) = lim f(z) uniformly on each compact set in -1 < Im z < O. 

Also f(z) 1s uniformly bounded on -1 < Im z <0 and has the boundary | 

values: 

? 

2(t) = 9(x(0w : D9,),0,0(r)), © ¢F 
?% 

| 26-1) = 9((@w £59), °(y)x), % eR. 
Since f(z) is analytic on- -1< Im z < 0, the second half of 
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Theorem 1.4.4 yields that (Dw : Dy), = (Dy : Dy). t € R, that is, 

Wy = 8 
(Q. E. D.) 

We remark that in this theorem the additional assumption (which 

is stronger than the one of Theorem 1.4.5) is indispensable. In fact, 

let {eo} be an increasing sequence of faithful functionals in me 

such that w = lim ? gives rise to a faithful semi-finite normal 

weight. Then, {(Do, : Dy). 1, converges to {(Dw D9) 1, in 
* 

the strong -topology, [7]. 
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Chapter II Canonical Standard Form 

. This chapter is devoted to a constuuction of the canonical 

standard form from a given von Neumann algebra. 

Throughout the chapter, we fix an abstract von Neumann algebra MN. 

We begin with constructing a Hilbert space by making use of Radon- 

Nikodym cocycles, studied in Chapter I. The construction is carried 

out without fixing a distinguished functional on WM so that this 

Hilbert space is canonically attached to M. We then let the algebra 

M act on this canonical Hilbert space in a canonical fashion to 

obtain the canonical standard form. 

' Although our construction is canonical, it is convenient to 

consider a fixed faithful Py € mE for proofs (see Remark 2.2.15). 

We shall fix it throughout the chapter and denote the standard form 

constructed from Pye via the G.N.S.-construction, by 

(nh = ERIE ON [17]. Namely, (m0s¥5) is the cyclic represen- 

tation of M induced by Po and €o is the cyclic and separating 
vector in ¥, for M = mo (Mm) satisfying @, = The natural 

cone P is (ag, g)" as usual, where Bg is the modular 

operator satisfying To = x Eg, x en, Por arbitrary Qe my, 

we shall denote a unique implementing vector in os for @ by Ep 

that is, 9 = “, (Co, = £&,)- | 

§.1 Canonical Hilbert Space. 

In this section, we shall construct a Hilbert space from MN 

in a canenical fashion. 
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We begin with defining new addition and scalar multiplication 

(by positive numbers) on the positive part my of the predual. 

When we deal with these new operations , We write NE ? instead of Q, 

Qe mr, to avoid confusion. 

Definition 2.1.1. For @,% € Mf and A> 0, we write 

(1) vo+ =X, where X my is given by 

* X(x) = (0+ ¢)(am), xem, 
= . D R H . . 

| a= (DP: D(P+ ¥))_gpp + (DF: D(o + "Dip 

(11) Ao = A2q, 

Remark 2.1.2. In the above definition, by cutting the algebra 

by the support of ¢ + ¢, we may assume that Q + ¥ is faithful. 

Since @,¥ < @ + §, the above a ¢M makes sense by Corollary 1.4.3. 

We also remark that No + Vi =N@+ ¢ if © and ¢ have mutually 

orthogonal supports. 

The following can be considered as a non-commutative Hellinger 

integral, which will be explained shortly. 

Definition 2.1.3. For @,¢ e hf, we write 

* WalN¥) = (9+ 4)((DF : D(o + NYRC ER CERN IYOR 

Remark 2.1.4. We examine the above (.|.) in the commutative 

case, M = L (R;dx). In this case, my is realized as LH(Rsdx), 

the set of all positive 1} -functions. For = f(x) (J.f(x)dx) | 
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and ¢ = g(x) (f-g(x)ix) in LH (Rsax)_, the Radon-Nikodym cocycles 

are given by 

it it (DP: D(P + ¥)), = £(x)""/(£(x) + g(x))™", 

it it (Db: D(@+ ¥)), = a(x)""/(£(x) + a(x)", 

which yields that 

(DP =: D(¢ + ¥) 1 =Nf(x)/NE(x) + g(x) , 

(Dy : D(y + ¥) 1s =~Ng(x)/~NE(x) + g(x) . 

They are exactly the square roots of measure theoretic Radon-Nikodym 

derivatives, and one gets 

fx X Wolvy) = [ —(G) eG) (ru, g(x) 
YOoNE(x) + g(x) NE(x) + g(x) 

= [NEVE ax, 

which is known as the Hellinger integral between two finite measures 

f(x)ax and g(x)ix (see [23]). 

The next lemma is important for technical reasons as well as 

motivation for the above definitions. 

Lemma 2.1.5. Let @, § be elements in mr. We assume in addi- 

tion that ¢ is faithful and ¢< £¥ with some 4 > O. Then 

(Dp D¥)_i jobs is exactly €or We also have p(DO : DV) po = 
: (Do : 2) pos where p is the support projection of @. 
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Proof. By the uniqueness of a standard form (up to unitary 

equivalence), [17], we may assume = Py We consider two H,-valued 

functions fis t, given respectively by 

£,(2) = (D9 : D9) €_ 
. iz : £,(z) = “gp. %0 . 

By Corollary 1.4.3, f(z) is bounded and continuous (resp. analytic) 

on -5<Imz<0 (resp. -1<1Imz<0) The same is true for 
N 

(2) because £, belongs to the domain of A . However, for 
0] 

z = t € R we have ) 

. _ Alt -it 
t, (%) = (Do * DPy) Eq - “eo, €o . 

it 

so that two functions are identical by the uniqueness of analytic 

continuation. In particular, with z = - 5 » one gets 

> (Do : D%)_1 foto = 859,80 = £o . 

The final statement is obvious because p(D® : DPy)y = (DO : Dy), 

due to Lemma 1.3.3,(i). (Q.E.D.) 

By making use of the standard form (Mm,H 5, 3), which we 

fixed at the beginning, we consider the bijection | 

E:Qellp¢ = 50) e Pt. ~ ed . ¥ P ed 0 

Lemma 2.1.6. The bijection & preserves addition and scalor 
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multiplication (by positive numbers), when we equip my with the new 

operations introduced in Definition 2.1.1. In other words, the map 

Nom E(9) preserves addition and scalor multiplications. 

Proof. When No + =X, X= (9+ #)(a"xa), xeM, as in 

Definition 2.1.1,(i), we have : 

X(x) = (zag, 4 logy, ,) . 

The previous lemma yields: 

= : D . Dy ¢: D . | ony = (D9: D(®+ 4)) pb, + (Dh: D(4 + 0) 1 bony 

= Eo + Ey 2 

so that X(x) = (x(&g, + ee + Ey) that is, 8(X) = & = 

Ep + &, = (9?) + 2(¢) since Ep + €, belongs to Pl. 

Also, for A> 0, we compute 

2 2 
! A = A = 

so that 

5(A29) = AR(9) . (Q.E.D.) 

The following result is immediate because we have the above lemms 

and the corresponding properties are all true in pe: 

Corollary 2.1.7. For Q,¢,X ¢ my and Au > 0, we have 

(1) No +o =¥ «Vo, 

(11) Ne +o =o, | 
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(111) No +N) + VX =Vo + Ky +X), : 
(iv) Vo +X =vy +X if and only if © = ¢, 

(v) o~No =+o, : 

(vi) (w)Vo = Aue), 
(vii) AN +) =o a. 

In other words, my equipped with the new operations is a commutative 

semi-group with the cancellation law. 

Next we consider the non-commutative Hellinger integral given in 

Definition 2.1.3. Many properties, known for the classical Hellinger 

integral, [22], remain valid in our non-commutative situation. 

Lemma 2.1.8. The non-commutative Hellinger integral enjoys the 

. following properties: : 

(1) (+|*) is a symmetric bilinear form on me, equipped with 

the new structure, which takes positive values. : 

(11) For @,¢ e Mt, one gets WolWy) = 0 if and only if o 

and ¢ have mutually orthogonal supports. In particular, 

Wee) = 0 if and only if @ = oO. 

Proof. Since we compute 

NE = + D * H Weal) = (0+ ¥)((D¥ + D(¥ + 4 p(09 (0+ 1) 0) 

= ((Dp : D . Dy : D . (09: D(@ + 9) lo, (DV: DO + ¥)) 4 pq) 

(1) follows from Lemma 2.1.6 and the self-duality of el. 

For (ii), it suffices to show that (gylEy) = 0 if and only if 
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® and § have mutually orthogonal supports. First, we assume that 

® and ¢ have support projections p, q respectively and P Lag. 

Then, by the last statement of Lemms 2.1.5, we conclude that 

* | Woy) = (9+ ¥)((D¥ : D(o + 1) p20: (9+ 4); o) 

=0. 

Conversely, we assume that (&5l€,) = 0. It follows from Theorem 4, 

[2], the projection onto mE] and the one onto meg] are 

mutually orthogonal, that is, ¢@ and ¥ have mutually orthogonal 

supports. (Q.E.D.) 

The above proof shows that, through the bijection = between oX 

and my, (equipped with the new structure), the non-commutative 

Hellinger integral (-|-) corresponds exactly to the inner product 

of the space Hoe 

By Corollary 2.1.7, my equipped with the new structure is a 

commutative semi-group with the cancellation law. From this semi- 

group we obtain the real vector space in the usual way, which we shall 

_ mF +. a denote by (gar Namely, CY =M, x ML /~ is the set of all 

equivalence classes Noni] of pairs Non) and the equivalence 

relation ~ is determined by 

Wo Nv) ~ Wa, Nw,) if and only if We +N, =NG +N 

Furthermore, since this equivalence relation is compatible with the 

: new structures on me, CO is a real vector space by the following 

(well-defined) notion of addition and scalor multiplication (by real 
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numbers ): 

No No 1+ Ny, Vi, 1 = No +N No, +N] ) 1’ 2 1 2 1 1’ 2 2 

MVoN§] = [MNo,W4] for A>o0, 

ANeN 1 = [(-2) Ne, (-A) VO] for A<oO. 

We now consider the map: No e me — No,0] € CN Clearly, 

this is injective and preserves the operations. We imbedd me into 

(ga as a positive cone. We shall denote the image of this 

imbedding by (, ), and denote [< 9,0] simply by ~q. Since, for 

Pte mis we calculate 

Nev] = No,0] + [044] | 

= N9,0] + (-1)W+,0] 

= No + (-1) Vy ’ 

we shall write ~ QP - Ni ¥ instead of Ne WE ¥] for convenience, : 

Since any element in CI can be written as a difference of 

two elements in the positive cone CN we introduce a function 

(12) on (4) x (4) by 

oy =o Ni =v) = Wo Vi) - Go Vy) - Wa Nv) 

+ Wo, IN 4) . 

One can easily check that this is well-defined by using Lemma 2.1.8, 

(1). 

Theorem 2.1.9. The above (+|-) on COIN x ENO is 
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actually an inner product on the real vector space (Mn) and 

COI is a real Hilbert space under this inner product. Also, : 

CN is a self-dual positive cone in Ce | 

Proof. The bijection E from WM. (equipped with the new 

operations) onto pd naturally extends to a bijective linear mapping 

from des onto (5)a which we shall denote by = again. 

Here, Modes is a real Hilbert space consisting of all fixed points 

. = Co § of J,. From the construction, B((),) is exactly Pj. 

As remarked after the proof of Lemma 2.1.8, the bilinear form 

(«]+) on (0, (= mE) corresponds exactly to the inner product 

~~ restricted to os through E. Thus, the function (-|.) on 

| (sq, x sa just introduced corresponds exactly to the inner 

product on Hy through the bijective linear mapping & from CN. 

onto CR In other words, EZ gives rise to a isomorphism from 

: = (G5), Po (+]+) = the inner product om (#5)a) onto 

(0) Gy) 5 C1) Thus, the theorem follows from the corresponding 

facts in the real Hilbert space Ho)gqe (Q.E.D. ) 

Definition 2.1.10. Let He be the complexification of the 

above real Hilbert space (3h) ge Since the complex Hilbert space Hn 

is obtained from M in a canonical fashion, we call it the canonical 

Hilbert space (attached to Mh). Clearly, ), is again imbedded 

in Hy as a self-dual positive cone, and any element in Hy can be 

written as a linear combination of four elements in the cone (J, 

We denote the unitary involution of Hy determined by the complex 

structure by Ie Namely, “Im is given by 
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Ip (n + 16) =n - ig, 1,8 e (hss . 

We remark that = from CN onto CON naturally extends 

to a surjective isometry from Hy onto Hos under which the pair 
. k 

(Gh), 5) corresponds to (Psd) 

Before proceeding further, we examine a functorial property of 

the correspondence: mM + He Let N be an abstract von Neumann 

algebra and © be a normal ¥*-homomorphism from M onto h. It is 

known that there exists a central projection P such that 6 vanishes 

on (1 -p)h and 6 gives rise to a normel *-isomorphism from ph 

onto MN. Thus, henceforth we shall deal with only normal *-isomorphisms 

. whenever we consider functarial properties of our construction. 

Proposition 2.1.11. Let h be an abstract von Neumann algebra 

and 6 be a normal *-isomorphism from Mm onto h. Then 6 naturally . 

induces a surjective isometry Ug from He onto Hos which maps 

: (a), onto CR In particular, 4, intertwines J, ead Jp. 

Proof. The map b,: Pe Ne P°6 ¢ m, gives rise to a 

surjective isometry from ng onto Me Furthermore, as 6 being 

a *-isomorphism, 6,(N%) = mr. 

For @,§ e nt (4 faithful), one obtains 

-1 (D(6,9) : D(ey¥)), = 67 (Do : D¥),) 

In fact, this follows from the second half of Theorem 1.4.4 because 

o™( (Dp : Di), ) satisfies the relative K.M.S.-condition for 8.9 

and 6 ¥. Therefore, whenever © < #¢, one obtains 
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> -1 11) (20,9) : Dou), = 070: Du), 0) 

which guarantees that the map 6 x from ne onto my preserves the 

operations on both me and nk introduced in Definition 2.1.1. Thus, 

through the construction of Hn and Hs 6, extends to a bijective 

linear mapping u, from ¥, onto MH., and clearly ug ((,),) = 

(34), 
The above (2.1.1) also implies that 8, preserves the non- 

commutative Hellinger integral on ne and my. Thus, the above Ug 

is an isometry. (Q.E.D.) 

$.2 Canonical Standard Form. 

In the previous section, we gave a construction of the canonical 

Hilbert space MH. (as well as (3), and Ip) In this section we 

let M act on Hn canonically to obtain the canonical standard 

form (My Js (3), )- 

For the moment, we fix ¢ ¢ my and x,y € M. By considering 

the reduced von Neumann algebra mp by the support projection p 

of ¢, we may assume that @ is faithful and gives rise to the 

modular automorphism af, t eR, on WM. We define the function 

: * * £7756) = oof x)xywoTx"), © eR, CY = t 

which enjoys the following property: 

, Q, x R D, x; Lemma 2.2.1. The function tf extends to a function fs (z) 

which is bounded and continuous (resp. analytic) on -2<Imz<0 

(resp. -3< Im z <0). 
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Proof. If we represent Mm on L we compute 

BE _ (aq? (rE Op ¥ £7506) = (0%, (xx role fg) 
_ Pr * ¢ ,* 

: it_* -it_* = XxX b:7AN ) . (yet x Eo x80 2 Eo) 

We consider two Hy-valued functions: 

iz_* 
Z + 2p x Ep R 

-iz * 
2 ATX . | "lo XE 

. *_ 1 Since x. Ep belongs to the domain of Ap the former is bounded and 

bountinucus (resp. analytic) on 5<Imz <0 (resp. -% <Imz <0), 

while the latter is bounded and continuous (resp. anti-analytic) on 

-2<Imz<0 (resp. -1<1Imz <0). Thus, the function: 

iz_% -iz_%* | Z (yx x Ely x Ep) 

: is exactly the desired extension of £2 on -4<Imz<O0., (QE.D.) 

As an easy consequence of the proof, we have: 

a Pox, Ly cs Corollary 2.2.2. The map: y eh — fy (- 5) is a positive 

normal linear functional on mM. 

Proof, Using the same notations as in the previous proof, we 

have : 
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Px 1 B® | gnde® Tf -=) = XA PH-E) = el lad) 

= (PIT ofl xT xT 6) 

= (v) . (Q.E.D.) 
xJ y%J obo | 

Definition 2.2.3. Let p(x)Q be a positive normal linear 

functional on MW obtained in the above corollary, that is, 

(PG)O)(y) = £7%(- 2); xy em, ent. vy 2 

\ + + . , The map p(x) : @ e My = p(x)P My enjoys the following 

properties: 

Proposition 2.2.4. The map p(x) preserves the addition and 

scalor multiplication (by positive numbers) given in Definition 2.1.1, 

that is, p(x) : Vo e (4), ~e(x)9 « (4) is linear. Thus, it + + 
extends uniquely to a linear mapping from Hy into itself, which we 

“denote by p(x) again. The linear operator p(x) on ¥, is bounded 

and the map Pp : x e M+ p(x) ¢ L(x) is multiplicative. 

: Proof. The proof of Corollary 2.2.2 shows that, through the iso- 

metry from He onto Hos P(x) corresponds to the linear operator 

xJ oJ 0 since xJ od ofo is a unique implementing vector for 

p(x)p ¢ mE in eo Since xJyxJy 1s certainly a bounded operator 

on H., P(x) belongs to LO). Also p is multiplicative because 

we compute, for x,y eI, 

(xT 5x35) (3 53) = xyJ XyJy (Q.E.D.) 
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For x ¢ £0), the exponential exp x is given by 

© 

exp x = L = x". 
n=0 

Clearly, the exponential function enjoys the following properties: - 

lexp x|| < explix|| , 

(exp x)(exp y) = exp(x + y) if xy = yx . 

It follows from the above lemma that the map: 

t eR - p(exp(tx)) ¢ £0) 

gives rise to a one parameter group of operators in £04). 

Lemma, 2.2.5. The above one parameter group is uniformly 

continuous so that it admits a bounded infinitesimal generator. 

Proof. Through &, p(exp(tx)) corresponds to 

exp(tx)J jexp(tx)J as we have already seen. Since Jy is a unitary 

involution, one computes 

S l .nn Joexp(tx)J, = J, % TE EA | 
n=0 

[+] 

: l n n 

= Lot) n=0 

= exp(tJ x7) . 

Since Ix is in MV, we conclude that 
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exp(tx)J jexp(tx)J, = exp(t(x + Jy%34)) . 

Therefore, the infinitesimal generator is x + Jo&T oe (Q.E.D.) 

Definition 2.2.6. We denote the infinitesimal generator of 

the one parameter group: t & Rw p(exp(tx)) £0) by 8x). 

Lemma 2.2.7. The map 6 : x € Mw 6(x) ¢ £0) is a real Lie 

algebra homomorphism, namely, for x,y ell and A ¢ R, we have 

8(x)8(y) - 8(y)8(x) = 8(xy - yx) and AS(x) = 8(Ax). 

Proof. The result follows from the fact that p is multipli- 

cative., However, we have already known that 8(x) corresponds to 

X+ J od 0 through the isometry Z from Ho onto Hy so that we 

show it by direct computation. 

AX + To(Ax)T = N+ MxJ, (since A is real) 

= Mx + Ixy) ’ ) 

(x + TI Ny + T¥33) = (7 + Ty M(x + Jo¥ 5) 

= xy + Jxydy + XT oyT + Toy - (yx + TVET + yI xT + IT 4%) 

— - - 3 . 1 = (xy - yx) + Io (xy y2)3, « (since x,y ey Tx gpI ¥Ty € ) 

(Q.E.D.) 

Now we are at the position to define a representation of NM 

on the canonical Hilbert space Hye 

Definition 2.2.8. For each x el, we set 

mx) = 3(8(x) - 18(ix)) 
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* * 
(x) = 3(8(x") + 18(ix )) . : 

Theorem 2.2.9. The above mw (resp. mw) gives rise to a faith- 

ful normal representation (resp. anti-representation) of Mm on the 

canonical Hilbert space He Furthermore, the quadruple 

(r(Mm), 555 (3). ) is a standard form and ULE =m (x). 

Proof. Through the isometry = from ¥. onto Hos (x) 

corresponds to 
| 

1 - 33 2 = 1 - = L(x + JgxTy) = 1(ix + Join y)} L(x + Jd + x = JJ) = x , 

while (x) corresponds to 

* * * * * * * * (x + Ix Jy) + i(ix” + Joix J5)} = (x + JX dg = % + JX Js) 

Ix —— o* 0 * 

Thus, the isometry & sends (mm), 3,3 (0+) exactly to 
i (MH 555). (Q.E.D.) 

Definition 2.2.10. By identifying Mm with mM) in the 

theorem, we obtain the standard form UENPR (3), ) which we 

call the canonical standard form (associated with mM). 

Remark 2.2.11. As soon as a functional Pe my is given, a 

"vector" NQ in (), is assigned. From our construction it is a 

unique implementing vector in the self-dual cone © ), for ©@, that 

: is, ¢(x) = (x NoNo), x eM. In particular, whenever two @,¢ e ny 

(¢ faithful) are glven, one can construct the relative modular 
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operator Boy as an operator on the canonical Hilbert space Hn as 

in Chapter I. This operator is attached to P, + canonically so that 

we shall make use of these "canonical" relative modular operators to 

construct canonical IF ~spaces in the next chapter. 

Remark 2.2.12. It is also possible to construct a relative 

modular operator Boy on Ho from given two semi-finite normal 

weights ®, § on M (¢ faithful). Let j be the anti-automorphism 

* from WM (acting on Ho) onto M' given by j(x) = JE Ips X € MW. 

By using notion of a spatial derivative, [7], a relative modular 

operator Sop is given by Bop = dp/a(y °j) as an operator on 

the canonical Hilbert space He | 

We now consider a functorial property. When a normal ¥-isomorphism 

© from M onto h is given, 6 naturally induces the surjective 

isometry u, from ¥ onto Ho (ug ((4),) = (hy), by Proposition 

2.1.11. ’ 

Proposition 2.2.13. The surjective isometry ug in Proposition 

* * 2.1.11 satisfies 6(x) = UgXug, x €M, that is, 6 = Adu. 

Proof. For Qe, with § = 0,9 ¢ my, we know, [41], 

6 o} 09" = ag t € R. The function f introduced at the beginning 

of this section satisfies (x,y eM) 

* * £5%(6) = 4(a?, (x ympod(x")) Y -t t 

* : * = (6c? (x"))e(x)e(y)e(x)e(af(x))) 
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* * = ®(a? (00x) o(x)o(x)e(x)ad(6(x)%)) 
P,0(x) =f tt). 
6(y) (8) | 

Thus, we have 

| (6,(P(8(x))@))(¥) = (po, (8(x))®)(6(y)) | 

?,6(x) =f t 
o(y) (*) 
fx 

= £27 (t y(t) 

= (a, ()N(F) 

= (a (=)e, Py) » 

where Pn and fn should be understood in obvious ways. Since Pn 

. + + and @, are linear and NM = (CON and Ng = (3h), span 3 and 

: H respectively, ve have uy pn (6(x)) = ox) © Ugs Xx €M, that is, 
% 

* P,(8(x)) = ugfy (ug. We thus conclude that wom, (2), = m,(6(x)), 

x eM, that is, 0 = Adu), (Q.E.D.) 

oo Remark 2.2.1k. Proposition 2.1.11, 2.2.13 assert that, when a 

normal *-isomorphism @ from Mm onto nh is given, we have the 

surjective isometry u, from ¥, onto Ho with ug ((#,).) = (3), 

and 6 = Adu, Therefore, this ug is a canonical implementation 

for 6, [2], [6], [17]. We thus showed that, for a given 6, there 

exists the canonical implementation for 6. 

Remark 2.2.15. Our construction of the canonical standard form 

looks to require the existence of a faithful normal state % on Mm. 

But this restriction is superficial. Using the fact that any countable 
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family of o-finite projections is dominated by a @-finite projection, 

we can remove the assumption on the existence of a faithful normal 

state. Namely, if {p} is an increasing net of g-finite projections 

with lim Pp, = 1, then we have the natural inductive system (yp } 
L 

of the canonical Hilbert spaces associated with mp . Then the 

canonical Hilbert space Hy associated with Mm is defined by 

Hn = lim Fp . 
L 

. 

: It 1s also possible to let M act on Hy canonically and to obtain 

the canonical standard form (M,34 55 (h),) in this way. 
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Chapter III Canonical IP spaces 

In this chapter, we give a construction of canonical IP -spaces 

from a given von Neumann algebra. 

} Throughout the chapter, we fix an arbitrary abstract von Neumann 

algebra Mm (except in §3.1). We have already had the canonical 

standard form (535 Ips (31), )- Furthermore, whenever a pair of two 

elements in me is given, we have the "canonical" relative modular 

operator on He (See Remark 2.2.11.) We shall construct IP-spaces 

by using these relative modular operators (and polar decompositions 

of elements in my) 50 that our IP-spaces will be constructed in a 

canonical fashion. 

§3.1 Preliminaries. 

In this section, we collect some standard results on (unbounded) 

measurable operators, [31], [39], [40], crossed products and dual 

weights [10], [19], [42], and Haagerup's IP-spaces, [20]. 

Measurable Operators 

Let R be a semi-finite von Neumann algebra on a Hilbert space 

¥ with a faithful semi-finite normal trace T. The following concept, 

whose origin is von Neumann's T-theorem (see also [15], [39]), is one 

of the most important concepts in the theory of operator algebras: 

Definition 3.1.1 ([31], [39]). Let T be a closed operator 

affiliated with &, which is not necessarily bounded. We say that 

T is t-measurable if there exists a sequence {fp } of projections 
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in R satisfying 

(1) lp Il < © for each n, : 

(11) (1 - p,) is finite for each n, 

(iii) p,T1 as n-w, 

| The following criterion due to Nelson is useful: 

Proposition 3.1.2 ([31]). Let T be a closed operator affiliated 

with ®, with the polar decomposition T = u|T|, and the spectral 

decomposition |T| = Is Ade(A). The operator T is 7-measurable 

if and only if (1 - e(A)) <e for A sufficiently large and u € R. 

let T and S be ¢-measurable operators. Their adjoint operators 

i and s* are t-measurable. Furthermore, their algebraic sum 

: T+ 8 (with 8(T + S) = 8(T) n 8(S)) and their algebraic product 

| TS (with #(TS) = {£  8(S); S€ « 8(T)}) are known to be densely 

defined and closable, and the closures (T + S)” and (TS) are 

again t-measurable. In the literature, (T + S)” and (TS)™ are 

| called the strong sum and strong product respectively. We shall 

~ simply write T+ 8S, IS respectively by omitting the closure signs 

which will never make confusion due to the following: 

Theorem 3.1.3 [39]. (i) The set of all t-measurable operators 

is a *-algebrs relative to the above mentioned operations. 

(ii) If t-measurable operators T and S satisfy TCS, then 

: T and S are identical. 

It is convenient to equip the set of all t-measursble operators 

| with the following topology: 
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Definition 3.1.% ([31], [40]). The measure topology (on the set 

of all t-measurable operators ) is a linear topology (not necessarily 

locally convex) whose fundamental system of neighborhoods around O 

is given by . 

6, 5 = {T-measurable operator T; ||Tp| < e, 
> 

(1 - p) < 8 with some projection p e R} 

where g, 8 are arbitrary positive numbers. 

It is known that the set of all t-measurable operators is complete 

- under the measure topology. oo 

Crossed Products 

Let (M,H,J,PR fy be a standard form. Although crossed products 

are defined for a continuous automorphism action of a locally compact 

group on M, we shall use the ones given by modular automorphism 
Q 

groups. Let {0,%} teR be the modular automorphism group associated 

with a distinguished faithful % € me. Objects which we shall consider 

shortly do not depend on a choice of % we shall simply write Tes 

t € R, & without indicating Pye unless any confusion occurs (see 

Theorem 3.1.8). 

Definition 3.1.5 ([42]). Let X be the tensor product 

HQ I2(R) of H# and the Hilbert space I2(R) consisting of all 

square integrable functions on R with respect to the Lebesgue 

measure dx. We sometimes identify ¥ with the Hilbert space 

I2(R;H) consisting of all H-valued square integrable functions. Iet 

Sh



~ mm be the faithful normal representation of Mm on X given by 

mx) =x®1, xe Mm, where 1 denotes the identity operator on 

I2(R). We also define a continuous unitary representation wu (= 1g, ) 

of R on ¥ given by u(t) = Ag Mt) (= ay; ® Mt)), t eR. ° 

Here, A(t) dis the left translation on 2(R), that is, 

(Mt)£)(s) = £(s - t), £ ¢ I2(R), t,5 ¢ R. The crossed product | 
R= (hx o R) is the von Neumann algebra on X generated by m(lM) 

a 0 

and u(R). 

Remark 3.1.6. (i) Let L be the unique positive self-adjoint 

operator on I2(R) satisfying A(t) = tt t eR. (Formally, L 

is exp (f =) .) We then remark that 

u(t) = a © 11® = (a @ 1)tF 

so that A ® L is (the exponential of) the infinitesimal generator 

of the unitary representation u(t). Here, we also remark that 

tensor products of two closed operators are treated nicely in [38]. 

(ii) Our definition of the crossed product R is slightly 

different from the usual one, [42]. However, they are spatially 

isomorphic to each other via a unitary operator w on ¥ given | 

| vy (ve)(t) = abet), re BR). 

(iii) The algebra Mm can be imbedded into R by mm: x ¢ MN = 

m(x) = x ® 1 eR, which is exactly an amplification. 

(iv) Two representations = and u enjoy the following | 

covariance relation: 
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* 
0, (x) = u(t)xu(t), teR, xen 

* | (or m(a, (x) = ult)n(x)u(s)”) . 

We consider a unitary representation v of R on X given by 

‘ -ist 2, (v(s)E)t) = e f(t), f£ e¢I°(R;H), t,s eR. 

Straight-forward calculation yields 

* 3 
v(s)u(t)v(s)” = e™Cu(s) | 

* 
v(s)n(x)v(s) = n(x) . 

Definition 3.1.7 ([42]). By the above two relations, Adv(s), 

s € R, gives rise to a one parameter automorphism group LE J 

? of R on R, which we call the dual action (of 0 =g 0). 

It is known that I (imbedded in R) 1s exactly the fixed point 

subalgebra R% or R under the dual action, [10], [42]. The 

following result due to Takesaki follows from the existence of Radon- 

Nikodym cocycles. 

Theorem 3.1.8 ([42]). The pair (R,6) does not depend on a 

choice of @y in the sense that for any two faithful Pp ¥y © mr, 

there exists a spatial isomorphism from mM x 0 R onto Ih x ” R 
0 0 

which intertwines the respective dual actiong. c 

Dual. Weights 

We shall deal with only semi-finite normal weights on a von 
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Neumann algebra mM, and denote the set of all such welghts simply 

by P(M). 

Although the theory of dual weights was initiated by [42], we 

shall take an approach due to Haagerup, [18], [19]. For x ¢ Rs we 

shall consider an integral = I 6, (x)ax taking a value in the 

extended positive part f, of Mm, [18]. We notice that the map: 

i» . 

Xe R — g(x) = = J 6 (x)ds € RR 
0 

gives rise to a (faithful semi-finite normal ) operator valued weight 

from ® onto Mm, [18]. 

Definition 3.1.9 ([10], [19], [42]). For a weight ¢ e P(Mm), 

we denote a weight @eg ¢ P(R) by CR and call it the dual weight 

of @. 

We remark that, even if @ belongs to mrs the dual weight ? 

on R is infinite, that is, (1) = o, 

We consider the dual weight ®, of the distinguished % € m?, 

| which was used to define the crossed product R. The modular auto- 

morphism group determined by (R,3,) is exactly Ad(u(t)), t eR, 

with u(t) = (4 ® L)™. (Remark 3.1.6,(i)) In particular, since 

it is inner, R is semi-finite, [34], [41]. 

Definition 3.1.10. We denote the faithful weight P,((a ® L)™t) 

on ® ([34]) by <1. Then, by the above remark, rT is a faithful 

(semi-finite normal) trace on R. For any ® ec P(M), we denote the 
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Radon-Nikodym derivative dP/dt of the dual weight ? c P(R) with 

respect to the trace 1 by he that is, hy is a unique positive 

self-adjoint operator affiliated with R satisfying ? = (hy ). 

* -ist \ Since 6 (u(t)) = v(s)u(t)v(s) =e u(t), that is, 

o_(a ®L) =e (A®L), and %, is invariant under 6, we conclude 

that 

Too =e or, s eR. 

We also remark that 

ho (=h_ )=4A@L (=A ®L=A ®L). 
©" % % %% 

More generally, we have: 

Lemma 3.1.11. For each ¢ € P(M), we have 

h =A ®L. 
? PP, 

Proof. For t eR, we simply compute 

hy = (D9: Dr), = (DP : DQ) (DP, : Dr), 

it - = (D(9 ee) : D9, °c) ht 
it it = (D(@ee) : D(P, oe) (a7 LT). 

lo ’ . 

Since [18] and Remark 3.1.6, (ii) yield: 

| (D(pee) : D(®,°e)), = (DP : DRY), . 

. ) = (D9: D9), ®1, 
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we compute 

i it ry it 

hg = ((D9 : D9) ® 1)(alt @ 11%) 

_ (alt ATE ® 1)(alt ® it) 

Po 
it it 

=(a_ ® L)t® . (Q.E.D.) 
Py 

Lemme 3.1.12. The correspondence: Q@w he gives rise to a 

bijection from P(N) onto the set of all positive self-adjoint 

operators h affiliated with R satisfying 6_(h) = e™h, s ¢R. 

Proof. In the proof of the previous lemma, we observed that 

it it 6 hy = (Do : DP, ) hy . Since (D9 : DP), belongs to M = R°, one 

gets, for each s ¢R, : 

it . it 

-ist it = (DY : DP), e hg 

-ist it 
= & h . 

Q 

Conversely, assume that a positive self-adjoint operator h 

affiliated with R satisfies 6_(h) = e™h. Then a weight ¢ = 7(h-) 
/ 

~ 
on ® is invariant under 6 so that § = ® with unique @ P(n) 

(see [19]), that is, h = hey (Q.E.D.) 

Haagerup's IP spaces 

The following cbservation is crucial in Haagerup's theory of 

IP-spaces: 
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Theorem 3.1.13 ([20]). Iet hy, = Is Me (A) denote the spectral 

decomposition of he ® e¢ P(h), then : 

(1 - ep(M)) = o(1)/A, A>0. 

Thus, by Proposition 3.1.2, hy is T-measurable if and only if 

Pe mr. 

Proof. By Theorem 3.1.8, we may assume that Q = Pos that is, 

h, = he Let f be a function in 8, the set of all rapidly de- 
A 

creasing functions on R. The Fourier transform + belongs to § 

again, and, by making use of the expression log h, = Is log Ade(A), 

we compute 

~~ had A 

f(log hy) -/ (log A)de(A) 
0 

[++] [>] 

—, -/ / ££) at | de(r) 
[0] co 

. co © it 

-/ £(t) / ACae(n) ) at (Fubini's theorem) 
x 0 

[oo] 

-/ £(t)ns a , 
N -£0 

sO that the Fourier inversion formula and the definition of the dual 

weight ?, yield, for each f ¢ §, 

A PY A :  B(e(a0e mp) = 9,(B(0)1) = F0)ay(1) 

) 
[ve] 

= | / £(t)dt P(1) . 
3 00 
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Let {,} be an increasing sequence of Positive functions in 

. -t $8 such that lim |, T(t) =g(t) =e X [10g Ayo) (Es where 

* [10g Ay) denotes the characteristic function of [log Ay). Since 

we compute 

~ ~ -Ly 

A - 

A wl : = By(n5H(L - e(M)) 

= (1 ~ e(A\)) (see Definition 3.1.10) , ‘ 

~ 
the first half of the proof, the normality of Pos and monotone 

convergence theorem imply: 

1 - e(A)) = lim Py (f, (log hy) 
n= 

/ 

) © 

= lim / £ (t)at Py(1) 
- 

n= 0 

co 

- ( / ste) 9, (2) 
00 

= 9y(1)/A (Q.E.D.) 

This theorem means that one can regard the set of all t-measurable : 

operators h satisfying 6 (nh) = en, s €R, as a "copy" of My, 

by identifying ¢ = u| ¢l (the polar decomposition) in My with 

uh) of + We also notice that this set has the natural linear structure 

due to Theorem 3.1.3,(i). 
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Definition 3.1.1k ([20]). For the above t-measurable k = uh ol? 

we set 

tr(k) = {ol (a) = 9(1) . 

Obviously, tr is a linear functional. 

Theorem 3.1.8 and the above definition yield the following: 

Proposition 3.1.15. The triple (R,0,tr) does not depend on 

the choice of Po 

_ Definition 3.1.16 ([20]). Let 1°; 9), 0<p <o, be the 

set of all t-measurable operators k (affiliated with R = M x 9 R) 
a 0 

satisfying 6,(k) = e"/Py, s eR. On £m : Py); we set 

lll, = (ox ( || P))Y/. 
bp . 

By Proposition 3.1.15, the isomorphism class of the normed space 

(LP(m; Py) I-05} does not depend on a choice of ®y (Thus, in [18], 

it was simply denoted by I? (m).) However, we shall write it in this 

way to clarify which crossed product we are dealing with. 

It follows from Theorem 3.1.3, (i) that LP(Mh; Py) has the natural 

linear structure and that we can freely multiply elements in different 

spaces, namely hk € "(ms 9) if he LPM; 9,) and ke Lim; 9, ), 

/p + 1/9 = l/r. Furthermore, {ms 9), I-13 is isomorphic to 

Mm, from the construction so that LH (m; Py) is complete. (Woronowicz, 

[45], also considered this space in a slightly different method.) | 

We now list some properties for later reference. 
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Proposition 3.1.17 ([20]). Let h, k be positive (as operators ) 

elements in Lm; 9,). Then, the Banach space valued function: 

z v 02k? LH (m; Py) is bounded and continuous (resp. analytic) 

on 0<Rez<1l (resp. O<Rez<Ll). 

- We remark that this result and the next result are slightly 

different forms of the relative K.M.S. condition (Theorem 1.4.4). 

Proposition 3.1.18 ([20]). For h e (ms 9) and k e Lm; 9, ), 

/p+ 1/q = 1, we have tr(hk) = tr(kh). 

This justifies the notation "tr." Finally, the completeness 

of IP(m; Py) 1l< p<», is a consequence of the following result and 

the completeness of the set of all r-measurable operators under the 

measure topology. 

Proposition 3.1.19 ([20]. Let {x} be a sequence in IP(; Py) 

1<p<w, such that (lel 3 tends to 0 as n -w, then fk} 

converges to 0 in ‘the measure topology. 

Proof. Since each k, belongs to IP(h; Ps the polar de- 

composition has a form k = a ny? with ® € me and the assumption 
n 

means that {o} tends to 0 in the norm topology of My. For a 

given small g> 0, we can choose a positive number N such that 

lol < gr for n> N. Let I Me, (A) be the spectral decomposi- 

tion of Be .. Then, the projections e (9), n>N, in R satisfy N 

Pyi = ly wl/P. (LP lee, (2) = lage. e (el <e 
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(1 - e ()) = «1) <e (Theorem 3.1.13) , 
g 

so that ke 6(ee), n> NN. (Q.E.D.) 

§3.2 Homogeneous Operators. 

Henceforth, we fix the canonical standard form (my 5 3s (#0) 

and the relative modular operators Bop are always the canonical 
0 

ones described in Remark 2.2.11. ’ 

These relative modular operators are (-1)-homogeneous and inte- 

grable in the following sense: 

Definition 3.2.1 ([7], [26]). Let T be a closed operator on 

Ho whose polar decomposition is u| 7, and oo <0 (for convenience). 

We say that T is o-homogeneous (relative to ?) if 

(i) the phase part u belongs to Mn, 

(ii) || Foxe = at (xt )| zt, t eR, xX el, Here, op is the 

modular automorphism group on MM! determined by a faithful 

vector functional Pry (=! ) = (x No Py) 

A (-1)-homogeneous positive self-adjoint operator T is said to be 

(®-) integrable if 9 belongs to the domain of NT. 

By considering the crossed product R = MN x ® R, we obtain the 
s 0] 

following relationship between o-homogeneous operators on Hy and 

the operators on In ® I?(R )> which were considered in the last 

part of the previous section: 

Lemma 3.2.2. Let T = fT be a closed operator on Hye If 
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! 

'T is o-homogeneous, then h=T ® L™® is affiliated with R and 

satisfies 6,(h) = e*°h, s € R. Conversely, every closed operator 

h affiliated with R satisfying 6_(h) = e*®n, s ¢ R, arises in this 

way. Furthermore, for the above T, the (-1)-homogeneous |p| “L/ 

is integrable if and only if h=T® L% is T-measurable. 

Proof. At first, we assume that T is @-homogeneous, that is, 

| wel and || Fox = ao (x )| |e. We notice 

alti a-it _ of (x1) = (|| “2/2 ye (|| Lyi , 
? ? -t Yo Yo 

so that (|| Leyteate = Xx, belongs to NM" =M. Thus, we compute 
0 

-l/o it -1/o\it it (17% & L)™® = (jo) Yo)Tt g 1 

= x ALT ® It = x (alt ® tt) 

tT te 
0 0 

it 
= xh" e Ro, 

-1/a it it it o_((|T| ®L)77) = 6(x,h5") = x0 (h]") 

its, it 
=x.e hy 

= o~Lt8 (|p| -L/ ® 1), s eR. 

Conversely, assume that h = v|h| satisfies 6,(n) = *%p, 

We then notice ©_(|n|) = ¢|n|, 6,(v) =v, so that v belongs 
to the fixed point subalgebra RO = Mm. It follows from Lemma 3.1.11, 

3.1.12, that there exists @ e P(h) such that AR = hg = Bg, ® IL. 
0 

Thus, we conclude that h=v(a_. QL)? =v% ®LY with RE Py 

65



-« 
—- 

A - o-homogeneous Ww %, 

Finally, the last statement follows from Theorem 3.1.13. (Q.E. D.) 

Definition 3.2.3 ([6], [23]). For each O<p<w, the set of 

all (-1/p)-homogenecus T = u|T| (relative to ®) on MH with 

(@-) integrable ||P is denoted by = IP(In; Pe 

The proof of Lemma 3.2.2 shows that IP(h; @) is isomorphic 

to IPM;9) via Tr T® IP. The next result is useful: 

Proposition 3.2.4 ([23]). (i) If S and T in Pm; a) 

satisfy SCT, then S=T. 

7 i iY M4 * ee (ii) For Ts ThseeesTy in IL (Mm; 9), T, + T, + +T is 

densely-defined and closable, and the closure (T, FI beet T.) 

belongs to LP(ms a). Furthermore, we have ((z, + T,)" + 5) = 

(T, + (T, + T5) ). 

Py . (iii) Por T el (ms en), n=1,2,...,m with St 1/p, = 1/p, 

TL, ces Tn is densely defined and closable, and the closure 

(TT, ces T,)" belongs to LP(h; ®). Furthermore, we have 

((z,T,) 75) = (7, (T,2;) ). 

To prove this, the following observation is necessary: 

Lemma 3.2.5. For a closed operator T on Hoo the domain of 

the closed operator T ® L/P (on Ho® I2(R) = (Rs) is exactly 

the set of all § e I(R3}, ) satisfying 

. 
t GGL CON — . 
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Proof. Let F be the Fourier transformation from I%(R) onto 

itself, and F = 1 ® F be the unitary operator from Ho ® I2(R) 

onto itself. Since L = exp( : + )s F(T ® VP = T ® E(p), 

where E(p) is an operator on I2(R) given by (E(p)f)(t) = /Pr(1), 

: t eR, fe I2(R). We notice that ¢§ « IP (R3¥, ) belongs to the domain 

of T® L/P if and only if [(T ® B(p))F ¢ <=. However, since 
= * * , 2/0 Fd =1®F and F is the inverse Fourier transformation on IL (R), 

we compute 

| =*a2 _ [7 2 —* Iz 0 22)F"CR = | RH 2Yn((F) (x )) Ras — 

[>] 
. 1 ’ 

= / 25/Pn(¢(5)) Ras (Q.E.D.) 
-00 

Proof of Proposition 3.2.4 ([23]). (i) The assumption yields 

S® L/P CT® L/? and both of S ® LMP T® L/P are t-measurable 

by Lemma 3.2.2. Thus it follows from Theorem 3.1.3, (ii), that 

set/P_.re tM? por £ ¢ 8(T) and a characteristic function 

2 1/py _ 1/p %10,1] e I5(R), £ ®X[0,1] belongs to B(T ® L™/¥) = 8(s ® 1/P) 

by Lemma, 3.2.5, that is, 

. 1 

J 22st |Rat < w 
0 

Thus, [S€] must be finite, that is, ¢ e 8(s). 

(ii) Since each T, ® L/P belongs to LP(m; 9), the strong 

sum T, ® HP, T, ® MPL T ® 1? belongs to P(m; 91). 
Clearly, for each i, . 
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1 “at a(t; © 17%) = {t « Ps) + [FP (g(e))lPar < ) 
-C0 

C {fe I (R;¥, ) : E(t) e 8(z,) a.e. t € R} , 

so that {§ e (RH, ); E(t) ¢ 3(T,) n 8(z,) Nese N S(T) a.e. t e R} 

is dense in I°(R;M,). We thus conclude ‘that (Ty) n B(T,) neve 

8T ) is dense in Ho. The same argument also shows that 
* * * . . 

I, + T, + += + T 1s densely defined, that is, T+ I, + eee + T, 

is closable. Also T, ® L/P + T, ® L/P + oer + T, ® 1/? = 
- 1/p - (Ty + T, + «ev + T) ®L and (Ty + T, + ooo + 7) belongs to 

: LP (m; @) by Lemma 3.2.2. SE 

We clearly have, 

- - 5 - 
(zy + T,) + T,) D0 (7, + T,) + I, 2 (Ty + T,) + I, 

yor a . (7, + (T, + T;) ) 2 J+ (T, + T5) DT; + (T, + T,) 

Since the associativity for algebraic sums of unbounded operators 

holds, we have 

| (B+ T)7 + 1)" 20) + Ty + Ty S(T) + (T, + 1,)7) s 

(Ty) + T,)" + 73) 2 (Ty + I +3) S(T + (T, + T3)7) 

so that (1) yields the desired associativity ((, + T;)" + Ty) = 

(T, + (T, + T3)7) (111) can be proved by a similar argument as 

(1). (R.E.D.) 

By Proposition 3.2.4, even if we omit the closure signs of sums 

and products of elements in LP(M; es no confusion occurs. Thus, 
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we shall omit them henceforth. 

Now we are at the position to state the following result, which 

will be crucial in our construction of canonical 1P-spaces. 

Theorem 3.2.6. Let 5 ®, be elements in My, with the polar 

decompositions @ = wlel, = a, | @, | respectively, and @, be 

a faithful element in my. Let uT be the polar decomposition of a 

closed operator 

1/p 1/p uA + uA . lo lo, T %2Te, lg, 

Then, u belongs to M and there exists a unique X in my with 

T = ap + Furthermore, wu and X do not depend on a choice of Pe 
0] 

If @ and @ are positive, then AL p + AL Ps positive self- 1 0 (RY) ?,% 170 20 
adjoint. (0<p<w). 

Proof. Since both of uy ALP and u at/P belong to lo le, 279, 9, 
I? (Mm; ex), uT belongs LP (m; a) and u belongs to M by Proposition 

3.2.4,(i). Since TP ® IL is a T-measurable positive self-adjoint 

operator (affiliated with R) satisfying o (TP ®L) =e Por, : 
s € R, it follows from Lemma 3.1.11, 3.1.12 that there exists a unique 

+ : ; 1 : 1 X e mg satisfying ™® Qe /P = hy = a, ® L, that is, T = 5 

(Also, the above u is exactly the Phast part of the polar : 

decomposition ab/P = a(al/® ® LMP), ) In the above argument, u 
% 

and X do not depend on the choice of % due to Proposition 3.1.15. 

The last statement follows from Proposition 3.2.4,(1). (Q.E.D.) 

By the same argument, the next result is also valid: 
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Proposition 3.2.7. Let @ be an element in Mm, with the polar 

decomposition ul Ql, and % be a faithful element in my. Let ~T 

C* 
be the polar decomposition of (uaF 0 } . Then, u belongs to I 5 

and there exists a unique X ¢ mr with T = NP . Furthermore, u 
0 _ . and X do not depend on the choice of Py» and X(1) = |o| (2). 

§3.3 Canonical IP -spaces. 

Based on the canonical standard form LPR: NP (hy),) and the 

"canonical" relative modular operators on Ho (Remark 2.2.11), we 

shall give a construction of canonical IP -spaces, 1 <p <ow, (r”(m) = 

Mm). Although our construction is canonical, it is convenient for 

proofs to have a distinguished faithful state Py on I. (See Remark 

2.2.15.) 

We begin with introducing new addition, scalor multiplication 

(by complex numbers), and *-structure on the predual Mm, for each 

1 <p<w, To avoid confusion, we write ot/P instead of @ (e m,) 

when we deal with the new operations. i 

Definition 3.3.1. For Ps ® € My with the polar decompositions 

ie ? = wel and % = ul 9,0, and a complex number A = e IM, we 

set 

(1) a/P + 7? = (wx )H/P where uX eM, is given by 

1/p 1/p 1/ [FRVAN + uA = i 

(see Theorem 3.2.6). 

x , i6 1 (11) A7P = (0a) (| M2] L/P. 
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(iii) (7/)* = (wx )+/P where uX eM, is given by 

l/p \*  1/p i (uy 2 = “le | . (See Proposition 3.2.7) 

Lemma 3.3.2. With the structures just defined, Mm, is actually 

a vector space with an involution. : 

Proof. If we replace lo, | + lo, by | 9, in Definition 

3.3.1,(i) and lo, | by | %, | in Definition 3.3.1, (iii), then the 
* definitions of a/ La a P and (7) PY" are not affected due to 

Theorem 3.2.6 and Proposition 3.2.7. (Although we lose the fact that 

m, with (1), (ii), (iii) is a canonical object.) 

We identify @ = u|@| with af e IP(m; ®). The addition (i) 
0 

and the *-operation (iii) clearly correspond to the usual addition 

and the *-operation as operators, while the multiplication (11) 

corresponds to the usual scalar multiplication as operators because 

the polar decomposition of A( any ) is exactly 
0 

i] i 1 (et a) (IMT, ) = (Xun /® (Q.E.D.) 
0 INZlol, 9, 

Definition 3.3.3. We denote the vector space with the involution 

above described by IP(M)., We also introduce the non-negative function 

Ill, on Pm) vy | 

1 1 19721, = (lol (1) = [lal/®. 
* 

To investigate the above I-1, (to be a norm), we need a sesqui- 

linear form on IP(M) x Lim), 1/p+ 1/a = 1, which will also be 
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indispensable to establish the expected duality. 

For P; = ule, i =1,2, as in Definition 3.3.1, Theorem 3.2.6 

’ (p = 1/2) guarantees the existence of a unique ¢ ¢ ms satisfying 

2 2 2 
A + A =A 1. lols loylelal * Flo, l ello] = Tule f+la, 

We notice that 

2 2 \ A <A i=1,2 lo; ls lop lel oy] = Ze log f+lo,l” = 

that is, |e, | <¥(1), i = 1,2, in the sense of Connes-Takesaki, 

[91. 

Definition 3.3.4. For P15P, © Mm, as above, and 1/p + 1/q = 1, 

we set 

L/P oH coe) uk . CEA R RUC IARE DWP TYEE DNPR 

Lemma 3.3.5. The above ( 5 ) 1s a sesquilinear form on 

Pm) x Lim). Also, the definition of ( , ) does not depend on 

the choice of + whenever (le, FD) sg and (ole, | FD) gp 

make sense. 

Proof. If we identify LPM) with IP(Mm; 9) (hence with 

IP(m; 5) as in the Proof of Lemma 3.3.2, then we compute 

* * 
$((0] 9, | : DH); q%m (Dl 9, : D¥)_1 p) 

1/q  =1/q\*% *  1/p  -1/p* 
= tr(h (h h r( 3 EXE ) uu ( ER )) 
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= tr(n/d wo ni/P ) (Proposition 3.1.18) lo, "2" o | 

- 1/2 y* (up l/P = erlang |) (8) )) , 

so that ( , ) 1s sesquilinear. The above computation and Proposition 

3.1.15 yield that ( , ) does not depend on the choice of ¢. (Q.E.D.) 

Corollary 3.3.6. | 

(1) (9/2, 5B) = |9|(1) for oe Mm. 

\ , 2 1/2 R d (ii) For ? = uw lo |, n= 1,2, (/ ,7/ ) is exactly 

(oy) + 1,1 )((Dl gy | = D9] + [9,10 au (Dla, | « (| ) IR IOI%] pel + 19,10); pom ley] (fo | + 19,1), )- 

Proof. (i) If P= =0= u|®|, then we can choose # = | 9| 

and (D|o| : D|o| ),=1 forall =z eC so that (F/R, HY = 
* 

lol (a"a) = [9[(2). (11) since lo | <|o| + [9], n= 1,2, as 
functionals, it follows from Corollary 1.4.3 that 

(ole| : (|| + 190)_s jos n = 1,2, make sense. Thus, by 

choosing ¢ = lo | + 12,1, we have the desired result, (Q.E.D.) 

We also have the following expression: 

Theorem 3.3.7. Assume that 1/p + 1/9 = 1, p,q > 1, and 

?, = a |e | em, (n=1,2). If the support of lo | is majorized 

by the one of 19,1 then (7/2, 7%) = f(-i/p). Here, £(z) is 

the (relative K.M.S.) function, which is bounded and continuous (resp. 

analytic) on -1<Imz <0 (resp. -1<1Imz<O0), with boundary 

values: ‘ 
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* 

* £(t - 1) = [9 |((@oy] : Dlagy|)gun), ter. 

Proof. By the proof of Lemma 3.3.5, we have already known 

(Pot Uy = tr(nt/) oF p/P ). On the other hand, the relative 10% lo, 1"2"1% 0, | 
K.M.S.-function f(z) at z =t ¢ R is expressed by 

£(t) = [ol (Ju (0lo | : Dla,|),) 2 2 1 1c 2't 

* it -it = tr(h u_u.h h ) lo, 172" oP a, | 
* dit | 1-it : = tr{u. uh h 

(a1 lo, | EXk ’ 

which is the boundary value of the function: gz w tr(u a ni? pioi%) 2°19 |", 
(see Proposition 3.1.17). Thus, we conclude that 

* 1 1 £(-1/p) = tr(u a p/P ut/e ) = (oH, gy . (Q.E.D.) 2°19 [M9] 

: Remark 3.3.8. The above theorem means that the study of the 

sesquilinear form ( , ) on IP(M) x LIM) and the expected 

duality is nothing but the analysis of the behavior of relative 

K.M.S. -functions inside the strip. 

For ? and ? in Theorem 3.3.7, the theorem of three lines 

yields that : 

1 1 . : (#5, 57%] < exp £ 108(sup [2(5)]) + L tog(oup [205 - 1)])) : teR p teR 
1 1 <exp( 3 Log], by, + T ogo, | I) 
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= lo. IP I|X/2 = |job/P|| |lot/2 = log Pllay hy = llsy/l lad), 

which is exactly HOlder's inequality. To show the inequality for 

arbitrary pairs ( > P,)s We prepare two lemmas. 

Lemma 3.3.9. If {p } is a monotone increasing sequence in my 

satisfying sup lel < ww, then there exists a (unique) ¢ in mE 

such that | - ? | ~0 as n =-o, 

Proof. Set ¢(x) = sup ?, (x), Xx € M. By the O-weak semi- : 

continuity, @ is linear. The assumption yields ®(1) < «=, that is, 

Pe mE. Since ?, < @, we conclude that 

le - ol = (o- 91) ~0 as n-w, (Q.E.D.) 

Lemms 3.3.10. Let lel, n= 1,2, be elements in My. Let Xs 

n=1,2,..., denote functionals in mr determined by 

1 2 2 2 =A + 4 = . Ca fae” + Hg ly = Sy 
(See remarks before Definition 3.3.4.) Then, the sequence x} 

converges to 9, | in norm. 

Proof. Considering the tensor product with 12, one gets 

1 2 : 2 2 R =A ® ® = ® 

1.2 2 2 gl 2 =n + h = (in L/5(M;¥)). Clearly, {nS } converges 2 Moy * Hg | = 5 , 
to uf, in the measure topology (Definition 3.1.4). Furthermore, 

i 2 
the sequence is monotone decreasing. Since the square root operation 
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is operator monotone ([33]), {hy } 1s a montone decreasing sequence, 
n 

that is, x} is a monotone decreasing sequence in m so that 

Lemma 3.3.9 guarantees the existence of a unique Q € me such that 

Ix, - 9 ~0 as n-w. It now suffices to show that P= lo, 1. 

By Proposition 3.1.19, {ny } converges to be in the measure 
n 

topology so that 2 } converges to Hg, in the measure topology 
n 

([311). We thus conclude that ho = HZ |, that is, © = |q.|. ?~ To, 2 
(Q.E.D.) 

Theorem 3.3.11 (H6lder's inequality). For any  @,, %, € me, 

and 1/p + 1l/qa = 1, p,q > 1, we have 

/P o/U | < aH lela (#7 % 5/1] < llay/Pl leo 

Proof, For the above Xs n=1,2,..., clearly we have 

1 2 2 2 . _— < < " No, |v 4 AL <4 yp that is, lo, | < nX (1) and 
n 

EN < x (1). It follows from Lemme 3.3.5 that, for each n, 

1/p 1/3, _ . * * . (a ,% ) =x (Dla, DK); sgt (P19 : DC) 4 pp) . 

For each n, we consider the function 

*  % : : f(z) = x(a], : DX) 1 g% 5 (Dl ? | : x ),) . 

This is bounded and continuous (resp. analytic) on -1 <Imz<oO 

(resp. -l1<Imz< 0) by the relative K.M.S. condition (or by 

: : bp q le, | < ox (1)). Also, £ (-i/p) = (n/ a ). For each mn, the 

theorem of three lines yield the following estimate: 
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(9/2, 55/%)| < exp( = log(sup 2,601) + = Log(sup [7 (+ - 1)])) . teR p teR | 

Since |, < x (1), |£, (6) is majorized by xl. On the other 

hand, by Theorem l.4.L4, we have 

£06 - 1) = lo | (Ole) + x) le]: x )* Ja) n 1 1h n’t 20° n’-i/qg72717 ? 

so that r (t -1i) is majorized by He Hl = loll. Hence, 

1 1 (9/2, 8%] < lla |2/2p|1M/e 

for each n. By Lemma 3.3.9, {be I tends to lg, [14/4 as n - ow 

s0 that we estimate 

/P_ t/a Pq 1/9 2 (lo/P) oe IEA TE CY a CY A Cra NES TORE 

The next result is a consequence of the theorem and Corollary 

3.3.6, (it). 

Corollary 3.3.12. For each @ ¢ Myo lot/2] is the supremum 

1 . X of [OPH] over gem, sastemying [92 (= 47%) <1, 
and the supremum is actually attained. In particular, II I, 

(1<p<w) is a norm on IP(M). 

Theorem 3.3.13. For each 1< p<, (Pm), [1-113 is a Banach 

space. Among them, tm) is exactly the predual M., while (mn) 

is isomorphic to the canonical Hilbert space Hye In particular, Mm 

acts on 2(m). 

Proof. The first statement is obtained from Proposition 3.1.19 

7



and the completeness of the set of all T-measurable operator affiliated 

with R =M x qo R because 1-1, on IP(M) corresponds to the 
0 

CC 

norm on IF (In; Py) introduced in Definition 3.1.16 when we identify 

IPM) with IP(m; ?,)- 

We now consider the case p = 1. In this case, Definition 3.3.1 

and 3.3.4 reduce to the usual linear structure and the predual norm 

on M,. To show this, it is sufficient to prove 

A + uA = lol lola] © alley +la,] = “x, |e, 

with we + a9, = uX, or by taking the tensor product with IL, 

“2a, + 48] = uh, . 

2 

However, this is obvious because m, is isomorphic to 

1 , . mle) + lo) (ir lol + lo] is zaithra). 

Finally, we consider the case p = 2. Corollary 3.3.6,(ii) shows 

that *(m), = [o/2; 0 € mt) PE) o/2 Noe (3), is a surjective 

: isometry, which extends to a surjective isometry from I2(M) onto 

Ho (Q.E.D.) 

Due to the above theorem, it is reasonable to call IP(m), 

1<p<w, the canonical 1P-space (associated with M). We now 

consider a functorial property of the correspondence: MM m- Ho It 

follows from Proposition 2.1.11, 2.2.12 that a normal ¥-isomorphism 

from Mm onto another von Neumann algebra Nh naturally induces the 

unitary operator u, from %, onto MH satisfying ug ((4,),) = (Hh), 
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and ©@ = Adu, the canonical implementation of 6. 

Lemma 3.3.14. For o,§ e nk (¢ faithful), we have 

. 

A ) ) = 1A Bh 
04 P 0b (ZIV AC . 

Here 6,9 (resp. 6,4) in me means (6,9) (x) = 9(6(x)) (resp. 

(0,9)(x) = ¥(6(x))), x eM. ol 

Proof. For x eM, Xe nk, one gets (6.X)(x) = X(6(x)) = 

* oo x(a xu,) = (xu, NX | ug WX). Since ug NX belongs to (4h), 5 we 

conclude that Ug NX = NE X. 

For each x el, we compute 

*. 1/2 rand 
“Tm, 9, 0, 4 O,.¥ = ugx NEP 

N 

= ux a, No = 6(x) Vo = a(x) Vo 

_ sal _ al = 38070 (x) Ni = Tn tg¥ Ny 

| _ Alp x : = Trl ux Ot 

Because MANO 4 (resp. ah NE b= ny) is a core for 

1/2 1/2 . . 55! 2,0, 4 (resp. xh ), the above calculation yields oo 

3 aM20% Fg AL/2 = 5 als , nop Ye = Yono,0,0.¢ T me 9,0, 

so that the uniqueness of the polar decomposition gives the result. 

(Q.E.D. ) 

Proposition 3.3.15. For a normal ¥-isomorphism from Mm onto 

another von Neumann algebra” h, the map 6 x from ng, onto m,, 
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given by (6.X)(x) = X(6(x)), x eM, X ¢ Ny, gives rise to a sur- 

jective isometry from IP(m) onto IF (n) for each p. 

" Proof. Clearly, 05% is surjective and norm-preserving because 

) 1/p 1/p 1/p _ d/p eX = [Xe g = {|X = [IX . 60.0721, = Ix» oly = II = 7 

Thus, it suffices to show that Oy is linear, that is, 6 preserves 

the addition and scalor multiplications introduced in Definition 

3.3.1. For ® = wlel, % = a, 9, in ny, the polar decompositions 

-1 -1 | of 8,9, 6,8, are 6 (uo (lo, ), 6 (u,)0,(1 0,1) respectively. 

We assume that 

1/p AL/P 1/ wu. A uA = 18,1, [oy lela) + 201, [ay l+layl = “Tolle, 

| as in Definition 3.3.1,(i). We then have 

* \1/p * * AL/p * [S97 SVEN SVAN u uw, uu A u EH CE EN ee A A CAREER 
L/ i 

=u un, . 
0, To, +] 9,| 0 

It follows from the previous lemma that 

-1 1/: -1 1/p 6 “(u,)A 9 “(uu )A | Gal wonloleda,l + 01 0 0 00 ve la) | 
| 1, \\1/p 

= 0 ua | ( 15.2.0, 0,1 +0] 9, ’ 

that is, (0,9) La (659, )L/ Po (8; (wx) Pp, Similarly, the other 

| operations are preserved under 6. (Q.E.D.) 
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$3.4 Duality. 

In this section, we obtain inequalities concerning the I-1l norms. 

We then establish the duality between IF(n) and Lim), 1/p+ 1/qa = 1. 

Lemma 3.4.1. Let LPM; 9.) and Lim; 9, ), 1/p + 1/q = 1, 

be the Haagerup's IF -spaces constructed from Pye For a,b e P(m; ?,) 

and c,d e 3 (m; ®y)s we have the following inequalities: 

(1) ler((a + ple + (2 - 2)a)| <2™/2(lal? + [BIZF/Pelo)? + 
laid? for 2<p<e. | 

i. 1 (12) Jer((a + oe + (a - BJ) <2M(all® + [olZ3/Prle]d + 
| lalj2y+/2 for 1<p< a2, | 

Proof. At first, we show the required inequality in the special 

case p=q = 2. Since the sesquilinear form (a,b) w tr(b a) 

gives rise to an inner product on I2(n; Py)» we compute 

|tx((a + ble + (a - ©)a)| < [tr((a + ble)| + |tr((a - b)e)]| 

<a + vil, llell, + [la - bl, llall, (Cauchy-Schwarz inequality) 

2 21/22 2\1/2 < (lo + ol + fla = BEM2(el2 + af?) 
: : 1 <2 2(lal + IpI2Y2 (lel? + 1a|2)1/2 (me paraiielogran 

law) . 

To consider the general case, we assume that a = ess P and 

b= wBL/P (resp. c = 31/9 and 4d = /% be left (resp. right) 

polar decompositions. For convenience, we write 

| x = [Bly + Bll, = BYE + BY7F, 1<r<a = Sly + Pl = r” r’ = ’ 
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y= [Bly + [@l, = IFY7IE « [@7)F,  1<r<w. 

We consider the function 

~Z ~7 lz ~Z ~Z \wl-~7 £(z) = tr((wa” + vb Je~ t+ (ua® + vbo)A Fw) , 

which is bounded and continuous (resp. analytic) on O <Rez<1 

(resp. 0< Re z < 1). 

(1) For z = is e€ iR, we estimate 

. ~ig ~isy\wl-is ~is ~is\»l-is [£(1s)| = Jtr((ua*® + v5°)3 t+ (ua™ + vb )d w))| 

For z = 1/2 + is, s € R, we estimate 

\ 1 ~1 o~ 1 ~1 ~ 1 21/2 + 10) < 2R(RYRIE + [BVI (RMR 2 4 [51/22 2 
- 21/21/2172 , 

by the first part of the proof. When p 22, that is, 0<1l/p<1l/2, 

the theorem of three lines yields 

|tr((a + ble + (a - b)d)| = |£(1/p)] 

< exp((1 - 2/p)log(sup |f(is)|) + 2/p log(sup l£(1/2 + is)])) 
seR seR 

1 < exp((1 - 2/p)log(2y) + 2/p log(21/?x 1251/2) 

= exp(l/q log 2 + 1/p log x + 1/9 log y) 

_ oL/q iP PyL/Priian » llal2yt/e = 2/2 + Tol2) Pel + a) 

(ii) Por s e¢ R, we estimate 
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l2(1 + is)| - |tr((ualtis + pris yas + (units N Jplis Ja 50)| 

When 1<p<2, that is, 1/2<1/p<1, we estimate 

ltr((a + be + (a - d)e)| = |£(1/p)] 

1 < exp((2 - 2/p)108(225 2512) + (2/5 - 1)108(ex)) 
= exp(l/p log 2 + 1/p log x + 1/q log y) 

1 1 1 = 22(el? + [IE)YP(lel? + JDM. (aED.) 

Proposition 3.4.2 ([121, [20], [23], [44]). Let A, B be 

elements in IP(M). 

(£) fa + 37+ lla - 812 <2P(Ial2 + BIE) for 2 <p<o 
(11) lla + 302 + [la - BI? > 2P"L(a)® + BI) for 1<p< oa. 

iY b- Pp b - 

Proof. It is sufficient to show the above inequalities in 

Pm; Py) (1) For a,b e IPM; Pols there exist two positive numbers 

1 % y such that (fla + olf + fo - BIE)? = xa + ol) + ya - ol, 
x3 + 33 = 1. By Corollary 3.3.12, it is possible to choose 

c,d ¢ Lm; 9) satisfying 

le + vl Jelly = [ox((a + 0), ell = x» | 
la - sla, = ls=(Ca -w)0L, lal, =v - 

Here, we may assume that both of tr((a + ble) and tr((a - b)d) 

are non-negative by considering multiples of ¢ and 4. We then 

estimate 
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p PLP _ - | (lo + oll5 + lla = BUF = xlla + oll + yla oll, 

= lle + Bl lle, + fe - ol jal 
= tr((a + b)e + (a - b)d) 

1/q, Pp PyL/Dej. pe ayl/q < < 275 (ally + ol)" 2 Cllelly + lal$)>, 

by Lemma 3.4.1,(i). Since x2 4+ y2 = lel} + lallg = 1, we have 

p PyL/P o S1/d0),1P PyL/p b -D < b . (le + BIZ + lla = DIE? < 2Y3(Lal® + oI) 
(11) The above argument (together with Lemma 3.4.1, (i1)) shows 

1 1 1/x (lo + ol + ll = BEY? < 2/P(lal + [p27 , 

| that 1s, [la + Bll7 + fla - oll} < 2(llallj + [bI2). By reprcing a, » 
by (a + b)/2, (a - b)/2 respectively, we obtain 

be Pp 1l-p P - pl? JE. D. lally + lolly <27"(lla + oll + lla = »lI2) (Q ) 

We recall that a Banach space X is uniformly convex if it 

always follows from l=, <1, lly | <1, and lm I(x + v)/z2l =1 

(x57, €¢ X) that lim ll, - vl = 0. ([28]) A uniformly convex 

Banach space is reflexive, that is,” the double dual xr is iso- 

morphic to X. 

Theorem 3.4.3. For 1l/p+ 1/9=1, 1 <p<w, 1i(m) is the 

dual space of I? (Mm). Here, the duality is given by the sesquilinear 

from introduced in Definition 3.3.k. 

Proof ([12]). Since IL (M) =M is the dual space of wm) =m, 
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we may assume 1 < p< oo, : 

It follows from Lemma 3.4.2,(i) that IP(M), 2 <p<w, is 

uniformly convex, hence, reflexive. In fact, for AB e I? (m), we 

have 

la - Bl < 2 H(A + 52) - fla + 3] 

= 277 (Al + URI) - 2Pl(a + )2I 

| = 22H (AB + BID) - 2llca + 3)/l 
iY bp BP 

Due to Corollary 3.3.12, Lim), 1/p+1l/g=1,2<p<w, can 

be isometrically imbedded into IF my* through the sesquilinear 

form. In particular, LI(M) is a closed subspace of Pm)”, 

To show Li(m) = Pm)* by contradiction, we assume that L3(n) = 

IP(m y¥, It follows from the Hahn-Banach theorem that there exists 

a non-zero functional f belonging to IY m)** such that f vanishes 

on LI(M). However, since IP (m) is reflexive, f belongs to 

. | IPM) so that Corollary 3.3.12,(i) implies that f is zero, which 

is a contradiction. We thus conclude that LI(n) = Pm)”, 2<p<o, 

Also, the reflexivity of IPM) implies L(M)" = Pm) = I°(m). 

(Q.E.D.) 
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