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ABSTRACT OF THE DISSERTATION

Canonical IF -spaces Associated with

an Arbitrary Abstract von Neumann Algebra

by

Hideki Kosaki
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1980

Professor Masamichi Takesaki, Chair

The paper is devoted to a bconstruction of canonical IF -spaces,
l<p<w, froma given arbitrary abstract von Neumann algebra.

We start from an abstract von Neumann algebra . Namely, M
is a C*-a.lgebra,; which is the dual space of a (unique) Banach space
m*, the predual. Without fixing a distinguished functional on m,

.we construct the canonical standard form (m,llm,Jm, (HTn)+) and Banach
spaces P (), 1 < p <=, the canonical P ~spaces associated with

the algebra M in question. Our canonical IF ~-spaces have the expected
properties such as duality.

In Chapter I, for later use, we develop the relative modular
theory for p',ositive linear functionals on a von Neumann algebra, which
are not necessarily faithful. Although the theory was originally
studied for faithful ones, we show that, with natural modification,
almost all \properties remain'valid for non-faithful ones. Especially,

we obtain the relative K.M.S. -condition, a necessary and sufficient
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condition for a Radon-Nikodym cocycle (Do : qu)t, t € R, to admit
certain anaiytic continuation, and the fact that functionals are
"close" if and only if their Radon-Nikodym cocycles are "close."
Chapter II is devoted to a canonical construction of the standard
form. The algebra M in question is not a priori represented as
operators so that at first we give a danonical construction of a
Hilbert space. We begin with introducing a notion of new addition
and scalor multiplication (by positive numbers) on m;, the positive
part of m*, by making use of Radon-Nikodym cocycles studied in the
Previous chapter. By exteﬁding these new operations linearly, we
obtain the canonical Hilbert space H.. Thus, m; (= (Hm)+) is |
sitting inside the space as a positive cone. We then let M act
on the canonical Hilbert space ﬁm canonically. - This action is
constructed by modular automorphism groups associated with individual
functionals in m;. We thus obtain the canonical standard form
(M2 5o (1), )-
‘ The final Chapter III is devoted to a construction of the
canonical IP -spaces, l<p<w (T°(Mm) = Mm). Ve introduce, for each
P> a new linear structure on m* by using relative modular operators
on Hm, the canonical Hilbert space, and polar decompositions of
functionals in m*. The predusl m* with the new linear structure
is our zP(m), the canonical Ip-space-associated with M. Since we
deal with only relative modular operators on the single and canonical
Hilbert space ﬁm, our Ip¥spaces are functorially attached to the
algebra itself. We then show that the canopical Lp-spaces have the

expected properties. A4s classical Lp-spaces constructed. from a faithful

»
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normal semi-finite trace, the duality between IP(M) and I(R),

1/p+ 1/qa = 1, is obtained as a consequence of a certain inequality

concerning the norm.
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Introduction

The thesis is devoted to a construction of the canonical standard
form in thé sense of Haagerup, [17], and canonical Lp-spaces,
1< p<w=», associated with a given arbitrary abstract von Neumann
algebra, [38]. The construction is bésed on the relative modular
theory as well as the Tomita-Takesaki theory, [43], and carried out
without fixing a distinguished functional 6n the algebra in question.
Before going into the details of the organization of the thesis, we
examine the history and motivation of the subject.

The study of von Neumann algebras was initiated by Murray and
von Neumann, [30]. Their tool for the classification theory was a
dimension function, 6r equivalently a trace. Thus a pair (M,T)
consisting of a von Neumann algebra and a faithful trace on it is
naturally an important object. We may regard this pair as a non-
comnutative integration theory. In fact, when M is commutative,
there exists a measure space (X;du) such that M is exactly
L (X;du), and the integral = = fX'du gives rise to a trace on M.
Thus, many authors developed theories of non-commutative integrations
based on the theory of traces. -The non-commutative Ip-spaces of
Kunze, [29], Ogasawara-Yoshinaga, [32], are based on‘Sega."L's work
[39] (the theoryvof a gage and measurable operators). Later, Nelson,
[31], somewhat simplified the above mentioned works. At the same time
as Segal, Dixmier, [12], also constructed his theory of non-commutative
Ip-spaces using a slightly different (but equivalent) method.

Followling the development of the theory of left Hilbert algebras,
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that is, the Tomita~-Takesaki theory, one can effectively study von
Neumann algebras, which do not admit a trace, namely von Neumann
algebras of type ITI. Also, we can construct successful theories of
non-commutative Lp-spaces from a truly non-commutative pair (m,wo),
namely ® is just a faithful state, or weight, [4], on the von
Neumann algebra M in question. Thefe are several ways to construct
such IF -spaces: Haagerup's ® -spaces, whose Ll-version was also
obtained by Woronowilcz, [45], rely on the crossed product technique
Connes-Hilsum's Lp-spaces, [71, [23], are constructed without using
a crossed product. We saw that such non-commutative Lp-spaces can be
. also obtained by making ﬁse of the complex interpolation method (due
to Caldercn), [27], and that the study of (the positive parts of )
Lp-spaces is exactly the study of a one parameter family of positive
cones introduced by Araki, [2], [25], [26].

We now examine the reason why the theory of non-cémmutative IP-
spaces is important. Firstly, non-commutative LP—spaces, especially
\I?-space, provide a powerful tool for the study of a von Neumann
algebra itself, Indeed, through the study of (quasi-) Hilbert algebra,
many important results on a semi-finite von Neumann algebra were
obtained, [11], [15], [35]. Purthermore, the above mentioned theory
of left Hilbert algebras, [41], which has been playing a central role
in the recent development of the thebry of von Neumann algebras, may
%é considered as a non-commutative I?-space. Secondly, as mentioned
explicitly by von Neumann in the introduction of [30], the main
purpose of the study of von Neumann algebras is its application to

other fields of mathematics-and physics. And some important
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applications were actually obtained through the theory of non-commuta-
tive Lp-spaces. For example, applications to unitary representation
theory, [29], and to quantum physics, [16].

So far, we have some constructions of non-commutative Lp-spaces.
The next question is whether or not one can construct such Ip-spaces
in a canonical fashion. Recently, thére have been many applications
of the theory of von Neumann algebras to geometry, [8], and the
categorical point of view is being used for the study of von Neumann
algebras, [37]. Thus, it is desirable to construct the canonical
Lp-spaces associated with a given von Neumann algebra M itself,
without fixing a functional on it. In the commutative éase, the
von Neumann algebra M = I?(X;dp) depends only on the measure class
of dM, not the measure itself, and lattice theorists constructed
canonical Lp-spaces in this set up. In a similar motivation, Blattner,
[3]1, showed that one can obtain induced representations canonically,
which was strongly influenced by Mackey's notion of the intrinsic
‘Hilbert space (consisting of half densities).

In the thesis, as mentioned at the beginning, we start from a
given arbitrary abstract von Neumenn algebra M, that is, a C*-
algebra; [13], which is the dual space of a (unique) Banach space m.,
the predual. (The predual m* is also considered as the space of
o(M,M, )-continuous functionals on M.) One should note that M is
not a priori represented as a space of operators on a Hilbert space.
Our goal is to construct the canonical IP -spaces, l1l<p<w®, as
well as the canonical Hilbert space on which I .acts canonically.

The thesis consists of three chapters. The material of each chapter

v



is briefly described in what follows.

In Chapter I,.we develop the relative modular theory of positive
functionals in m;. Although the theory was originally developed for
only faithful functionals in m;, [51, [10], it is more convenient
to allow also non-faithful ones for our purpose. We show that, with
natural modification, almost all kncwﬁ properties remain valid for
non-faithful ones. Among them, we show the relative K.M. S.
condition, the possibility of analytic continuation of a Radon-Nikodym
cocycle (Dm;DpO)t, t € R, under éertain conditions, and the fact that
functionals are "close" if and only if their Radon-Nikodym cocycles
are "close."

Chapter II is devoted to a construction of the canonical standard
form. At first, we define new addition, scalor multiplication (by
positive numbers), and an inner prodﬁct on m; by using Radon-Nikodym
cocycles. Extending these operations linearly, we obtain the canoni-
‘cal Hilbert space M. Here, "m; (= (Hm)+) can be imbedded into My
as & positive cone. We then let M act on Hm canonically, by
using modglar automorphism groups associated with individual function-
als in m;. We thus obtain the canonical standard form.

(3, s (), )- |

Chapter IIT is devoted to a construction of the canonical P.
spaces, 1< p<wm, (M) = M) At first, we collect some known
properties on measurable operators and crossed products. Then, we
prove certain properties of homogeneous operators, which are indis-
pensable in our construction of Lp-spaces. After this preparation,

we introduce, for each p, -a new linear structure and norm on m*

v



by making use of only "canonical" relative modular operators on the
single and canonical Hilbert space Hm, constructed in the previous
chapter. The predual m* together with the above mentioned new
structure is our LP(m), the canonical LP-space associated with the
algebra M in question. We show that our Lp-spaces.have the
expected properties such as duality. .

Finally, our standard reference on the general theory of von
Neumann algebras are [14], [43], while the one on the Tomita-Takesaki
theory is [4l]. We also use freely the results and notations of

standard forms, which are found in [2], [6], [17].



Chapter I Relative Modular Theory

In this chapter, we develop the relative modular theory for
positive linear functionals on a von Neumsnn algebra, which are not
necessarily faithful.

Throughout the chapter, we fix a ‘von Neumann algebra M and a
standard form (m,Ji,J,Ph) in the sense of Haagerup, [17]. Namely,
lPh is a self-dual cone in a Hilbert space H, on which I acts.
A unitary involution J is determined by Ph, and JNJ = ', the

§

commutant of M. It is known that the map: € e P w wg € mj;

is
Ahomeomorphic with respect to the norm topologies in Ph and m;:.
Here, wg € m; is given by wg(x) = (x£|€), x e M.

Let @, (resp. @) be a faithful functional (resp. functional)
in m; with a unique implementing vector € (resp. £) in Ph,

that is, Py = we (resp. @ = wé)' We shall fix these two function-

als in this chaptgr, except in Lemma 1l.4.1 and Theorem 1l.k.5, 1.k.6.
§1.1 The Gelfand-Naimark-Segal Construction for a "Mixed" Functional.

In this section, we study the Gelfand-Naimark-Segal constructioﬁ
(abbreviated as G.N.S.-construction), determined by a "mixed"
functional which will be made precise shortly.

At first we remark that the support projection p of @ (as a
functional) is exactly the projection onto the smallest closed sub-
space [M'€] containing M§, and that mgo and ﬁo are both
dense in 31 as @

0
Let h be the tensor product of M and the 2 x 2-matrix algebra

being faithful.

v



ME(C)" realized as

a b
h={[ '3 a,b,c,d el ¢,
¢c d '

and let D be a projection in N given by

_ 10 | L
D= .
O »p

We denote the reduced algebra h by the projection p by h_ as

P
usual, that is,

a b
(L.1.1) h_={[ };aem,bemp,cepm,depmp}.
P c d

We also consider the "mixed"' functional X on n_  determined by
b

‘a b
X([c d]) = Cpo(a.) + @®d) = weo(a) + wﬁ(d) .

We compute

{0

(0 )

* * *. *
<Faa+cc,ab+cd:l>
= X

* * * *
Lba+de, Db+ dd

[}

Cpo(a*a + c*c) + Cp(b*b + d*d.) .

Lemms 1l.1.l. The functional X on n_ is faithful.
—— , ' 5
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Proof. For a, b, ¢, 4 as in (1.1.1), we assume that

()

. * % *
The above calculation implies: Cpo(a a) + CPO(c c) =0 and 9(b'b) +

*
®(d"d) = 0. The first (resp. second) equality means a =c = 0

i

(resp. b =4 = 0) since P

to php and p is the support projection of @), (Q.E.D.)

. 5% ’
is faithful (resp. b'b, d'd belong

The calculation before the lemzﬁa implies

(00D

W (a*a + c*c) + W (b*b + d*d)
£ ¢

legol? + llogI? + IbglP + llag)?

We set p' =JpJ e M so that p' is the projection onto Mme7.

- We notice that cgo € pmgo C oM, b€ e Mpé = ME C p'Y, and dé e phpt =
ohé C pp'#. Thus, the above equaliﬁy shows that a pre-Hilbert space
n_ equipped with the inner product induced by the "mixed" functional

je
X 1is isometrically mapped into H & o © p'H @ pp'H, via

ety

a b céo

e [c d:lvw bg
g |

Furthermore, the image is clearly dense in H & pf & p'd & pp'd  so

that the Hilbert space lle the completion of N_, can be identified
: b
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with H © pi © p'H @ pp'¥, which we shall actually do throughout
the chapter.
Next, we determine the induced representation Y of N_ on
the Hilbert space H & pH © p'¥ ® pp'¥. For a, b, ¢, 4 za.nclp e, £, g,

h as (1.1.1), we simply compute
(D1 (  EE ¥ (| D )
T =
* c da x g h kS c d g h
<[ae + bg, af + bh])
x ce + dg, cf + dh
on the other hand, by the above identification, we get

[ (se + vg)e, ]

bg, af + bh (ce + dg)é
(et e e ad) ™| emmg

| (cf + dn)g |
Fa b O or e&oj
¢c d 0 0 g€,

0O O ap' bp f€

| O O cp* dp'| L hE

Thus, we conclude that the induced representation is given by

fa b O 07

[a b]> c 4 O 0 I:a. b}
= eh .
nx< c d 0 0 ap' bp ’ c d D

L0 O ecp* dpt]

Finally, the cyclic and separating vector &X in HX for n fi, which

v



gives rise to the original X as a vector functional, is given by

Y

N b

Le

§1.2 Relative Modular Operators

By identifying hﬁ with ﬂx(hg)’ we have the triple (hffﬂx’&x).
Namely, the Hilbert space ﬁX =H o ®p'H & pp'H, the von Neumann

algebra
[a b 0 0 7
c 4 0 0

n_ = x’/_;a.em,bemp,ceﬁn,delmp
P 0 0 ap* bpt

L0 0 cpt ap'] 2N

acting on HX naturally, and the cyclic and separating vector

in ﬁX for N_. We compute important objects associated

b
with this triple in the Tomita-Takesaki theory, [41].

We set
. - - - 4 * -
[e ® 0 07T & a b 0 07 7TE,
e d O 0 0] c & O 0 0
0 O apt Dby o) 0 O ap' Dbpt 0
| O O ecp' ap'f L & L0 0 cpt dp'] Lg

This densely-defined (conjugate linear) operator on HX is known to

be closable (S-operator). By looking at each componént, we also set

10



(1) Sp.g = Scp ek e Mg, - a*go ¢ Mg (the usual S-operator
00 0
determined by (m,H,éo)),

(1) Sgp @ oty HE; o7 < Mpg =
(ii1) scpocp : bE € Mpé = ME ~ b*éo ¢ png,,
(7)) Sgp ¢ &  Hipt = TN - 4"¢ < pipt = H0¢

(Notice that qu ? and qup are well-defined.) Since we compute
0

- - % - - % % - -
a b O 0 &O a ¢ 0 0 ﬁo
* %
¢ d ] 0 0 b d 0 0 0
0 O ap' dbp 0 0 © a*b' c*b' 0
\ *
oo ep ap J L6 ] Lo o vp aple |
* ~
i abgo
*
= % s
c g
*
L d € |
we get
s 0 0 0 7
%
0 0 3] o)
SX - ?3¢
0 ] 0 0
o
0 0 0] S

As SX being densely-defined and closable, we certainly conclude that
(1) Sq@b is a densely-defined closable operator from pH
to p'H,
(i1) S%DQ is a densely-defined closable operator from p'H
to pH,

(iii) S¢¢ is a densely-defined closable operator on pp'H.

)

11



 Furthermore, we get

i 5, O 0 o 1*T §<P 0 0 o
o o _
0o 0 & 0 o o B 0
S
&g, - PP 7 Tee
0 S 0 0 0 B 0 0
o % _
0 0 0
Lo 0 Sepd Lo Bep |
I 0 o 1[5 o 0 o ]
% %
* —
0o 0 S 0 o 0 0
= ¥* —
s 0 0 0
X 9 Sop,  ©
* —
o o o sl o o o 5. |
- QP - PP
[ s §cp 0 0 o ]
cPO 0 % _
0 3 0 0
_ Sep Sop
el o o * — .
0 0 s* B 0
SIS
0 0 0 s
- _ P -

Here, the bar on the top of the S-operators means their closures.

¥ -

¥ -
Definition 1.2.1. Weset A, =S5_8_ , A =8 . S, ..,
o R Wy 09w

C - * =
=S S d A =8 _8S tively. t
ACPOCP CPOCP CPOCP’ an o P00 respectively. Among them,
we call A and A relative modular operators. (See Remark
cPCPO cPOCP

l.2.4.)

Clearly, ACPO (resp. ACPCPO’ Aq)oq), Acpcp) is a non-singular
positive self-adjoint operator on ¥ (resp. pH, p'¥, pp'H). We
notice that (_\.q)o is exactly the usual modular operator associated
with (m,u,go), while Aqxp = /_\.CP is the one associated with the cyclic
and separating vector £ in pp'¥ for the von Neumann algebra

p'pPhp, which is isomorphic- to the reduced algebra Mp. The above

»



calculation shows

A 0 0 0 ]
Fq,o
0 A 0 0
A = % )
0 0 A 0
cPOCP
0
i 0 O. AWJ

Next, we have to determine the modular conjugation JX, which is

the phase part of §X To do so, we begin with computing the commutant

Nt of nh_ acting on Jix=3:{eap3iepr;1@pr3¢.;

b b
Lemma 1.2.2. The commutant N is given by

- P _

al 0 b pt 0
O pal O Pb\‘ pl

n = ) ;3 at,bt,ct,d' ent

P p'et O  pap 0

. O opp'et O  pp'dp']

Proof. ILet R ©be a von Neumann algebra acting on HeoHd o

- p'd & p'¥  given by

a b o 0

e 4 O 0
R = ;3 a,b,c,d e p.
O O ap' Dbp!

L0 O cpt dp'l

We notice that our von Neumann algebra n_ is exactly the reduced
P
algebra ®_ with a projection
q .

13



in R,

2]
]

.0 0 O pp' J

SO that Proposition II, 3.10, [43], yields n' = (R_) = (R')
b q q
On the other hand, the commutant (M ® Ma(C))' =M ®CL is

realized as

; at,b',ct,dr ety ,

and R is the induced algebra (M ® M2(C))_ with a projection

- - T
1 0 0 o0
_lo10 o ,
T = in the commutant (M ® 1\42(!3))' .
0O 0 pt O
.0 0 0 p |

Thus, by Proposition II, 3.10, [431],

R = (M ® M (C))
2" 'F
[ at 0 bt pt 0
0 at 0 bt pt
= ; at,bt,ct,dr et p
P!cl O Pld?pt O
| O pret 0 prdip']

§0 that we conclude that n' = (R )_ is exactly the set described
D, q

»
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in the lemma.

(Q.E.D.)

In the proof of the following proposition, the fact that €

and EO belong to P s essential:

Proposition 1.2.3. The modular conjugation operator JX deter-

mined by §X is

Proof. According to Theorem 1, [2],
the following four conditions:
(1) Jy 1s a unitary involution,
(i1) IyEy = Ex>
(iii) Jyn d, = ni,

Y Y
(iv) (xIXxJX&XIQX) >0, x e h_.
: b

(7 0 0 0]
0O 0 J ©
I P
L0 0 0 g
or more precisely,
7 0 0 0]
Iy = 0 ° 0 , where J., (resp. J., J.)
03, 0 o0 * 2”3
oo o g
' is the restriction of J to p'H  (resp. D, pprH).

Jy 1s characterized by

The conditions (i), (ii) are easily checked. By the previous lemma,

we have known the commutant Nh!' so that (iii) can be also checked

P

v
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by straight-forward calculation. Thus, it suffices to show that the
operator J, described in the proposition satisfies (iv).

For any
fa b 0 0]
¢ d 0 0

X = 5 a,b,c,d as (L.1.1),
O O ap* bp! '

.0 O cp' dpt|

direct computation shows

(a2 0 o0 J[Jar 0O o7 o NN

cd 0 o0 O plaJ] O pJbJ || O
XJXXJXgX ) O O ap' dbp Jed 0 JaJ 0 0 ’

L0 O cp' dpt il O pJeJ O pJagJ )l & |

[a © 0 0] F'JanO'
c d O 0 pJbJIE
0 O ap' bp JcJﬁO
0 0 cpt ap'|| prage ]

b o o[ gast, ]
cd 0 0] Jbse

O O ap' bp JCJ&O

O O cpt dp'l| JaJE |
[ egasty +baose | [ aJaJt + bIbJIE |
cJaJ&O + dJbJ€ cJaJ&o + dJbJE
) ap'JcJ&o + bptJaJé ) ap'JcJ&o + bJaJE .
R cp"JcJ&O + dp'JAJE | i cp'JcJé_’,O + AJAJE |

Here, the third equality follows from the facts pJbd = JbJp,

L

16



pJdJ = JAJp, while the fifth follows from the fact

JAJE € JpNpJ€ = p'Mp' € = p'é C prolf

Thus, we get

(g &y 1€y )

We notice that go

invariant under each yJyJ, ¥ € M.

(agag + bIbIE|E ) + (ep'dede, + aTagele)

(aJagé,le,) + (bavaelé ) + (cdege |e) + (arasgle) .

and £ Tbelong to Ph, which is globally

b .
of P’ that (&TXXJX§X|§X) > 0 as desired.

It follows from the self-duality

(Q.E.D.)

1
Thus, the polar decomposition S, = J,A2 is expressed in terms
X

of 4 X 4-matrices, as follows:

5 0 0
% _
0 0 S
_ X
0 8 0
q@b
0 0 0

o 0
3

o Ja
%

0 0

1
JA2
PP

0

0]

0 0]
2
0
.
0 A2
P
0 0
. -
0
0
L
JN2

qm~

By comparing each component, one géts the following polar decomposi-

tions:

17



In what follows, we have to deal with the above operators
simultaneously as operators on a single Hilbert space, namely H,

hence we put the following:
Remark 1.2.4. Unless the contrary is stated, the operator Acpcp
0

(resp. = ACP) is regarded as a positive self-adjoint

A TAN
%P o0
operator on ¥ with support M J(resp. p'H, ppt¥).
Before proceedlng further, we notice that JACPJ = Acpl’
-1 .
CPCPOJ = CPOCP’ and JAq)Oqu = ACPCPO' In fact, they can be obtained
by expressing the relation J, X = A)Zl in terms of 4 x 4-matrices.
We also notice that Az go = €, & cpg = go, and A2 g = €. These
are consequences of AX&X = szex = Jy&y = €. Here, the last
equality follows from Proposition 1.2.3 and the fact that {go and
€ belong to Ph'. Finally, we notice that, from our construction,

L L
Mg, is a core of ACEPCPO (as well as Aao, [411).

§1.3 Radon-Nikodym Cocycles.
In this section, by considering the modular automorphism cﬁ,
we define Radon-Nikodym cocyeles.

For

a b
teR, x= in h_, we compute
c 4 P
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f‘A;';" o o o7fabv o o __A;'t 0 o o
0 . 0 .
o 2 o o llca o o o a¥ o5 o
- % "
11: -it
0 0 O ' ! 0] 0]
0 cp @ 0 ap' bp 0 A(POCP
it -it
L 0o o o /_\.cpq)___OOcp"dp'__ o o0 0 Ag ]
A;')taAcp , A;tbac;;t 0 , 0 T
0 0 0 i
it -it it -it
A CA T, A dA T, 0] ) 0
] B T Wy W
- it -it it -it *
0 YA A
° ’ Afpo Pl Co o e |
rt 11: -it
- 0 A c A dpt A
O 2 2 W P q)ocp 2 cpq) P qm .J
Since this must belong to Nn_ again, we know that Aitba € Mp,
P
:Lt ' .
A € and ALt ga7it and that, in the above 4 x L4-
matrix, the (i,Jj)-component, i,j = 1,2, multiplied by p' is exactly
the (i + 2,J + 2)-component. In particular, AL aa’® ig exactly
P o

c‘S(d), where 0'4?

the faithful functional ¢ on ¢hp, which is isomorphic to p*php.

is the modular automorphism group determined by

Definition 1.3.1., For b eMp (resp. c e gh), we set

it
N CPo

.9
cto (v) = NN (resp. o

%e) = a
D, ©

),teR

: Cp @ QXPO
By the above argument, {o, }teR (resp. {o, }teJR) gives

rise to a one parameter family of isometries of the left ideal Mp
(resp. the right ideal oh). We also notice that the modular auto-

. . X
morphism group o

. associated with (h_,X) is

b
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c%(a) , 0%

a b t
(1.3- l) O'X< > = .
| t [c d] . c;p(d>

o, ),

Definition 1.3.2 ([5], [9], [10]). For t e R, we set

(D9 : DY.) - cpcpo( ) = alf ATit (Rédon-N‘kod cocycle (of @
'Ot"tp‘cm)ocpo =00y SNy

‘Wwith respect to CPO).)

We collect some basic properties, which are easy consequences of

the definition:

Lemms 1.3.3. The Radon-Nikodym cocycle (D9 : DCPO)t, t ¢ R,
enjoys the following properties:
(1) For each t e R, (D9 : DCPO)t is a partial isometry in ¢h

\%
with the initial (resp. final) projection cto(p) (resp.

p). _
(i1) The family {(D9 : DCPO)t}teR is a strong continuous 1-
@
0 . . _
cocycle for ¢ ~, that is, (DO : DCpo)t_l_s =

?
(Do : D@O)tcto((DCP : Dcpo)s); t,s € R, as its name indicates.

(ii1) The Radon-Nikodym cocycle (D@ : DqDO)t, t ¢ R, intertwines

%

o0 and o, that is, (DO : D9,),0 O(x)(DqJ : Do)y =

d_;p(pxp), x e M.
Proof. (i) From the construction, (D9 : DCPO)Jc is a partial
isometry in @, and we simply compute

(a it 11: *( —l't)

*
(D9 : D9,) (DP : D@,), = el ) (Bag S,
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- A}tA-ltAl A-lt

Py PPy 9P, P,

= AitpA—it (See Remark l.2.54.)
P %
?

= ctO(P) ’

) . * it -it, it -it
(Do : DCpo)t(DCP. Dcpo),G AN TUAA

il

Py Py Py PP,
it ,-it

=A A =p,
qﬂb qﬁb

(i1) The statement concerning the continuity is trivial. We

simply compute

. _ i(t+s), -i(t+s)
(Do : DCPO)t-;-s = Aquo ACPO
it -it,it,.is ,-is,,-it
= o5 ATFEATE(ATE ATISHA
% % MR %
%

(Dp : D9y) o, ~((DP : DY) ) .

(iii) For each x e M, we compute

0 * it ,-it it_,-it,, it  -it
(D : D@ ). o "(x)(DP : DP.). = AF ATTUAT AT (ASS ATEY)
0’t% 0%t = Top "ey "0, e, Cen, ",
it -it
= A XN .
o o
. it =it @ C s
Then, we notice that A xA = 0, (pxp) as remarked before Definition
o P T
1.3.1. (Q.E.D.)

§1.4 Properties of Radon-Nikodym Cocycles.
In this section, we shall obtain less obvious properties of

Radon-Nikodym cocycles for later use.
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Lemma 1.4.1 (cf. Theorem 15.3, [41]). ILet ¢ be a faithful
functional in m;. " For x e m+, the following two statements are
equivalent:

* * L%

(1) #(x-x") = x ¢x < £y with some 4 >0, that is, ¥(xyx' ) <

L4(y) for any y e mt,

(i1) The function: t € R + cg(x) €M extends to a function

cg(x) which is bounded and 0-weakly continuous (resp.

analytic) on -2 <Imz <O (resp. -1<Imz<0), and

Proof. Let { %be a unique implementing vector ino Ph for ¢,
*
that is ¢ = Wee Firstly, we assume that ¢(x-x )< £¢. Then the
*
map: y§ e ME = yx § € M extends to a bounded operator a' in M

with [lat| <v4. In fact, we estimsate

ly="¢]12 (yx*élyx*m = (xy yx &) L)

Vo) < a5y = dllytl?

Let A‘JI be the modular operator associated with (M,¥,£{) so that
1 * . % -1
JA$y§ =y 8§ yeM The vector a'{ =x ¢ belongs o Q(A‘lfa) and

one gets

L%, 1 * '
‘fx =022 = Jar £ = vt ,

2 ¥

with b =Jar"J e, [o]| <ve.

For e',d* e ', we introduce a function

£(8) = (of(x)ertlart) = (@ ergla®™™c), teR.

v
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-1 %
It follows from A¢2x £ =bf that f£(t) extends to a function f£(z), .
which is bounded and continuous (resp. analytic) on -§~§ Imz<O0
(resp. -3 <Imz <0). In fact, the bound for |f(z)| on

-2<Imz<0 is obtained by

[(ar ¥ €lad)] < o er cllat=ce)

< llar¥er éII{HA‘?x*.C,II2 Ic*¢2y2

- % gligl? + 1232

Here, the second inequality is a consequence of the spectral decomposi-
tion theorem for the positive self-adjoint operator A¢.
To get a better estimate for |£(z)|, we consider |f£(z)|

on two boundaries. For t € R, we estimate

20 = [(ofG)er tlar )] < o (olller el ¢l

l=lllle Ellliar £lf -

On the other hand, for - %-+ t, t € R, we estimate

[}

2= £+ 0)] = [(@ e glar®*it)|

[ (ar e glattartc®o)]

il

| (ar e gttt

| (@ %o tlol(n))]

| (o (b)er tlar £)]
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<l (o)lller eliflar ¢l
<o ler gl gl -

Thus, it follows from the Phrigmen-LinderSf theorem that, for

2<Imz<O0,
1£(2)] < 1x@s, =] )ller gliflar ¢l .

Thus, the density of M in H yields the possibility of the desired
analytic continuation cﬁ(x), and clearly we get ”OTi/E(X)“TEN[z
from the above estimate on one of two boundaries.

Conversely, we assume the possibility of the analytic continuation

obtained above. For each a e m+, we compute

Wrax™) = a2 "R = |oatioxt R

]

HJa?l'JJJA%‘x(;I |2

loa2rat, )l

= llo¥, ,(x)sa2re

< lot, )P llosreg)?

< 3t = sy(a) (@.E.D.)

Theorem l.4.2. For ¢ e.ﬁn, the following two conditions are

equivalent:

(1) o(c-c") < 89, with some £ >0,
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. P

(i1) The function: t € R~ T, O(c) ¢ g extends to a function
o, o‘(c:) which is bounded and O-weakly continuous (resp.
analytic) on -2 <Imz<O0 (resp. -21<Imz<0), and

lo20, o)l <.

Proof. At first, we assume (ii). Then the function

0] 0
(1.4.1) teRa—»O‘i([o ZD: W,
4 °‘ g, (c) ©

admits an analytic continuation so that the above lemms. implies that,
a O '

for each e(h_ ), aeh, one gets
o 0 o +

pd < BX 3
c O 0 O ¢ O 0 O
that is, cp(cac*) < .@Cp(;(a).

Conversely, we now assume (i). By the previous lemms and (1l.4.1),

it suffices to show

Qo D= 2],

- -
Xy

for any | € (n_). . However, we simpy calculate

. 2 W oJ . p +

"0 ox yi[o o7 *

X = CP(CXC )
e OdlLz w ¢ 0
< 49, (x) ‘ (xem )

v
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< 4(9y(x) + 9(w)) (v e b p)

2]

In particular, with ¢ = p, we have:

Corollary 1.4.3. The following two statements are equivalent:

(1) @< 49, with some £330

(i1) The Radon-Nikodym cocycle: t & Rw (DO : DCPO)t e
extends to a function (Do : DCPO)Z which is bounded and
o-weakly continuous (resp. analytic) on -% <Imz<0

I <va.

-+ .

(resp. -1 < 1Imz <0), | and ||(Do : DCPO)_i/2
Before stating the next result, we notice
. P I I
0 . 0 Op %y ‘0%, %

c’t (C) - (DCP M DCPO)th (C), c’t (b ) - c‘b (b> .
In fact, the first equality is trivial from the definition, while the
" second follows from the fact that c?é is *-preserving (see (1.3.1)).

These two equalities and Lemma 1.3.3(iii) imply

Q Q.. -
X<" a b ]> ) ;0 (0)(D9 : DY),
o] =
© [c d (D9 : D) cq)o’(c) ol(a)
- ‘ 0t t ? t Co
~ ) . % o -
cto(a) s (Do : DﬂPO):G;P(Pb)
= CP v .
(D9 & D9,),0,%(c), ofa)

Theorem 1.k,4. (Relative Kubo-Martin-Schwinger condition). For

b eMp, c e di, there exists a function f£(z) (= fbc(z)) which

L}
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is bounded and continuous (resp. analytic) on -1<Imz <0 (resp.

-1 < Im z < 0) with boundary values:

P
£(t) = 9o(b(D9 : 19,),0,°(c)), © <R,
?
£(t - 1) = (09 : Dp),0.°(c)b),  t R

Conversely, let {ut}teR be a one parameter family of partiél
isometries in I satisfying the properties stated in Lemma 1.3.3.
If, for each b € Mp, ¢ ¢ Ph, there exists a function f(z)

(= fbc(z)) which is bounded (resp. analytic) on -1 < Im z<0
(resp. =L < Im z < O) with the boundary values described above,
then wu,  is exactly (D9 : DCpo)t, t ¢ R.

Before proving the result, we remark two facts. Firstly, in
the second half of the theorem, thé continuity on -l'SIIm z<0
isvnot assumed, which is a consequence of the other conditions.
Secondly the above theorem (a characterization of (DO : qu)t in
‘terms of the relative K.M.S.-condition) yields that the Radon-
Nikodym cocycle (D@ : qu)t’ t € R, does not depend on the standard

form (M,#,J,P ) which we fixed at the beginning of the chapter.

Actually, (Do : Iﬂb)t is a canonical object attached to the pair

(CP’CPO)°
0 b 0 0 :
Proof. For x = s ¥ = in N_, straight-
0 O c O ho)
forward calculation shows
X(x34(3)) = 2,(6(00 : DY.).q %(c))
X0p\y)) = @\b(DP : DRy) 0, "(c)),
X %
X(,(v)x) = 9((D9 : Do), 0, O(c)b) .

»
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Thus, the first half of the theorem is a special case of the usual
K.M.S. -condition for a single functional X on h_, [4L].

To show the second half, we assume that a faml:'ily {ut}teR
satisfies the properties stated in the second half of the theorem.

We then notice that

P e,
e b\ [ % @) 5 o ()
Bt([ ]> = ) t eR,

@
d
¢ utcto(c), cfcp(d)

gilves rise to a one parameter family {Bt} teR of mappings from n_
into itself. The assumption and the usual K.M.,S.-condition for P
both CPO and @ yield that, for each X,y ¢ hﬁ’ there exists a

function g(z) which is bounded (resp. analytic) on -1 <Imz<0

(resp. -1<Imz <0) with boundary values:

@

g(t)

X(xg,(y)), <R

[

g(t - 1) = X(g,(y)x), teR.

Thus, ;5t}teR’ satisfies the usual K.M.S.-condition for a single
functional X so that p, must be O‘)é by [14] (see also Theorem 1,

[21]), that is, (Do : Dcpo)t = u. (Q.E.D.)

Finally, we prove two theorems which assure that two functionals
are "close" if and only if their Radon-Nikodym cocycles (with respect

to a fixed faithful functional) are "close."

Theorem 1.4.5. Iet {CPn} be a sequence in M, If {CPn]

converges to a functional @ in m;; in norm, then, for each t ¢ R,

v
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{(D¢n : D¢b)t}n converges to (D@ : qu)t in the strong*-topology.

Furthermore, the convergence is uniform on t in each finite interval.

Proof. We notice that mgo is a common core for positive self-
1

S0

1 0 1

(Afpcp + 1)m;§O is dense. For ¢§ = (A&P + 1)ng, x e, in this
0 0

L
adjoint operators and Aé pr 0= ,2,3,... . In particular,
n0

dense subspace, we compute

a2 w1l @ 1) e

¢h¢b ¢¢b

= (A% + l)-l(A% + 1)x€ . - x£
?.% %, 0~ %o

= (Aé' + l)-l{(A% + 1)x€ . - (A% + 1)xé .}
9.9, %, ¥ T B 0

= (A% o * l)-lﬂaé¢ xE - Aé o x&o}
no 0 no

- (A%’,ncpo + 1)7rx (g - e )

§

where 59 R g¢ are unique implementing vectors in # ' for @n, Q@
n

1
‘respectively. The positivity of each Aé o guarantees
1 : - n'o
(a2 + 1) l“‘< 1 and {£,} converges to £_ by the assumption
¢£¢b - Qn n %
(see [2], [17]) so that the above quantity converges to O for each
1 - L -
¢, that is, (a2 = + 1)1} converges to (A2, + 1)"% in the
%% 2 o

strong topology. We set a bounded continuous function £ on [0,1]
by

0, if £t =0
£(t) =
\ (Log(t™ - 1)2 + i)Y ir o<t <1

Kaplansky's argument, [24] (see also Theorem II, 4.7, [43]), shows

v
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1 - 1 -
that {£((a2 + 1) l)} converges to f£((A2_ + 1) l) in the
CPnCPO n qXPO
strong topology, that is, a sequence {log L\‘cp ® ]n of (unbounded)
n'O

self-adjoint operators converges to log A in the strong resolvent

%S

sense. Thus, the result follows from Trotter's theorem on the
resolvent convergence, [36].
The following result, which will not be used later, is of

independent interest, and is inspired by [21].

Theorem 1l.4.6. ILet f Cpn} be a sequence of faithful

n?l,2’3,-..
functionals in m; satisfying q)nS.ZCpO with some 4 > 0. If,

for each t € R, a sequence {(DCpn : DCPO)t}n is convergent in the
*
strong -topology, then there exists a faithful ¢ in MY such that
{Cpn} converges to ¢ in (M ,M)-topology, and, for each t ¢ R,
(DP : DP,), 1is the strong -limit of {(DP. : Dp.),}
CP.CPO_t is e strong -limit o DCpn.CPOtn.
*
Proof. Let u_, t € R, denote the strong -limit of the

t’
Q
sequence {(DCpn : DqDO)t]n. Since each (Dcpn : Dcpo)t is 09 -1

cocycle, so is U . Also, {utAgZ}teR is a weakly measurable orlle
parameter group of unitaries, that is, (utz_\.ézg i’q) is a measurable
function on t for any §,7m ¢ H. It follows from a result of von
Neumann,. [36], that {ut}teR is a continuous cocycle. We thus
conclude that there exists a unique faithful semi-finite normsl weight
w on M satisfying (Iw : DCPO)t =u,teR.

Let ¥ be an a.rbitrai'y accumulation point of the weakly relatively
o(My,M)-compact set {CPl,Cp seee} in m;. It suffices to show ¢ = w.
(Then, {Cpl, Cpa,..‘.} admits a unique accumulation point. ) By passing
to a subsequence, we may as’su;ne that | q)n} converges to ¢ in

»
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a(m,,M)-topology.
For each x,y € M, 1let :f‘n(z) (= fi’y(z)), n=121,2,..., denote
the relative K.M.S. function determined by (Cpn, CPo,x,y) with boundary

values:
%
fn(t) = CPO(X(DCPD_ : DCPO)th (Y)): t eR ’
. %
£t - 1) =9, ((D9, : DR ) o "(¥)x), teR.

Firstly, we examine the behavior of the sequence {fn(z)} on two
boundaries. On the boundary z = t € R, the sequence {fn(t)]n

of the functions converges to Cpo(x(Du : DCPO)tc,ZPO(y))‘ since

{(DCPn : Dq)o)t}n tends to (Iw : DCPO)t in the strong*-topology

and CPO is g-weakly continuous. On the boundary z =t - i, t ¢ R,
the sequence {fn(t - :i.)}n of the functions converges to

$((w : D@O)tcfo(y)x) due to [1]. Secondly, we examine the behavior
of the seguence {f‘n(z)} on -1<Imz<O0. Since {Cpn} is uniformiy
‘bounded, the sequence {_fn(z)}n is uniformly bounded on -1 < Im z < O.
In particular, the sequence is a normal family on -1<TImz<O.

Thus, by passing to a subsequence, we may assume that Fn(z) converges
to £(z) = lim fn(z) uniformly on each compact set in -1 < Im z < O.

Also f(z) 1s uniformly bounded on -1 < Im z <0 and has the boundary

values:
%
£(t) = o, (x(Dw : DPy )0, (¥)), t eR
N ) QO
£t - 1) = ¢((Dw : Dq)o)’cct (v)x), t eR.

Since f(z) 4is analytic on- -1< Im z < O, +the second half of

v

31



Theorem 1l.4.4 yields that (Dw : qu)t = (Dy : D¢b)t’ t € R, that is,

w = . (Q.E.D.)

We remark that in this theorem the additional assumption (which
is stronger than the one of Theorem 1.4.5) is indispensable. In fact,
let {qg} be an increasing sequence of faithful functionals in ﬂ{;
such that w = limn ¢h gives rise to a faithful semi-finite normal
weight. Then, {(DCPn : qu)t}n converges to {(Dw qu)t}n in

*
the strong -topology, [7].
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Chapter II Canonical Standard Form

This chapter is devoted to a constuuction of the canonical
standard form from a given voﬁ Neumann algebra.

Throughout the chapter, we fix an abstract von Neumann algebra m
We begin with constructing a Hilbert space by making use of Radon-
Nikodym cocycles, studied in Chapter I. The construction is carried
out without fixing a distinguished functional on M so that this
Hilbert space is canonica;ly attached to M. We then let the algebra
M act on this canonical Hilbert space in a canonical fashion to
obtain the canonical standard form.

Although our construction is canonical, it is convenient to
consider a fixed faithful Py € m; for proofs (see Remark 2.2.15).
We shall fix it throughout the chaptér and denote the standard form
constructed from qb, via the G.N.S.-construction, by
(h = no(m),ﬂo,Jo,Pg), [17]. Namely, (no,ﬁo) is the cyclic represen-
tation of M induced by ¢b, and ﬁo is the cyclic and sepérating
vector in ¥, for M = (m) satisfying @, =‘wgo. The natural
cone Pg is (& /Hn &O)' as usual, where Aﬁ is the modular
operator satisfylng J ﬁ xgo =X &o, x e I, gor arbitrary @ ¢ HG;

§

we shall denote a unique implementing vector in PO

for 9 by gcp,

that is, O = e
Q

§.1 Canonical Hilbert Space.
In this section, we shall construct a Hilbert space from M

in a canenical fashion.
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We begin With defining new addition and scalar multiplication
(by positive numbers) on the positive part m; of the predual.
When we deal with these new operations s, We write '\/— P instead of Q,

Qe m’;,. to avoid confusion.

Definition 2.1.1. For @,% € Mf and A> 0, we write

(1) '\/—q>+'\/_¢=~/'X, where X ¢ mf

» is given by
X(x) = (9+ ¥)(a%m), xem,
a=(D9: DO+ ¢))_i/2 + (D¥ ¢ D(9 + ¢))_i/2 .
(11) Ao = A2q,

Remark 2.1.2. In the above definition, by cut‘ﬁing the algebra
by the support of ¢ + ¢, we may assume that @ + ¥ is faithful.
Since Q¥ < P+ ¢, the above a €M makes sense by Corollary 1. 4. 3.
We also remark that ~[ Q + '\/- V= '\/m if @ and ¢ have mutually

orthogonal supports.

The following can be considered as a non-commutative Hellinger

integral, which will be explained shortly.

Definition 2.1.3. For @,¢ e If, we write

WolN¥) = (o + ¥)((DV : D(P + w)-)*fi/?_(ncp F (P

Remark 2.1.4. We examine the above (.|.) in the commutative
case, M = L (R;dx). In this case, mj; is realized as Ll(R;d.x)+,
the set of all positive Ll-functions. For @ = £(x) (J.f(x)dx)

®
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and ¢ = g(x) (f-g(x)ix) in Ll(lR;d.x)_l_, the Radon-Nikodym cocycles
are given by |

it it
£(x)7/(2(x) + e(x))™,

g(x)**/(2(x) + e(x))*

(D9 : D(P+ ¥)),

(Db : D(@+ ¥)),

which yields that

(09 = D(¥ + ¥))_; o =NE(x)/WE(x) + &(x) ,

(04 2 (3 + )y =Valx)/ VEG) + g(x) -

They are exactly the square roots of measure theoretic Radon-Nikodym

derlivatives, and one gets

Wolvy) = [ —=E&) g(x)
voNP(x) + glx) NE(x) + g(x)

(£(x) + a(x))ax

which is known as the Hellinger integral between two finite measures
f(x)ax and g(x)ix (see [23]).
The next lemms is important for technical reasons as well as

motivation for the above definitions.

Lemma 2.1.5. ILet @, ¥ be elements in m;. We assume in addi-
tion that ¢ is faithful and @ < £y with some 4 2 0. Then
(Do : D\]:)_i/ggw is exactly gcp. We also have p(DO : Dq;)__i/‘2 =

(Do : Dq;)_i/e, where p is the support projection of .
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Proof. By the uniqueness of a standard form (up to unitary
equiva.lence), [17], we may assume ¢ = qJO. We consider two Ho-valued

functions fl, f2 given respectively by

£1(z) = (D9 : D9,) &,
£,(2) = Aéébgo .

By Corollary 1l.4t.3, fl(z) is bounded and continuous (resp. analytic)
on -5<Imz<0 (resp. -1<1Imz<0) The same is true for

1
fe(z) because £, belongs to the domain of 'Aczpcpo'

However, for

z =1t € R we have

, it it
fl(t) = (DCP . Dq)o)tgo = AWOACPO go
it
= S fo = H(8)

so that two functions are identical by the uniqueness of analytic

» one gets

o}

continuation. In particular, with z = -
3
(Do : Dcpo)_i/ago = AcPcpogo = gcp .

The final statement is obvious because p(D® : DCPO),C = (DO : DCPO),c

due to Lemma 1.3.3,(i). (Q.E.D. )

By making use of the standard form (m,HO,J O,Poh), which we

fixed at the beginning, we consider the bijection

E:CPem;r-»gcp=E(CP)ePOh.

Lemma 2.1.6. The bijection & preserves addition and écalor

1)
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multiplication (by positive numbers), when we equip mj; with the new
operations introduced in Definition 2.1.1l. In other words, the map

Nom E(9) preserves addition and scalor multiplications.

Proof. When '\/—CP+~/_¢ =~/_X, X = (9 + q;)(a.*xa), xeM, as in

Definition 2.1.1,(i), we have

X(x) = (Xaécpg-llllagcp;-lb) .

The previous lemma yields:

2ty = (D9 : D(P + V) 1 o8y + (Db 2 D(y + )1 ooy

qu‘l' gq’ H

so that X(x) = (x(&cp-t- gw)lgcﬁ iw), that is, 8(X) = & =
gcp*' &w = 8(9) + E(¢) since ﬁcp-l- élll belongs to Poh.

Also, for A > 0, we compute

Molx) = R(xtlen) = (x(re)Ing,)

so that

S(°0) = A&(9) . (Q.E.D. )

The following result is immediate because we have the above lemms

and the corresponding properties are all true in Pohz

Corollary 2.1.7. For @,¢,X em; and A,u >0, we have
(1) No+v¥ =¥ + Vo,
(11) Vo +~o =+o,
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(1i1) No+Vi) +VX =No + Wy + ~%),
(iv) ~o R =N +WX if and only if o = 4y,
(v) o~No =+o,
(vi) (M) Vo= Auo),
(vii) AN + V) =ao + ANy,
In other words, M. equipped with thé new operations is a commutative

semi-group with the cancellation law.

Next we consider the non-commutative Hellinger integral given in
Definition 2.1.3. Many properties, known for the classical Hellinger

integral, [22], remain valid in our non-commutative situation.

Lemma 2.1.8. The non-commutative Hellinger integral enjoys the
following properties:
(1) (+]) is a symmetric bilinear form on m;, equipped with
the new structure, which takes positive values. |
(1) For @4 e W%, one gets NolWy) = 0 if and only if o
and ¢ have mutually orthogonal supports. In particular,

WaVo) = 0 if and only 1f 9 = O.

Proof. Since we compute

WelV)

]

(24 9)((DF = Do+ )7 (09 2 D(D+ 1)), )

((D9 : D(9 + ‘lr))._i/eicpwl(w : D(P + ‘l’))-i/agqu)

(écplgq;) (Lemma 2.1.5) ,

(1) follows from Lemma 2.1.6 and the self-duality of Pg.

For (ii), it suffices to show that (gcplgq,) = 0 if and only if

»
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® and § have mutually orthogonal supports. First, we assume that
® and ¢ have support projections p, q respectively and P Llaq.

Then, by the last statement of Lemms 2.1.5, we conclude that

o)

(@ + (¥ = 2o+ 1)), Lap(00 : D(o + )y )

=0.

Conversely, we assume that (gQIgw) = 0. It follows from Theorem 4,
[2], the projection onto [m=g¢] and the one onto Unrgw] are
mutually orthogonal, that is, @ and ¥ have mutually orthogonal

supports. . (Q.E.D.)

—

The above proof shows that, through the bijection & between Pg
and m; (equipped with the new structure), the non-commutative
Hellinger integral (-|-) corresponds exactly to the inner product
‘of the space ﬂo.

By Corollary 2.1.7, m; equipped with.the new structure is a
commutative semi-group with the cancellation law. From this semi-
group we obtain the real vector space in the usual way, which we shall

denote by (Hm)sa. Namely, (Hm = m; X m;/~ is the set of all

)sa
equivalence classes be;f@] of pairs QJH%VG&) and the equivalence

relation ~ 1is determined by

N y) ~ No,Wy,) if and only if Vo + 4y, =Vo, +4u .

1

Furthermore, since this equivalence relation is compatible with the
new structures on m;, (Hm)sa is a real vector space by the following

(well-defined) notion of addition and scalor multiplication (by real

»
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numbers ):

Mo Ne, ]+ Mo, Vi1= Mo, + Voo, + Vi

1 2 2
AMVoN§] = [MNo,W4] for A0,

Mol = [(-A) Vi, (-M) VO] for A<o .

We now consider the\mép: No e m;.~ Ef&go] € (um)sa' Clearly,
this is injective and preserves the operations. We imbedd m; into
(Hm)sa as a positive cone. We shall denote the image of this
imbedding by (Hm)+ and denote Efﬁgo] simply by ~q. Since, for

¢ e Mt, we calculate
s %9

NoN¥] = No,0] + [oN¥]
N®,0] + (-1)Ny,0]

‘\/—CP + ("l) '\/_‘l’ ’

il

we shall write JHJ-'JE instead of Efﬁth] for convenience.

Since any element in (um can be written as a difference of

)sa

two elements in the positive cone (ﬁm)+, we introduce a function
(1) on (4)__ x 4 ) . by
oy - Ni -Vv) = o Vi) - (o Vyy) - 6o Nw)
+ Gf%;hﬂ@;).

One can easily check that this is well-defined by using Lemma 2.1.8

().

b

Theorem 2.1.9. The above (-

*) on (Hm)sa X (Hm>sa is

ko



actually an inner product on the real vector space (Hm)sa, and
(um)sa is a real Hilbert space under this inner product. Also,

(Hm)+ is a self-dual positive cone in (Hm)sa'

Proof. The bijection & from M. (equipped with the new
operations) onto Pg naturally extends to a bijective linear mapping
from (Jim)sa onto (Ho)sa, which we shall dencte by = again.
Here, (HO)sa is a real Hilbert space consisting of all fixed points

, - . §
of J,. From the construction, u((Hm)+) is exactly P

As remarked after the proof of Lemma 2.1.8, the bilinear form
(«]+) on (ﬁm)+ (= m;) corresponds exactly to the inner product
- restricted to Pg through E. Thus, the function (-|.) on
(Jim)Sa X (Jim)sa Jjust introduced corresponds exactly to the inner

~

product on HO through the bijective linear mapping E from (Hm)Sa

onto (uo)sa. In other words, Z gives rise to a isomorphism from

4 -
((ﬁo)sa, P (+]+) = the inner product on (HO)Sa) onto
((Hm)sa,(ﬁm)+,(- +)). Thus, the theorem follows from the corresponding
facts in the real Hilbert space (ﬁo)sa. (Q.E.D. )

Definition 2.1.10. ILet Hm be the complexification of the

above real Hilbert space (Hm Since the complex Hilbert space Hm

)sa'\
is obtained from M in a canonical fashion, we call it the canonical
Hilbert space (attached to M). Clearly, (Jim)+ is again imbedded
in Hm as a self-dual positive cone, and any element in Hm can be
written as & linear combination of four elemehts in the cone (ﬂm)+.
We denote the unitary involution of Hm determined by the complex
structure by Jﬁ' Namely3 'Jm is given by

v
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Jm(n + lg) =1 - i‘:’ 6 e (Hm)sa .

We remark that 5 from (Jim)sa onto (Jio)sa naturally extends
to a surjective isometry from Hm onto 3:10, under which the pair
((Jiln)+,Jm) corresponds to (POh,JO).

Before proceeding further, we examine a functorial property of
the correspondence: M Jim et N be an abstract von Neumann
algebra and 6 be a normal ¥*-homomorphism from M onto h. It is
known that there exists a central projection P such that 6 wvanishes
on (1 -p)h and 6 gives rise to a normel *-isomorphism from ph
onto N. Thus, henceforth we shall deal with only normal *-isomorphisms

whenever we consider functorial properties of our construction.

Proposition 2.1.11., Let h be an abstract von Neumann algebra
and 6 be a normal *-isomorphism from M onto h. Then 6 naturally .
induces a surjective isometry g from Jih onto Jim, which maps
(Jih)+ onto (ﬂm)+ In pa.rtlcula:t", 4y intertwines J, and Jy.

Proof. The map b, : Pe Ner= P°6 ¢ m* gives rise to a
surjective isometry from h* onto m*. Furthermore, as 6 being
a *-isomorphism, 9*(h;) = m;..

For @, e Nt (4 faithful), one obtains
-1
(D(6,®) : D(6,¥)), = 6((D9 : D¥),) .

In fact, this follows from the second half of Theorem 1.4.4 because
e-l((DQJ : D\Lr)t) satisfies the relative K.M.S.-condition for 8.9

and 6 ¥. Therefore, whenever @< £¢, one obtains

Lo



(2.1.1)  (D(0,9) : D(044))_y /5 = &7H(DO : D4)_s ) 5

which guarantees that the map 6 x Trom h; onto m; preserves the
operations on both m;: and h; introduced in Definition 2.1.1. Thus,
through the construction of Jim and Zﬂh, 6, extends to a bijegtive
linear mapping ug from ¥  onto M, and clearly ue((Hm)_'.) =
(34,), -

The above (2.1.1) also implies that 8, pDreserves the non-
commutative Hellinger integral on h:_ and m;. Thus, the above u

e
is an isometry. (Q.E.D.)

$.2 Canonical Standard Form.

In the previous section, we gave a construction of the canonical
Hilbert space M. (as we;l as (Jim)+ and Jm). In this section we
let M aect on llm canonically to obtain the canonical standard
form (m’ﬁm:Jm3(Hm)+)'

For the moment, we fix ¢ ¢ m; and X,y € M. By considering
the reduced von Neumann algebra mp by the support projection p
of ¢, we may assume that @ is faithful and gives rise to the
modular automorphism 0'2), t €eR, on M. We define the function

X , * *
f;)’ (t) = Q(cfi(x)x yxcép(x ))» teR,

which enjoys the following property:

Lemma 2.2.1. The function f;’x extends to a function f?’x(z)
which is bounded and continuous (resp. analytic) on -2<Imz<O0

(resp. -3 < Im z < 0).
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Proof. If we represent M on Jio, we compute

£2%(t) = ( 0% (x)x 0] (x*)écpl €p)

CEOHCIEMECNEWEIN

it _* -it_*
(yxAcp x iq)lecpl X

) -

We consider two llo-valued functions:

i *
Z - A}ZX €¢ s

P
-iz *
z.-»Aq) xgq).

% L
Since x gq; belongs to the domain of Acap’ the former is bounded and
bountinucus (resp. analytic) on 5<Imz <0 (resp. -4 < Imz < 0),
while the latter is bounded and continuous (resp. anti-analytic) on
-2<Imz<0 (resp. -1<1Imz<O0). Thus, the function:
iz_* -iz_*
Z (yxAcp X écpleq) x gcp)

is exactly the desired extension of f;)’x on -3<1Imz < 0. (Q.E.D.)
As an easy consequence of the proof, we have:

Corollary 2.2.2. The map: y e - f;)’x

(- 5‘-) is a positive

normal linear functiomal on M.

Proof, Using the same notations as in the previous proof, we

hawve
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25 1) = (e e )
= (I I o o 1T 2T € )

= (v) . (Q.E.D. )
XJOXJOQQ

Definition 2.2.3. Let p(x)P be a positive normal linear

functional on M obtained in the above corollary, that is,
(e(x)o)(y) = f;P’x(- ) xnyeh, oent.

The map p(x) : @ e‘m;.é p(x)p e m; enjoys the following

properties:

Proposition 2.2.4. The map p(x) preserves the addition and
scalor multiplication (by positive numbers) given in Definition 2.1.1,
that is, p(x) : Vo e (), ~e(x)9 ¢ (4)  is linear. Thus, it

+ + .
extends uniquely to a linear mapping from Hm into itself, which we
“denote by p(x) again. The linear operator p(x) on ¥, is bounded

and the map p : x e M p(x) ¢ S(Hm) is multiplicative.

Proof. The proof of Corollary 2.2.2 shows that, through the iso-
metry from ﬁm onto uo, P(x) corresponds to the linear operator
xJOxJO since xJoxJogm is a unigue implementing vector for
p(x)p ¢ m; in Pg. Since xJyxJy 1s certainly a bounded operator
on ¥, P(x) belongs to S(Hm). Also p is multiplicative because

we compute, for x,y e I,

(xJOxJO)(yJOyJO) = xyJ XyJy . (Q.E.D. )

v

b5



For x ¢ S(ﬁm), the exponential exp x is given by

Clearly, the exponential function enjgys the following properties:
lexp x|| < expllx| ,
(exp x)(exp ¥) = exp(x + y) if xy = yx .
It follows from the above lemma that the map:
t € R - p(exp(tx)) ¢ £(ﬁm)
gives rise to a one parameter group of operators in S(Hm).

Lemma 2.2.5. The above one parameter group is uniformly

continuous so that it admits a bounded infinitesimal generator.

Proof. Through &, p(exp(tx)) corresponds to

exp(tx)JOexp(tx)JO as we have already seen. Since J. is a unitary

0

involution, one computes
ot 1l .nn
Joexp(tx)J'o = J, % T B

p 1l .n n
nzé Z? k (JoxJO)

exp(tJoxJo).

Since JOxJO is in M, we conclude that

v
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exp(tx)JOexp(tx)Jo = exp(t(x + JOXJO)) .

Therefore, the infinitesimal generator is x + J XJ 0. (Q.E.D. )

0

Definition 2.2.6. We denote the infinitesimal generator of

the one parameter group: t & R~ p(exp(tx)) ¢ S(llm) by 8(x).

Lemma 2.2.7. The map 6 : x € Mwm 6(x) ¢ £(Hm) is a real Lie

algebra homomorphism, namely, for X,y el and A\ ¢ R, we have

5(x)8(y) - 8(3)5(x) = 6(xy - yx) and AS(x) = 6(rx).

Proof. The result follows from the fact that o is multipli-
cative., However, we have already known that 8(x) corresponds to
X+ dJ OXJ o through the isometry Z from Hm onto Jio so that we

show it by direct computation.

AX + Jo(kx)Jo = N+ M xJ, (since A is real)

Mz + J'OXJO) R

(x + TxI )y + T¥33) = (7 + Ty ) (x + Jo¥ )

Xy + %y + X oyT + T Iy - (yx + TVEIy + ¥ %Iy + JyJox)

(xy - yx) + Jo(xy - y‘x)Jo . (since x,y ey T¥T s I 9T, & M )

(Q.E.D.)
Now we are at the position to define a representation of M

on the canonical Hilbert space ﬂm

Definition 2.2.8. For each x e M, we set

m(x) = —é—(é(x) - 18(ix))
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m(x) = 3(8(x") + 18(1x7)) .

Theorem 2.2.9. The above m (resp. m ) gives rise to a faith-

ful normal representation (resp. anti-representation) of M on the
canonical Hilbert space Hm Purthermore,  the gquadruple

(n(m),lim,Jm, (Hm)_l_) is a standard form and err(x)Jm = (X)*

Proof. Through the isometry = from ¥, onto Hos m(x)

corresponds to

3l(x + Tpug) - 1(ix + 1)) = $(x + TxT, + x - TI) = x

while m(x) corresponds to

* * * * * * * *
2 (x" + Jox JO) + i(ix” + Joix JO)} Hx + JX Jg = % + J % JO)

n

ey
]
oy

Thus, the isometry & sends (n(m),Hm,Jm, (Ztim)_,_) exactly to

i
(m’HO’JO’PO)' (Q- Ec Do )

Definition 2.2.10. By identifying M with mM) in the

theorem, we obtain the standard form (m,ﬂm,Jm, (Jim)+), which we

call the canonical standard form (associated with mM).

Remark 2.2.11. As soon as a functional Pe m; is given, a

"vector" NQ in (Hm)+ is assigned. From our construction it is a
unique implementing vector in the self-dual cone (Hm )+ for @, +that
is, ¢(x) = (x '\/—CP‘\/—QD), x eM. In particular, whenever two @,y e m;:

(¢ faithful) are glven, one can construct the relative modular

*
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operator A
pe Py

in Chapter I. This operator is attached to P, ¥ canonically so that

as an operator on the canonical Hilbert space Hm as

we shall make use of these "canonical" relative modular operators to

construct canonical I ~spaces in the next chapter.

Remark 2.2.12. It is also possible to construct a relative

modular operator A(Pl!t on Hm from given two semi-finite normal

weights @, ¢ on M (¢ faithful). Let j be the anti-automorphism
*

from M (acting on H.) onto M' given by j(x) = I I X € M.

By using notion of a spatial derivative, [7], a relative modular

operator AW is given by ACP‘II = dCP/d(xlx °j) as an operator on

the canonical Hilbert space Hm

We now consider a functorial property. When a normal ¥-isomorphism
& from M onto h is given, 6 naturally induces the surjective
isometry u, from ¥ onto B ( ue((lih)+) = (Jim)+) by Proposition

2.1.11.

Proposition 2.2.13. The surjective isometry g in Proposition

* *
2.1.11 satisfies 6(x) = UgXug, X €M, that is, 6 = Adu,,.

Proof. For @ e, with ¢ = 60,9 ¢ My, we know, [41],
6 cg 0™t = cfcp, t € R. The function f introduced at the beginning
of this section satisfies (x,y e M)

1 %(e) < p(o!, (M pat(:)

%6 (¥, (x™))e(x)e(y)e(x)6(cf(x")))
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(0%, (0(x) e (x)o(x)e(x)ad(6(x)%))

HERON

Thus, we have

(6,(P(8(x))@))(¥) = (o, (8(x))®)(6(y))

By )

¥,x
£27(¢)

(9 (2)0)(7)

(A (=)0, @) (¥) ,

where qn and ph should be understood in obvious ways. Since ph
. +
and @, are linear and m; = (Jrlm)+ and N = (Hh)+ span ¥ and
K respectively, ve have uye°p (6(x)) = O (x) °uy, x €M, that is,
. % *
ph(G(x)) = ueqn(x)ue. We thus conclude that uen-m(x)u6 = nh(e(x)),

x e, that is, 0 = Adu_;. (Q.E.D. )

Remark 2.2.1k. Proposition 2.1.11, 2.2.13 assert that, when a

\ normal *-isomorphism & from M onto h is given, we have the

surjective isometry u, from ¥, onto Ho with ue((Hn)+) = (Hm)+
*

and 6 = Adue. Therefore, this g is a canonical implementation

for 6, [2], [6], [17]. We thus showed that, for a given 6, there

exists the canonical implementation for 6.

Remark 2.2.15. Our construction of the canonical standard form

looks to require the existence of a faithful normal state ¢b on M.

But this restriction is superficial. Using the fact that any countable

®
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family of o-finite projections is domipated by a @-finite projection,
we can remove the assumption on the existence of a faithful normal
state. Namely, if {pL} is an increasing net of g-finite projections
with limL pL = 1, 'then we have the natural inductive system ZH“\pL}

of the canonical Hilbert spaces associated with mpL. Then the

canonical Hilbert space Jim associated with M is defined by

¥ o= lin Hmpb .

It 1s also possible to let M act on Jim canonically and to cobtain

the canonical standard form (m,Jim,Jm, (ﬂm)+) in this way.
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Chapter III Canonical LP-spaces

In this chapter, we give a construction of canonical Lp-spaces
from a given von Neumann algebra.

Throughout the chapter, we fix an arbitrary abstract von Neumann
algebra M (except in §3.1). We havé already had the canonical
standard form (m,ﬁm,Jm,(ﬂm)+). Furthermore, whenever a pair of two
elements in m; is given, we have the "canonical" relative modular
operator on Hm. (See Remark 2.2.11.) We shall construct Lp-spaces
by using these relative modular operators (and polar decompositions
of elements in m;) 50 that our Lp-spaces will be constructed in a

canonical fashion.

§3.1 Preliminaries.
In this section, we collect some standard results on (unbounded )
measurable operators, [31], [39], [40], crossed products and dual

weights [10], [19], [42], and Haagerup's Lp-spaces, [20].

Measurable Operators

Let R be a semi-finite von Neumann algebra on a Hilbert space
¥ with a faithful semi-finite normal trace T. The following concept,
whose origin is von Neumann's T-theorem (see also [15], [39]), is one

of the most important concepts in the theory of operator algebras:

Definition 3.1.1 ([31], [39]). Let T be a closed operator

affiliated with R, which is not pnecessarily bounded. We say that

T is t-measurable if there exists a sequence {pn} of projections

2



in R satisfying
(1) ”TPn“‘< © for each n,
(11) (1 - pn) is finite for each n,

(1i1) bo) 1 as n=-ow,
n .
The following criterion due to Nelson is useful:

Proposition 3.1.2 ([31]). ILet T be a closed operator affiliated

with ®, with the polar decomposition T = u|T|, and the spectral

decomposition |T| = fz Ade(A). The operator T is t-measurable

if and only if T(i - e(A)) <o for A sufficiently large and u ¢ R.
let T and S be ¢-measurable operators. Their adjoint operators

T* and S* are t-measurable. Furthermore, their algebraic sum

T+ 8 (with 8(T + S) = 8(T) n 8(S)) and their algebraic product

TS (with #(TS) = {£ e 8(S); SE e 9(T)}) are known to be densely

defined and closable, and the closures (T + S)” and (TS)™ are

again t-measurable. In the literature, (T + S)” and (TS)™ are

called the strong sum and strong product respectively. We shall

simply write” T+ S, IS respectively by omitting the closure signs

which will never make confusion due to the following:

Theorem 3.1.3 [39]. (i) The set of all t-measurable operators

is a *-algebra relative to the above mentioned operations.
(ii) If t-measurable operators T and S satisfy T C S, then

T and S are identical.

It is convenient to equip the set of all t-measursble operators

with the following topology:
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Definition 3.1.% ([31], [40]). The measure topology (on the set

of all t-measurable oPei'ators) is a linear topology (not necessarily
locally convex) whose fundamental system of neighborhoods around O

is given by

6_ s = {T-measurable operator T; [|Tp| < e,

€0
(1 - p) < 8 with some projection p e R}

where g, & are arbitrary positive numbers.

It is known that the set of all t-measurable operators is complete

- under the measure topology.

Crossed Products

Let (M,H,J,PR l‘) be a standard form. Although crossed products
are defined for a continuous automorphism action of a locally compact
group on M, we shall use the ones given by modular automorphism
groups. Let {cto_] teR be the modular automorphism group associated
with a distinguished faithful CPO € m;. Objects which we shall consider
shortly do not depend on a choice of CPO we shall simply write O',G,
t € R, & without indicating CPO, unless any confusion occurs (see

Theorem 3.1.8).

Definition 3.1.5 ([42]). Let X be the tensor product

HQ® LE(R) of H# and the Hilbert space L2(TR) consisting of all
square integrable functions on R with respect to the Lebesgue
measure dx. We sometimes identify ¥ with the Hilbert space

LE(R;H) consisting of all H-valued square integrable functions. Iet

»
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7™ be the faithful normal representation of M on X given by
mx) =x®1, x¢ M, where 1 denotes the identity operator on

I?(R). We also define a continuous unitary representation u (= g, )
. 0
of R on ¥ given by u(t) = a" @ AMt) (= akt

%

Here, A(t) is the left translation on I?(R), that is,

® Mt)), t €R.

(A(t)f)(s) =f(s -t), f e I?(R), tys € R, The crossed product

i

= (M x o R) is the von Neumann algebra on X generated by m(lM)
0

c
and u(R).

Remark 3.1.6. (i) Iet L be the unique positive self-adjoint

operator on I?(R) satisfying A(t) = th, t e R, (Formally, L
is exp (%- g%) .) We then remark that

u(t) = AT @ 1 = (a @ 1)t

so that A ® L is (the exponential of ) the infinitesimal generator
of the unitary representation u(t). Here, we also remark that
tensor products of two closed operators are treated nicely in [38].

(i1) Our definition of the crossed product R is slightly
different from the usual one, [42]. However, they are spatially
isomorphic to each other via a unitary operator w on ¥ given
vy (ve)(t) = alPe(t), £ ¢ B(R;H).

(i1i) The algebra M can be imbedded into R by m : x ¢ M =
m(x) = x® 1 ¢ R, vhich is exactly an amplification.

(iv) Two representations = and u enjoy the following

covariance relation:
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ct(x) =»u(t)xu(t)*, teR, xeml
(or m(a,(x)) = u(t)n(x)u(t)”) .
We consider a unitary representation v of R on X given by
(v(s)£)(t) = e™¥%2(t), £ e IB(R;M), t,5 ¢R .
S;raight-forward calculation yields
v(s)u(t)v(s)* = e™u(s)

v(s)n(x)v(s)" = n(x) .

Definition 3.1.7 ([42]). By the above two relations, Adv(s),

s € R, gives rise to a one parameter automorphism group {es}seR

?
of R on R, which we call the dual action (of @ =g O).

It is known that I (imbedded in R) 1is exactly the fixed point
subalgebra R% o R under the dual action, [10], [42]. The
following result due to Takesaki follows from the existence of Radon-

Nikodym cocycles.

Theorem 3.1.8 ([42]). The pair (R,6) does not depend on a

choice of Py 1n the sense that for any two faithful P ¥y € m;,
there exists a spatial isomorphism from M x R onto I x " R

®
0 0
which intertwines the respective dual actiong. o

Dual. Weights

We shall deal with only semi-finite normsl weights on a von

»
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Neumann algebra M, and denote the set of all such welghts simply
by P(M).

Although the theory of dual weights was initiated by [42], we
shall take an approach due to Haagerup, [18], [19]. For x ¢ 8+, we
shall consider an integral 5; fw Gs(x)dx taking a value in the

A

extended positive part m4 of M, [18]. We notice that the map:

1 [ A
R o = = |
x el e(x) = Gs(x)ds € m;

-0

gives rise to a (faithful semi-finite normal ) operator valued weight

from ® onto M, [18].

Definition 3.1.9 ([10], [19], [42]). For a weight ¢ e P(Mm),

we denote a weight @eg ¢ P(R) by Eb, and call it the dual weight

of O,

We remark that, even if @ belongs to m;, the dual weight 5
‘ ~
on R is infinite, that is, O(1) = «.

We consider the dual weight &b of the distinguished ¢b € m:,
which was used to define the crossed product R. The modular auto-

N

morphism group determined by (R,¢b) is exactly Ad(u(t)), t ¢R,
with u(t) = (A ® L)lt. (Remark 3.1.6,(i)) In particular, since

it is inner, R is semi-finite, [34], [41].

Definition 3.1.10. We denote the faithful weight &30((A ® L)‘l.)

on ® ([34]) by <. Then, by the above remark, T is a faithful

(semi-finite normal) trace on R. For any @ ¢ P(M), we denote the

»
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Radon-Nikodym derivative d&V&T of the dual weight @ < P(R) with

respect to the trace 1 by hq? that is, hcp is a unique positive

self-adjoint operator affiliated with R satisfying @ = T(h¢')'

% I
Since Gs(u(t)) = v(s)u(t)v(s) = e lStu(t), that is,
GS(A ®L)=e"(A®L), and &b is invariant under 6, we conclude

that
ToO, = e "7, seR.
We also remark that

(=h_ )=4@®L(=4A_ ®L=n2 ®L).A

More generally, we have:

Lemma 3.1.1l. For each ¢ € P(M), we have

Proof. For t e R, we simply compute

it
h
¢

(D9 : D), = (DP : DR,) (DY, : Dr),

(D9 oe) = D@, e e))hy

(D(Pee) : D(@y06)) (4" & L) |

Since [18] and Remark 3.1.6,(ii) yield:

(D(@ee) : D(@yee)), = (DO : DRy )

(DP : Dch)JC ®1,
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we compute

il

(29 : Do) ® 1)(a™® & L)

(A;t A—lt ® l)(A}t ® th)
o
it it
Aﬁﬂb ® L

it | ‘
(A¢¢b ® L) . (Q.E.D.)

Lemme 3.1.12. The correspondence: Q@ w h¢ gives rise to a
bijection from P(M) onto the set of all positive self-adjoint

operators h affilisted with R satisfying 6_(h) = e™h, s ¢ R.

Proof. In the proof of the previous lemma, we observed that
it it 6
hy' = (Do : Dcpo)thO . Since (D9 : D¢b)t belongs to M = R°, one
gets, for each s ¢ R,

(D9 : D%,),6 (n2")

it
es(hCP )

-ist it
(Do : D¢b)te hy

-ist, it
= e h .
P

Conversely, assume that a positive self-adjoint operator h
affiliated with R satisfies 6_(h) = e™h. Then a weight ¢ = 7(h-)
on R is invariant under 6 so that ¢ = 5 with unique @ ¢ P(Mm)

(see [19]), that is, h = hQ. (Q.E.D.)

Haagerup's Lp-spaces

The following observation is crucial in Haagerup's theory of

Ip-spaces:
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Theorem 3.1.13 ([20]). Iet hcp = f; AdeQ(K) denote the spectral

decomposition of hq} ® e P(h), then
(1 - ecp(x)) = o(1)/A, A>O0.

Thus, by Proposition 3.1.2, hCP is T-measurable if and only if

P e m;.

Proof. By Theorem 3.1.8, we may assume that Q = ¢b, that is,

h@ = hO' Let f be a function in 8, the set of all rapidly de-

~
creasing functions on R. The Fourier transform f belongs to §
again, and, by making use of the expression log ho = f: log Ade(A),

we compute

F(1log hy) =L/:° F(log A)ae(n)

=fm<fw f(t)}\.itdt> de(n)

0 \Y = '

=fw f(t)(fco A.itde(}\.)> dt (Fubini's theorem)
=00 0] ‘

o]
=f f(t)hétdt ,
N =00

so that the Fourier inversion formula and the definition of the dual

weight EB yield, for each f ¢ §,

B(2(208 1)) = 9,(F(0)1) = F(0)g,(2)

<f°° f(t)dt>cpo(l) .

v
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Let {fn} be an increasing sequence of Positive functions in
. -t
8 such that llmn~a>fn(t) =g(t) = e X[log A,w)(t)’ where
X[log Ay) denotes the characteristic function of [log A,»). Since

we compute

Fol&(108 1)) = By(83X (5., ) (l0s b))

CACRE TN CI)

: ByngH(2 - e(n)))

(1 - e(A)) (see Definition 3.1.10) ,

A~
the first half of the proof, the normality of qb, and monotone

convergence theorem imply:

(1 - e(A))

lim Cpo(fn(log ho))

n—o

lim <f°° fn(t)dt> cpo(l)
<fmawu>%u>

Po(1)/A . (Q.E.D.)

]

This theorem means that one can regard the set of all t-measurable
operators h satisfying Gs(h) = e-sh, s € R, as a"copy" of My,
by identifying ¢ = u]@l (the polar decomposition) in m* with
uh|¢|. We also notice that this set has the natural linear structure

due to Theorem 3.1.3,(i).
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Definition 3.1.14 ([20]). For the above t-measursble k = u.h‘ 9|’

we set
tr(k) = [9](a) = 9(1) .
Obviously, +tr is a linear functiOna;.
Theorem 3.1.8 and the above definition yield the following:

Proposition 3.1.15. The triple (R,0,tr) does not depend on

the choice of Cpo.

Definition 3.1.16 ([20]). Let Lp(m;cpo), 0<p<w, be the

set of all t-measurable operators k (affiliated with R = M x ? R)

CTO

satisfying es(k) = e-S/Pk, s € R. On LqJ(m : cpo)-, we set

Il = Cen(ll®)Y/2.

By Proposition 3.1.15, the isomorphism class of the normed space
(LP(m; CPO)-’ “[Ip} does not depend on a choice of Py (Thus, in [18],
it was simply denoted by ® (m).) However, we shall write it in this
way to clarify which crossed product we are dealing with.

It follows from Theorem 3.1.3,(i) that LP(Mh; CPO) has the natural
linear structure and that we can freely multiply elements in different
spaces, namely hk € Lr(m_;cpo) if h e Lp(m;qJO) and k e Lq(m;QDO),
/p + 1/q9 = 1/r. Furthermore, {Ll(m;Cpo), ““1} is isomorphic to
M, from the construction so that L'-,L(m; CPO) is complete. (Woronowicz,
[45], also considered this space in a slightly different method. )

We now list some properties for later reference.
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Proposition 3.1.17 ([20]). Let h, k be positive (as operators )

elements in Ll(m;CPo). Then, the Banach space valued function:
z v n%k? ¢ Ll(m; CPO) is bounded and continuous (resp. analytic)

on 0<Rez<1l (resp. O<Rez<Ll).

We remark that this result and the next result are slightly

different forms of the relative K.M.S. condition (Theorem 1.4.4).

Proposition 3.1.18 ([20]). For h ¢ Lp(m_;cPo) and k e Lq(m;fpo),

/p+ 1/q = 1, we have tr(hk) = tr(kh).

This justifies the notation "tr." Finally, the completeness
of IP(m; Cpo) 1< p<w®, is a consequence of the following result and
the completeness of the set of all r-measurable operators under the

measure topology.

Proposition 3.1.19 ([20]. Let {kn} be a sequence in IP(; CPO),

1< p<w, such that [“kn“p} tends to 0 as n -w, then {kn}

converges to O in ‘the measure topology.

Proof. Since each kﬁ belongs to IP(m; CPO), the polar de-
composition has a form kn = unh';')ip with CPn € m; and the assumption
means that {Cpn} tends to O in the norm topology of m*. For a
given small g> 0, we can choose a positive number N such that
“cpn“ < 5p+l for nrz N. Let f°O° Aden(k) be the spectral decomposi-

tion of hcp .. . Then, the projections en(e:p), n>0N, in R satisfy
n

e e (2)] = “unhé/ Pen(EP)“ <e
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w1 -e () = B (meoren 3.1.13) ,
o

so that k_ e 6(ee), n >N ‘ (Q.E.D. )

§3.2 Homogeneous Operators.
Henceforth, we fix the canonical standard form (m,ﬁm,Jm, (%)_I_)
and the relative modular operators ACPCP are always the canonical
0
ones described in Remark 2.2.11.

These relative modular operators are (-1)-homogeneous and inte-

grable in the following sense:

Definition 3.2.1 ([7], [26]). Let T be a closed operator on

Jim whose polar decomposition is u]T!, and o <0 (for convenience).

We say that T is o-homogeneous (relative to ¢

O) if

(i) the phase part u belongs to M,
(ii) lTlltx Ilt, t ¢R, x* e, Here, o 1is the

modular automorphism group on M! determined by a faithful

C = (x)]

vector functional Cpb(x' ) = (x' '\/qJOI'J QJO).
A (-1)-homogeneous positive self-adjoint operator T is said to be

® -) integrable if ~N@. belongs to the domain of ~NT.
0~/ iZtegran.e 0 |

By considering the crossed product R =M x R, we obtain the
GCPO
following relationship between o-homogeneous operators on Jtlm and
the operators on lim ® L2(R ) which were considered in the last

part of the previous section:

Lemms 3.2.2. Let T = u.‘Tl be a closed operator on Hm .I:f‘

64



‘T is o-homogeneous, then h =T ® L™ is arfiliated with R and
satisfies es(h) = edsh, s € R. Conversely, every closed operator
h affiliated with R satisfying 6_(h) = e*®n, s ¢ R, arises in this
way. Furthermore, for the above T, the (-1)-homogeneous IT!-l/&

is integrable if and only if h=T® L% is T-measurable.

Proof. At first, we assume that T is @ -homogeneous, that is,

ueh and ITlitx' = q&t(x')ITlit. We notice

AitX'A-it = d-t (X‘) = (ITI-l/a)itX' (ITl—l/Q/)_i't ,
o Py = T

so that (lTl-lAy)ltA&}t = X, belongs to M =M. Thus, we compute
0

(|T|-1/oz ® 1)1t - (IT‘-l/oz)it @ it

1]

x A @ 1P o (ot @ 11%)

x b e R,

-1/ it it it

o ((|T| ® L)) = 6(x,h5") = x,0_(h]")
~-its, it
= xte ho

= e-its(lTl_l/y ® L)it, s eR.

Conversely, assume that h = v|h| satisfies es(h) = %%,
We then notice ©_(|n|) = ¢|n|, 6,(v) = v, so that v belongs
to the fixed point subalgebra RO = M. It follows from Lemma 3.1.11,
=4A 81T,
? = “op,
with

3.1.12, that there exists @ ¢ P(M) such that |h|'1/°’ =h

Thus, we conclude that h=v(a . QL) ? =vw?% 9L
: N P,

LY
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o -homogeneous w2,
o

Finally, the last statement follows from Theorem 3.1.13. (Q.E. D.)

Definition 3.2.3 ([6], [23]). For each O < p<w, the set of
all (-1/p)-homogeneous T = u|T| (relative to %) on M. with

(Cpb—) integrable ITIP is denoted by = IP(In; CP'O).

The proof of Lemma 3.2.2 shows that IP(h; cP'o) is isomorphic

to IPM;9) via TrT® /P, The next result is useful:

Proposition 3.2.% ([23])s (1) If S and T in LP(m;ch)

satisfy SCT, then S=T.

ry 1 p . L N
(ii) For T5Ty50005T, in I (m’q"o)’ T, + T, + + T is
densely-defined and closable, and the closure (Tl I ket Tn)-

belongs to Lp(m;’QJ'O). Furthermore, we have ((Tl + Ta)' + TB)" =
(Tl+ (T2 + T3) ).
. Py
(ii1) For T e L M; @), n = 1,2,...,m, with z‘r‘;___l 1/p, = 1/p,
T:LT.2 Tm is densely defined and closable, and the closure
(‘]Zl‘.]?2 Tm)- belongs to LP(h; CP'O). Furthermore, we have

((TlTe) T3) = (Tl(T2T3) ).
To prove this, the following observation is necessary:

Lemma 3.2.5. For a closed operator T on ﬁm, the domain of
the closed operator T ® Ll/P (on Ho® L2(R) = L2(R;ﬁm)) is exactly

the set of all § e Lg(lR;Jim) satisfying

JFOO eet/p”’T(C(t))“'?'dt <o .

-0

¥
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Proof. Iet & be the Fourier transformation from L2(R) onto
itself, and F = 1L ® F be the unitary operator from Jim ® Lg(]R)
onto itself. Since L = exp( %— é.i—t ), g*(T ® Ll/P):F = T @ E(p),
where E(p) is an operator on L2(R) given by (E(p)f)(t) = et/Pf(t),
teR, fe LE(R). We notice that € ¢ L2(R,'Hm)' belongs to the domain
of T® Ll/p if and only if [(T ® E(p))-ﬁ*g“ < », However, since
* * * : . . 2/
Fd =1®F and F is the inverse Fourier transformation on L (R),

we compute

Itz 2 2e)F*R = [ PR o)) lRas

-0

=L/wo eat/b”T(Q(t))“edt . (Q.E.D.)

Proof of Proposition 3.2.4 ([23]). (i) The assumption yields
S® Ll/p CT® Ll/P and both of S ® Ll/p, T® Ll/p are t-measurable
by lemma 3.2.2. Thus it follows from Theorem 3.1.3,(ii), that
S‘® Ll/p =T® Ll/P. For £ e §(T) and a characteristic function

€ Le(}R), £ ®X belongs to &(T ® Ll/P) = 8(s ® Ll/P)

‘X_ .
[0,1] [0,1]
by Lemma 3.2.5, that is,

1
f /25t |t < w
0

Thus, [S€] must be finite, that is, ¢ e 8(s).
(i1) Since each T, ® /P belongs to Lp(m;cp'o), the strong
sum T, ® P, T, ® Py T ® 1P belongs to P(m;91).

Clearly, for each i,
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8(; ® M) = {¢ « P(R,) f 5/, (g(0)lPas < )

C{¢ e L2(R;Hm) ¢ 6(t) e AQ(Ti) a.e. t € R} ,

sothat {{ e L2(R;Jim); 6(t) € 8(T,) 0 B(T,) N -+ 0 (T ) awe. t e R
is dense in I°(R;M,). We thus conclude ‘that 8(T,) N B(T,) 0 -ee
MTH) is dense in Hm The same argument also shows that

T*+ T 4 ee- + T: is densely defined, that is, T, + T  + e« + T,

1 2 1 2

is closable. Also T1®Ll/ +T ®L/P +T ® X/P _

(T1+T2+---+T) ® LM/P ana (T +T2+---+T) belongs to
I°(M; @) by Lemma 3.2.2.

We clearly have,

((Tl + Tg)‘ + TB)' ) (Tl + TE)' + T3 2 (Tl + T2) + T3

Ty o ) .
(Tl+ (T2+T3) ) 2 L+ (T2+T3) DT & (T2+ T3)
Since the associativity for algebraic sums of unbounded operators‘
holds, we have .
((Tl+T2) +T3) 27T, + I, + T3§(Tl+ (T2+T3) ),
- -5 - - -
(T + T,)" + T3) 2 (Ty + Ta +T3) S (T + (T, + 5)7)

so that (1) yields the desired associativity ((Tl + T2.)' + T3)‘
(Tl + (T2 + T3)-)-. - (1i1) can be proved by a similar argument as

(1). : , (9.E.D.)

By Proposition 3.2.4, even if we omit the closure signs of sums

and products of elements in LP(M; CP‘O), no confusion occurs. Thus,
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we shall omit them henceforth.
Now we are at the position to state the following result, which

will be crucial in our construction of canonical Lp-spaces.

Theorem 3.2.6. Let P> qé be elements in M, with the polar

decompositions P = uIIQﬁl, P, = u2|qb| respectively, and @, be
a faithful element in m;. Let uT be the polar decomposition of a

closed operator

1/p
u.A + u A
o e, X ey
Then, u belongs to m and there exists a unique X in m* with
AX Furthermore, u and X do not depend on a choice of qo.
It o and P, are positive, then Al/P + A 1/p is positive self-
1 ° 1 B%
adjoint. (0<p<w).
Proof. Since both of u AI@ IQ and A‘¢ IQ belong to
LP(m ¢6>’ uT belongs IP(m q%) and u belongs to m by Proposition
3.2.#,(1). Since ™ ® L is a T-measurable positive self-adjoint
operator (affiliated with R) satisfying GS(TP ®L)=e rPor,
s € R, it follows from Lemma 3.1.11, 3.1.12 that there exists a unique
+ . . 1/p : 1/p
X e m* satisfying ™ Q1 /P _ = hy = AX@ ® L, that is, Axéb
(Also, the above u is exactly the phast part of the polar
decomposition uhX/P_= u(AX/p /P).)_ In the above argument, u
and X do not depend on the choice of qb due to Proposition 3.1.15.

The last statement follows from Proposition 3.2.4,(1). (Q.E.D.)

By the same argument, the next result is also valid:

69



Proposition 3.2.7. ILet @ be an element in M, with the polar
decomposition ul CP[, and CPO be a faithful element in m; Let T
be the polar decomposition of (uA?{pf CPO)* * Then, u belongs to M
and there exists a unique X ¢ m’; with T = %J(.ép . Furthermore, u

and X do not depend on the choice of CPO, and X(1) = ICPI (l)

§3.3 Canonical Lp-spaces.

Based on the canonical standard form (m,Hm,Jm, (Hm)+) and the
"canonical" relative modular operators on Jim (Remark 2.2.11), we
shall give a construction of canonical IP -spaces, 1 < p <o, (L°°(m) =
m). A.Lthough our construction is canonic‘al, it is convenient for
proofs to have a distinguished faithful state CPO on M. (See Remark
2.2.15.)

We begin with introducing new addition, scalor multiplication
(by complex numbers), and *-structure on the predual M, for each
1< p<w, To avoid confusion, we write CPl/P instead of @ (e m*)

when we deal with the new operations.

Definition 3.3.1. For Cpl, CP2 € m* with the polar decompositions
i6
CPl = u.lqul] and CP2 = u2|Cp21, and a complex number A = e I?»l, we
set

(1) CPi_'/p + CP;'/p = (uX)l/P vhere uX e M, 1s given by

1/p 1/p 1/
A A =
B AR R S AN EANPY R4 CYNEAI

(see Theorem 3.2.6).

(1) A/% = (*)(| NP @ /2.
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(ii1) (¢§/p)* = (uX)l/P where uX e M, is given by

(ura%éii) “AX] ‘ (8ee Proposition 3.2.7)

Lemms 3.3.2. With the structures just defined, M, is actually

a vector space with an'involution.

Proof. If we replace |¢i| + iq&l by |¢b| in Definition

3.3.1,(i) and lqﬁl by |¢bl in Definition 3.3.1,(1ii), then the
definitions of m%/p + ¢é/P and (q&/P)* are not affected due to
Theorem 3.2.6 and Proposition 3.2.7. (Although we lose the fact that
m, with (1), (ii1), (iii) is a canonical object.)

We identify @ = u|@| with _uAééP e LP(m;q%). The addition (i)
and the *-operation (iii) clearly corrgspond to the usual addition
and the *-operation as operators, while the multiplication (i1)

corresponds to the usual scalar multiplication as operators because

the polar decomposition of K(uaéé?) is exactly
0

) = (e18u)at/P (Q.E.D.)

)|
7% NPlol,9,

|l @,

Definition 3.3.3. We denote the vector space with the involution
above described by IP(M)., We also introduce the non-negative function

on IPM) vy

19721, = (19 (1)*® = Jof/®.

To investigate the above ”‘“P (to be a norm), we need a sesqui-

linear form on IP(M) x Lim), 1/p+ 1/a =1, which will also be

v
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indispensable to establish the expected duality.
For @, = ui|¢&l’ i=1,2, as in Definition 3.3.1, Theorem 3.2.6

(p = 1/2) guarantees the existence of a unique ¢ ¢ m; satisfying

2 2 2
TAY A = A
Lol oy lelal ™ ol e l+lo] = Tl f+la,

We notice that

2 2 .
A < A = 1
lo Lo l+loyl =l lellr =22

that is, |cpi| < ¥(1), i = 1,2, in the sense of Connes-Takesaki,

(91

Definition 3.3.4. For Ql’qb el, as above, and 1/p + 1/q =

we set

<¢i/P’q§/Q> = ¢((Dl¢él : Dw) i/q l(D‘gll : DW)-i/p) .

Lemms 3.3.5. The above ( 5 ) 1is a sesquilinear form on
PMm) x 1i(m). Also, the definition of ( , ) does not depend on
the choice of ¢ whenever (quél : Dﬂr)_i/q and (Dl?ll : D'lr)_i/p

make sense.

Proof. If we identify LP(M) with IP(Mm; 9) (hence with

Ip(m;qb) as in the Proof of Lemma 3.3.2, then we compute

v(olg,| : o) Li/q% Ju (ol D¥)_1 p)
= tr(hib(h:;'q/)qlh&l/q)*u: ]I-c/pp|h‘;l/p)*)
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tr(hlcp |9 " hlq’l‘) (Proposition 3.1.18)

tr((u hlq, AE h,l{ppln s

so that ( , ) 1is sesquilinear. The above computation and Proposition

3.1.15 yield that ( , ) does not depend on the choice of ¢. (Q.E.D.)

Corollary 3.3.6.
(1) (92, l/Fp = |9 (1) for @ em,
(i1i) For CPn = unlfpnl, n=1,2, (@%‘_/2, ;'/2) is exactly

(ol + 1o, (D9, = Dl |+ |9,] ))fi/au;ul(Dlwll (o] + 19,100 )

Proof. (i) If P =9 =0= u|®|, then we can choose ¥ = | 9|
and (D|¢| : D|9| ), =1 forall =z eC so that (cpl/p,cpl/q) =
l9l(a"0) = 9l(2). (11) stmee [o| < o] + |al, n= 1,2, as
functionals, it follows from Corollary 1.4.3 that
(D|<Pn‘ : D(|q31| + ICP2|)_J._/2, n = 1,2, make sense. Thus, by

choosing ¢ = I‘CPl| + |Cp2|, we have the desired result. (Q.E.D.)
We also have the following expression:

Theorem 3.3.7. Assume that 1/p+ 1/a =1, p,qg >1, and

?, = unlcpnl em, (n=1,2). If the support of lcpll is majorized
by the one of |cp2|, then (CP}_/p,CP;/q‘> = f(-i/p). Here, £(z) is
the (relative K.M.S.) function, which is bounded and continuous (resp.

analytic) on -1<Imz <O (resp. -1<1Imz<O0), with boundary

values:
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2(6) = |, (i (dlo| : Do l),)s ¢ eR,

2t - 1) = [o, [((Dloy] : Dlgy|)ulu), teR.

Proof. By the proof of Lemmsa 3.3.5, we have already known
(/P ot/ Uy o tr(nt/) 0¥y /P ). On the other hand, the relative
107 ICP2| 2 1o, |

K.M.S.-function f(z) at z =t ¢ R 1is expressed by

L}

£(t) = |9, (a3u (2loy] = Doy ]),)

tr(h‘(p ll.l ] h‘CPllh|CP I)

= tr(u u hl Ihl-it
¢ el
which is the boundary value of the function: gz w tr(u u hlq) lh:lLCPlT
1
(see Proposition 3.1.17). Thus, we conclude that
1
£(-1/p) = tr(u u h‘ Ihl/q ) = (9P, gty | (Q.E.D.)

Remark 3.3.8. The above theorem means that the study of the
sesquilinear form ( , ) on IP(M) x Li(M) and the expected
duality is nothing but the analysis of the behavior of relative

K.M.S. -functions inside the strip.

For Cpl and q>2 in Theorem 3.3.7, the theorem of three lines

yields that

(@72, 5/ < exp

SN I

Log(sup [(t)]) + T log(sup |£(t - 1)]))
teR teR

< exp( 1oglllq> Hlm + longCP lllm )

QR
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= oyl o l/® - ley/?I e/,

which is exactly HOlder's inequality. To show the inequality for

arbitrary pairs ( > q>2), We prepare two lemmas.

Lemma 3.3.9. If {_Cpn}. is a monotone increasing sequence in m;:
satisfying sup_ “CPn“ < w®, then there exists a (unique) ¢ in m’;

such that | - Cpn“ -0 as n =-o,

Proof. Set @(x) = sup_ @n(x), X € M. By the O-weak semi-
continuity, @ is linear. The assumption yields ®(1) < «, that is,

Qe m‘;. Since Cpn < @, we conclude that

lo-oll=(p-9)1)-0 as n-w. (Q.E.D.)

Lemms 3.3.10. Let ICpnl, n= 1,2, be elements in My. Let Xn,

n=1,2,..., denote functionals in m; determined by

1 2 2 2

=A A = .
Ca 2o * Yo 1y = Sy
(See remarks before Definition 3.3.k.) Then, the sequence {Xn}

converges to |CP2| in norm.

Proof. Considering the tensor product with La, one gets
1 2 : 2 2 .
- A ® A ® = ® L t
( o lcpll,‘y L) + ( lCle,w L) (%(‘n,w ) ’ hat :LS,
1.2 2 2 ; 1/2 2 ‘
= H h = in L m; . Clearl converges
2 "oy * Mgy hxn ( Mms¥)) ¥ {hxn} g

to h‘T'q) ‘ in the measure topology (Definition 3.1.4). Furthermore,
) 2

the sequence is monotone decreasing. Since the square root operation

v
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is operator monotone ([33]), {hx } 1is a montone decreasing sequence,
n

that is,. {Xn} is a monotone decreasing sequence in m;-: so that

Lemma 3.3.9 guarantees the existence of a unique Q@ € m; such that
“Xn -9 -0 as n-w. It now suffices to show that P = |CP2|.

By Proposition 3.1.19, {hX } converges to hcp in the measure

topology so that {b.X } converges to h2 in the measure topology

Q
([31]). We thus conclud.e that h;2 ICP E

that is, =

(Q.E.D.)
Theorem 3.3.11 (H6lder's inequality). For any @, P, € m;,

and 1/p+ 1/qa =1, p,q > 1, we have

(2,9 < llo/Bl e

Proof, For the above Xn, n=1,2,..., clearly we have

1l

2 2 . 2 .
n—’zA' CPlH:’ Al CPZH’ EAan’ that is, |cpl| < nX (1) and

|q>2| < Xn(l). It follows from Lemme 3.3.5 that, for each n,

(97,0 = x ((Dlay] : PR EYRER DI
For each n, we consider the function
To(z) =% (gl = pe)T e (o] 2 ),

This is bounded and continuous (resp. analytic) on -1 <Imz<oO
(resp. -l1<Imz < 0) by the relative K.M.S. condition (or by

: ; b q
|q)l| San(;L)). Also, fn(-l/P) = (q:i'/ ,qJ;‘/ ). For each n, the

theorem of three lines yield the following estimate:
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I(qj}-/p’q);-/q>| < exp( %log(sup Ifn(t)l) + %log(sup |fn(t -1 .
teR teR

Since |<P2| < Xn(l), lfn(t)l is majorized by “Xn . On the other

hand, by Theorem l.k.l, we have
2206 - 1) = fo [((Dloy] = D) (Dle,| : l/q ca) s
s that £ (t - i) is majoriéed by [Hcpllll = llcplll. Hence,
(a2, /N | < oy 1M/ J1L/e

for each n. By Lemma 3.3.9, {”Xn”l/q} tends to IIszlll/q as n -

50 that we estimate

(/%51 < o P92 « 1921 I/, . (mn.)
The next result is a consequence of the theorem and Corollary
3.3.6,(ii).

Corollary 3.3.12. For each ¢ e, & /P “ is the supremum

of [(@/%,4/h)] over yem, eatisrying lwl/qnq (= 4% < 1,

and the supremum is actually attained. In rarticular, “ “p

(1<p<w) is a norm on IP(M).

Theorem 3.3,13. For each 1< p<w, {IPM),][:| } is a Banach

space. Among them, L (m) is exactly the predual M., while Lg(m)
is isomorphic to the canonical Hilbert space Jim In particular, M

acts on If (n).

Proof. The first statement is obtained from Proposition 3.1.19

LY
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and the completeness of the set of all T-measurable operator affiliated

with R =M x o R because “'“p on IP(M) corresponds to the
0

norm on IP(mgqb) introduced in Definition 3.1.16 when we identify
IP(M) with IP(m; ?,)-

We now consider the case p = 1. In this case, Definition 3.3.1
and 3.3.4 reduce to the usual linear structure and the predual norm

on M,. To show this, it is sufficient to prove
A A =
oyl loyl+rla] * 2alleyl+la,] = %, |o+l |
with ullcpll + uelcpal = uX, or by taking the tensor pr'oduct with I,
h + wh = .
oyl * gyl = x

However, this is obvious because m* is isomorphic to
1 . X
Mol + [o,1) (ir |of + || 1s faithrul).

Finally, we consider the case p = 2. Corollary 3.3.6,(ii) shows
that 1?(m)+ = {¢}/2;¢ e m;} ) c;f]‘/2 N e (Jim)+ is a surjective
isometry, which extends to a surjective isometry from 1?(m) onto

o ' | (Q.E.D.)

Due to the above theorem, it is reasonable to call IP(m),
lif'p < », the canonical Lp-space (associated with M). We now
consider g funcﬁorial property of the correspondence: »-ﬂm. It
follows from Proposition 2.1.1l, 2.2.12 that a normal ¥-isomorphism
from M onto another von Neumann algebra N naturally induces the

unitary operator u

g from M, onto ¥  satisfying ue((ﬂn)+) = (Bim)+
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*
and €@ = Adue, the canonical implementation of 6.
Lemma 3.3.14%. For o, e h; (¢ faithful), we have

A' X = LIA .
0,®:0,% = “670, ¢ g

Here 6.9 (resp. 6*11!) in m; means (e*qa)(x)=cp(9(x)) (resp.
(0,9)(x) = $(8(x))), x e M. o

Proof. For x e, X e h:;, one gets (6.X)(x) = X(6(x)) =

X(u xu,) = (xu6 NX | ug WX). Since g WX belongs to (Hm)_i_, we

]
conclude that ue ~/3( = de*x.

For each x e, we compute

x e, ¥

]

* %
e I eicp,e ¥ Ugx NOLP

u:x*ue No = 6(x ) No = e(x)* o

Iy cpé o(x) N = J'],l/_\.cpé2 UgXu, '\/_1};

NS we oy .

Because MWNO_ ¢ (resp. u:mVG* = nN§) is a core for

*

é'/ % (resp. l/ 2 ), the above calculation yields
AM2.* L ¥ AL/2 *1/2
Tlop Yo = Yo A Jmue 0,5, 6,¥

so that the uniqueness of the polar decomposit;‘.on gives the result.
(Q.E.D.)

Proposition 3.3.15. For a normal ¥-isomorphism from M onto

another von Neumann algebra’ h, the map 9* from h_-* onto m*
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given by (6.X)(x) = X(6(x)), x eM, X ¢ Ny, gives rise to a sur-

jective isometry from IP(m) onto 1°(n) for each p.

" Proof. Clearly, 9* is surjective and norm-preserving because
1 1 1 1
60,0721, = I 2 o/ = IXI/ = 1o

Thus, it suffices to show that 0, 1is linear, that is, 6, Dpreserves

the addition and scalor multiplications introduced in Definition

3.3.1. For qi = ul|¢il, ?2 = u2|¢é| in h*, the polar decompositions
_ -1 -1

of 8,9, 6,8, are 6 (ul)e*(lgll), 6 (u2)6*(|q5|) respectively.

We assume that
1/p Al/p 1/
FAN =
e AR YN RN I ATYNEY

as in Definition 3.3.1,(i). We then have

* 1/p * * AL/P *
"0%2% %9, 3 o+ 9,1 % * %% %%, |, oy || @,

= U uai/? u* .
07X, [, |+] @, | "o
It follows from the previous lemma that
-1 1
6
(a,)

-1 1/ /P
] A A
(522 To | 0,1 @ 10, 9| * 6l 91,0, 146, ] 0, |

-1 1/p
6™ u)a
()0 5, 0l 0, |46, %l

that is, (-e*qnl)l/ L (e*cp2 )l/ P (6*(11)())1/ P, Similarly, the other

operations are preserved under 6. (Q.E.D. )
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§3.4 Duality.
In this section, we obtain inequalities concerning the “-Hp—norms.

We then establish the duality between IF(n) and Lq(m), 1/p+ 1/qa = 1.

Lemma 3.4.1. Iet Lp(m;cpo) and Lq(m;cpo), 1/p+ 1/q = 1,
be the Haagerup's L¥-spaces constructed from Ppe For a,b e I°(M; ?,)
and c,d e Li(h; ®,)s We have the following inequalities:
(1) ler((a + p)e + (2 - 2)a)| < 2™/2(lal? + [BIZF/Pelo)? +
l$2 for 2 <p <o
(11) |tr((a + b)e + (a - b)a)| < 2l/p{llallg + llbllg}l/P{lICIig +

lal&e zor 1<p<a

Proof. At first, we show the required inequality in the special
*
case p=q = 2. Since the sesquilinear form (a,b) = tr(b a)

gives rise to an inmner product on IZ(M; 9)> we compute
[t2((2 + D) + (a - B)a)| < [tx((a + b)e)| + |tx((a - b)e)]
< lle+ ol llell, + Ja - oll, llal, (Cauchy-Schwarz inequality)
< (o + oI + lla - BSY2 (el + Jlaf2)™/2
<2 2(lal + IpI22(lel2 + Ja)2)L/2 (ﬁs)p?rauelogmm
To consider the general case, we assume that a = wol/? and

b = vBL/P (resp. c = 3L/ and 4 = al/qw) be left (resp. right)

polar decompositions. For convenilence, we write

x = [Bly + Bly = BY7E + BY71E, 1<r<a,
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y =[G, + [, = IFY7IE « @7,  1<r<w.
We consider the function
£(z) = tr((ua? + vb> )El-zt + (% + vB° )al-zw-) ,

which is bounded and continuous (resp. analytic) on O <Rez<1
(resp. 0< Re z < 1).

(1) For 2z = is € iR, we estimate

|£(is)]

[tr((ua®® + B8 )31 18 4 (31 L JBisyal-is,y))
<a(lRll, + Id,) = 2y .

For z =1/2+ is, s ¢ R, we estimate

I2(1/2 + 1) < 2R(RYRIE + [BY2I2M2 (M2 2 o [5L/2)R )2

- YRR

by the first part of the proof. When p 22, that is, 0<1l/p<1l/2,

the theorem of three lines yields
ltr((a + b)e + (a - b)a)| = |£(1/p)]
< exp((1 - 2/p)log(sup |f(is)|) + 2/p log(sup lf(l/e + is)]))
seR seR v
< exp((1 - 2/p)log(2y) + 2/p log(2Y/2x"/ 2y1/2)

exp(l/q log 2 + 1/p log x + 1/q log y)

242 + IBIEY2(leld + a2

(ii) Por s e R, we estimate
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121+ 18)] = |tr((a™® o B8z, | (altis | gleisyy-is,y)
<a(lally + IBll,) = 2x .
When 1<p<2, thatis, 12 <1/p<1, we estimate
ltr((e + B)e + (a - a)e)| = |£(1/p)]
< exp((2 - 2/p)log(21/2xl/2yl/2) + (2/p - 1)log(2x))

exp(l/p log 2 + 1/p log x + 1/q log y)

2P(ll? + IolEY/R(lel? + 0SS . (amD.)

Proposition 3.%.2 ([12], [20], [23], [44+]). Iet A, B De

elements in IP(M).
() fa + 37+ lla - 812 < 2P (IR + [BI2) for 2 <p<o

(1) &+ 317+ lla - 82 > 2P H(al® + [BI2) zor 1<p <.

Proof. It is sufficient to show the above inequalities in
Lp(m;qb). (i) For a,b e Ip(m;qb), there exist two positive numbers
%, v such that (fla + b2 + fla - o[2)? = xfla + B]_ + yla - b,

Y P b b
xq + y’q = 1. By Corollary 3.3.12, it is possible to choose

c,d ¢ Lq(m;wo) satisfying

la + vl el = sx(a s )e)l, el = x

|
o

la - oll llally = [4=((a - D))|, i,

1]
il

y L4

Here, we may assume that both of tr((a + b)e) and tr((a - b)d)
are non-negative by considering multiples of ¢ and 4. We then

estimate
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(o + ol2 + lle - BIZ)P = xla + vl + slla - vl

o + ol flell + ll - ol lal,

tr({(a + b)e + (a - b)d)

IA

2% + IDID)2(lel + laidY

by Lemma 3.4.1,(i). Since x% 4+ y2 =’“°“§ + Hdug =1, we have
(la + olP + lla - oY% < 2%/3(af + [o[2Y/

(11) The above argument (together with Lemma 3.4.1,(i1)) shows
(la + ol + lla - oY% < 2%/2(a? + RI2) ,

that is, |la + bﬂg + lla - b“i Sz(lla“g ¥ “bllg) By replacing a, b

by (a +b)/2, (a - b)/2 respectively, we obtain

llallg + [oll? < 27 P([la + bllﬁ + fla - ol2) . (Q.E.D.)

We recall that a Banach space X is uniformly convex if it
always follows from “xn” <1, “yn“ <1, and lm “(xn+ yn)/2|| =1
(Xn’yn € X) that lim “Xn - yn“ = 0. ([28]) A uniformly convex
Banach space is reflexive, that is,” the double dual X is iso-

morphic to X.

Theorem 3.4.3. For 1l/p+ 1/9=1, 1 <p<w, Lq(m) is the

dual space of P (). Here, the duality is given by the sesquilinear

from introduced in Definition 3.3.k4.

Proof ([12]). Since ,L°°(m) = is the dual space of Ll(m) =M,

LS
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we may assume 1 < p < o,
It follows from Lemma 3.4.2,(1) that IP(h), 2 <p<w, is
uniformly convex, hence, reflexive. In fact, for AB e P (m), we

have

Ia - B2 < 22 H(IAI2 + [312) - [a + 22

2Pt Al + B12) - 2Pli(a + B)/2l%

2P + BIE) - 2li(a + 3)/2I2

Due to Corollary 3.3.12, Li(m), 1/p+1l/g=1,2<p<w, can
be isometrically imbedded into  IF (m)* through the sesquilinear
form. In particular, LI(M) is a closed subspace of LP(m)*.
To show Li(m) = LP(m)* by contradiction, we assume that L3(n) g
IP(m )* It follows from the Hahn-Banach theorem that there exists
a non-zero functional f belonging to I° (m)** such that - f wvanishes
on LY(M). However, since IP (M) is reflexive, f belongs to

IP(M) so that Corollary 3.3.12,(i) implies that f is zero, which

H

is a contradiction. We thus conclude that Li(n) LP(m)*, 2<p<w,
Also, the reflexivity of LF(W) implies I3(M)* = P(m)™ - P(m).

(Q.E.D.)
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