N° 274 – ALGÈBRES D'OPÉRATEURS ET LEURS APPLICATIONS EN PHYSIQUE MATHÉMATIQUE

L^P-SPACES ASSOCIATED WITH AN ARBITRARY VON NEUMANN ALGEBRA

by

UFFE HAAGERUP

Odense Universitet, Denmark.

<u>Abstract</u>: To any von Neumann algebra M, we associate Banach spaces $L^{p}(M)$, $1 \le p \le \infty$, which generalize the classical Banach spaces $L^{p}(\Omega,\mu)$ of functions on a measure space (Ω,μ) . We show that $L^{\infty}(M) \cong M$, $L^{1}(M) \cong M_{*}$, and that $L^{2}(M)$ is isomorphic to the Hilbert space of M in its standard form. When M is semifinete, the $L^{p}(M)$ -spaces are isometric isomorphic to the spaces $L^{p}(M,\tau)$ introduced by Dixmier, Segal and Kunze in 1953-1958. The $L^{p}(M)$ -spaces are constructed as certain spaces of unbounded operators affiliated with the crossed product $R(M,\sigma^{\phi})$ of M with the modular automorphism group associated with a fixed weight φ on M. The construction turns out to be independent (up to unitary equivalence) of the choice of φ .

RESUMÉ A toute algèbre de Von Neumann M nous associons des espaces de Banach $L^{p}(M)$, $1 \leq p \leq \infty$, qui généralisent les espaces de Banach classiques $L^{p}(\mathfrak{O}, \mu)$ de fonctions sur un espace mesuré (\mathfrak{O}, μ) . Nous montrons que $L^{\bullet}(M) \simeq M$, $L^{1}(M) \simeq M_{\mathfrak{H}}$, et que $L^{2}(M)$ est isomorphe à l'espace de Hilbert de la représentation standard. Si M est semifinie les espaces $L^{p}(M)$ sont isométriquement isomorphes aux espaces $L^{p}(M, \mathfrak{F})$ introduits par Dixmier, Segal et Kunze en 1953-1958. Les espaces $L^{p}(M)$ sont construits comme espaces d'opérateurs non bornés affiliés aux produits croisés $R(M, \mathfrak{F}^{\mathfrak{P}})$ de M avec l'automorphisme modulaire associé à un poids fixe \mathfrak{P} sur M. La construction s'avère indépendante (à une équivalence unitaire près) du choix de \mathfrak{P} .

Introduction

This note contains an outline of a forthcoming paper.

In [4], [11] and [8] J. Dixmier, I. Segal and R. Kunze have constructed the L^p -spaces $L^p(M, \tau)$ associated with a semifinite von Neumann algebra M, which generalize the classical Banach spaces $L^p(\Omega, \mu)$. The L^p -spaces we construct in this note will consist of operators affiliated not with M itself but with a bigger algebra, namely the crossed product $M_o = R(M, \sigma^n)$ of M with a modular automorphism group. M_o has a trace τ satisfying $\tau \cdot \Theta_B^{\phi} = e^{-S} \tau$ where Θ_B^{ϕ} is the dual action. $L^p(M)$ is defined as the set of τ -measurable operators h affiliated with N_o satisfying

 $\begin{cases} \Theta_{g}^{q} h = \exp(-\frac{g}{p})h \quad p < \infty \\ \Theta_{g}^{q} h = h \quad p = \infty \end{cases}$

equipped with a suitable norm. Since the triple $(M_0, \tau, \theta^{\circ})$ is independent (up to unitary equivalence) of the choice of φ , the L^p -spaces are independent of φ .

We have $L^{\infty}(M) = M$ and $L^{1}(M) \simeq M_{H}$. $L^{2}(M)$ is a Hilbert space, and the representation of $L^{\infty}(M)$ on $L^{2}(M)$ defined by left multiplication is standard. If M is semifinite the L^{p} -spaces constructed in this way are isometric- and orderisomorphic to $L^{p}(M, \tau_{0})$ for any n.f.s. trace τ_{0} on M.

- 176 -

§ 1 Construction of the L^p-spaces

Let M be a von Neumann algebra. We will identify M with its natural injection in the crossed product $M_{0} = R(M, \sigma^{26})$ where φ_{0} is a fixed weight on M. By construction M is generated by M and a one parameter group of unitaries $\lambda(t)$ such that for x \in M, $\sigma_{\star}^{\varphi_{0}}(\mathbf{x}) = \lambda(\mathbf{t})\mathbf{x}\lambda(\mathbf{t})^{\star}.$

Let T be the operator valued weight, T: $M_0^+ \rightarrow \widehat{M}_+$, given by

$$T(x) = \int_{\hat{R}} \Theta_{s}(x) \, ds \, , \quad x \in \mathbb{M}_{0}^{+}$$

where $\Theta_s = \Theta_s^{\mathcal{H}}$ is the dual action on M_o (cf [6], [7]). The weight $\varphi_0 \circ T$ on M₀ is 2 π times the dual weight to φ_0 . Hence there exists a trace τ on M₀, such that $\varphi_0 \circ T = \tau(h \cdot)$ where h is the positive selfadjoint operator affiliated with M determined by $h^{it} = \lambda(t)$ (cf [12], proof of lemma 8.2). The trace τ satisfies

1.1 Definition

For any normal semifinite weight φ on M we put $\tilde{\varphi} = \varphi \circ T$, and we let ho be the Radon-Nikodym derivative of $\widetilde{\phi}$ with respect to the trace τ on M_{o} , i.e. $\tilde{\phi} = \tau (h_{o} \cdot)$.

1.2 Theorem

1) The set $\{h_{\sigma} \mid \varphi \text{ normal, semifinite}\}$ is equal to the set of positive selfadjoint operators h affiliated with M, , which satisfies

$$\Theta_{\rm s} h = e^{-\Theta} h$$
 se

2) If $\int \lambda de_{\lambda}^{\varphi}$ is the spectral decomposition of h_{φ} then

$$\tau((e_{\lambda}^{q})^{\perp}) = \frac{1}{2}q(1) , \lambda > 0.$$

In particular h_g is τ -measurable iff φ is bounded (cf [9] p. 111).

1.3 Theorem

The map $\varphi \rightarrow h_{\varphi}$, $\varphi \in M^+_{\varphi}$ has a unique extension to a linear map of My onto the set of T-measurable operators h affiliated with M_o, satisfying

$$\Theta_{S}h = e^{-S}h$$

(Note that the set of τ -measurable operators on M is an algebra with respect to strong sum and strong product, cf [11]).

1.4 Definition

i) We let L¹(M) denote the set of *τ*-measurable operators h affiliated with M_o, for which Θ_gh = e^{-S}h, s∈ R̂.
 ii) We define a linear functional tr on L¹(M) by tr(h_φ) = φ(1).

1.5 Proposition

The map $\varphi \rightarrow h_{\varphi}$ of M_{*} onto $L^{1}(M)$ is an isometry with respect to the norm $\|h\|_{1} = tr(|h|)$ on $L^{1}(M)$.

1.6 Remarks

a) The trace τ is infinite on any non vanishing operator in L[⊥](M).
b) If M is a factor of type III₁, M₀ is a II₆ factor. In this case any normal trace on M₀ is proportional to τ. Hence tr is not in general the restriction of a trace on M₀.

1.7 Definition

We put $L^{p}(M) = \{h, \tau - \text{measurable aff. with } M_{o} \mid \Theta_{g}h = \exp(-\frac{g}{p})h\}$ and $L^{\infty}(M) = \{h, \tau - \text{measurable aff. with } M_{o} \mid \Theta_{g}h = h\}$

1.8 Remarks

- a) If $p \neq q$ then $L^{p}(M) \cap L^{q}(M) = \{0\}$. b) If $p < \infty$ then any non vanishing L^{p} - operator is unbounded.
- c) L⁶⁰(M) consists only of bounded operators. Hence

$$\mathbf{L}^{\infty}(\mathbf{M}) = \{\mathbf{h} \in \mathbf{M}_{o} \mid \Theta_{\mathbf{S}}\mathbf{h} = \mathbf{h}, \mathbf{s} \in \widehat{\mathbf{R}}\} = \mathbf{M}.$$

1.9 Proposition

Let $p \in [1, \infty)$ and let a be a closed, densely defined operator affiliated with M_0 , and let a = u(a) be its polar decomposition. The following conditions are equivalent: (1) $a \in L^p(M)$

(2) $u \in L^{\infty}(M)$ and $|a|^p \in L^1(M)$.

$\frac{1.10 \text{ Definition}}{\text{On } L^{p}(M) \text{ we define } \| \|_{p} \text{ by} \\ \| \| \|_{p} = \text{tr}(\| \mathbf{a} \|_{p}^{p})^{\frac{1}{p}} \quad p < \infty \\ \| \| \|_{\infty} = \| \| \| \|$

For $p = 1, \infty$ || ||_p is a norm (cf. prop. 1.5). It will be proved later, that || ||_p is also a norm for 1 .

<u>1.11 Lemma</u> Let $h, k \in L^{1}(M)_{+}$. The function $\alpha \rightarrow h^{\alpha} k^{\prime - \alpha} \in L^{1}(M)$ is analytic in the open strip $\{\alpha \in \mathbb{C} | \operatorname{Re} \alpha \in]0, 1[\}$.

1.12 Proposition

Let $p,q \in [1,\infty]$, $\frac{1}{p} + \frac{1}{q} = 1$, and let $a \in L^{p}(M)$ and $b \in L^{q}(M)$, then $ab, ba \in L^{1}(M)$ and tr(ab) = tr(ba).

1.13 Corollary

(1) For any $h \in L^{1}(M)$ and any unitary $u \in L^{\infty}(M)$: tr(uhu^{*}) = tr(h)

(2) For any $x \in L^{2}(M)$: $tr(x^{*}x) = tr(xx^{*})$

1.14 Theorem

Let $p,q \in [1,\infty]$, $\frac{1}{p} + \frac{1}{q} = 1$, and let $a \in L^{p}(M)$ and $b \in L^{q}(M)$, then $\|ab\|_{1} \leq \|a\|_{p} \|b\|_{q}$ (Hölders inequality)

1.15 Remarks

The proof of Theorem 1.14 is based on lemma 1.11 and the three line theorem for analytic functions (compare with [9]p. 113). Dixmiers proof of Hölders inequality in [4] can not be applied, because in our case the spectral projections of an L^p -operator is not in L^p .

1.16 Proposition

- (1) Let $p,q \in [1,\infty]$, $\frac{l}{p} + \frac{l}{q} = 1$. For any $a \in L^{p}(M)$ $\|a\|_{p} = \sup\{|tr(ab)| | b \in L^{q}(M), \|b\|_{q} \le 1\}$
- (2) For $a, b \in L^p(M)$ $||a+b||_p \le ||a||_p + ||b||_p$. (Minkowskis inequality) Hence $|| ||_p$ is a norm.

1.17 Proposition

- (1) For any p ∈ [1,∞] the norm topology on L^p(M) is equal to the topology of convergence in measure (cf [9] p. 106).
- (2) For any $p \in [1, \infty]$ $L^p(M)$ is comlete in the p-norm.
- (3) $L^{2}(M)$ is a Hilbert space with inner product $(a|b) = tr(b^{4}a)$.

<u>1.18 Lemma</u> (cf. [4] lemma 5 p.30) Let $p \in [2, \infty [$. For $a, b \in L^{p}(M)$ $\|a + b\|_{p}^{p} + \|a - b\|_{p}^{p} \leq 2^{p-1}(\|a\|_{p}^{p} + \|b\|_{p}^{p})$

The proof of lemma 1.18 is based on lemma 1.11 and the three line theorem.

1.19 Theorem

Let $p \in [1,\infty[$ and put $q = \frac{p}{p-1}$. An operator $a \in L^{q}(M)$ defines a functional φ_{a} on $L^{p}(M)$ by $\varphi_{a}(x) = tr(ax)$. The map $a \rightarrow \varphi_{a}$ is an isometric isomorphism of $L^{q}(M)$ onto the dual Banach space of $L^{p}(M)$.

Proof: Same as [4] proof of theorem 7.

1.20 Proposition

Let $p,q \in [1,\infty]$, $\frac{1}{p} + \frac{1}{q} = 1$ and let $a \in L^{q}(M)$. Then

$$a \ge 0 \iff tr(ab) \ge 0 \quad \forall b \in L^p(M)$$

i.e. the partial ordering of $L^{q}(M)_{sa}$ is the dual of the ordering of $L^{p}(M)_{sa}$. (sa = selfadjoint).

For
$$a \in M = L^{\infty}(M)$$
 and $x \in L^{2}(M)$ we put
 $\lambda(a)x = ax$
 $g(a)x = xa$.

1.21 Theorem

- (1) λ (resp. 9) is a normal, faithful representation (resp. anti-representation) of M on the Hilbert space $L^2(M)$.
- (2) The von Neumann algebras $\lambda(M)$ and $\zeta(M)$ are commutants of each other, and

$$Q(M) = J\lambda(M)J$$

where J is the conjugate linear isometry $x \rightarrow x^*$ in $L^2(M)$. (3) The quadruple $(\lambda(M), L^2(M), J, L^2(M))$ is a standard form

in the sense of [5].

§2 The semifinite case

Let M be a semifinite von Neumann algebra on a Hilbert space H, and let τ_0 be a n.f.s. trace on M. Identifying $L^2(\mathbb{R}, \mathbb{H})$ with $\mathbb{H} \otimes L^2(\mathbb{R})$ we have:

$$R(M, \sigma^{r_0}) = M \oslash U(R)$$

where U(R) is the von Neumann algebra associated with the left regular representation of the group R. Let F denote the Fourier-Plancherél operator $L^2(R) \rightarrow L^2(\hat{R})$

$$(Ff)(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ist} f(t) dt$$
$$U(R) = F^* L^{eo}(\widehat{R})F$$

then

where $L^{\infty}(\hat{R})$ acts as multiplication operators on $L^{2}(\hat{R})$. Hence $R(M, \sigma^{T_{0}}) = M \otimes F^{*}L^{\infty}(\hat{R})F.$

For any borel function f(s) on \hat{R} we let m(f) denote the closed, densely defined multiplication operator $g \rightarrow fg$ on $L^2(\hat{R})$.

2.1 Theorem

Let $p \in [1, \infty[$. If $a \in L^p(M, \tau_o)$ then $a \otimes F^{\mathsf{T}}m(\exp(\frac{s}{p}))F \in L^p(M)$ and the map $a \to a \otimes F^{\mathsf{T}}m(\exp(\frac{s}{p}))F$ is an isometry of $L^p(M, \tau_o)$ onto $L^p(M)$.

§3 Applications to von Neumann algebras with a periodic weight.

Let M be a von Neumann algebra with a periodic NSF-weigt φ_0 , and let T_0 be a period for φ_0 , i.e. $G_{T_0}^{\varphi_0} = 1$. Put $G = \frac{R}{T_0 \cdot Z}$ and let $t \rightarrow t$ be the quotient map $R \rightarrow G$. Let α be the action $\alpha: G \rightarrow aut(M)$ defined by $\alpha(t) = G_t^{\varphi_0}$. We will identify M with its injection in the crossed product $M_1 = R(M, \alpha)$. M_1 is generated by M and a group of unitaries $\lambda(g)$, $g \in G$, such that

$$\sigma_t^{\gamma}(x) = \lambda(t)x\lambda(t) \quad x \in M.$$

Let S denote the operator valued weight $M_1^+ \rightarrow \hat{M}_+$ given by $S(x) = \sum_{n=-\infty}^{\infty} \Theta^n(x) \quad x \in M_1^+$

where Θ^n , $n \in \mathbb{Z}$, is the dual action of $\widehat{G} \simeq \mathbb{Z}$ on M_1 . (c§. [7]).

- 181 -

Repeating the arguments from the start of §1 we get that M_1 has a (unique) n.f.s. trace τ such that $\varphi_0 \circ S = \tau(k \cdot)$ where k is the positive selfadjoint operator affiliated with M_1 determined by $k^{it} = \lambda(t)$, te R. The trace τ satisfies:

$$\mathbf{T} \circ \Theta = \lambda \mathbf{T}$$
 where $\lambda = \exp(-\frac{2\pi}{T_0})$.

3.1 Definition

For any normal semifinite weight φ on M, we put $\tilde{\varphi} = \varphi \circ S$, and we let k_{φ} be the Radon-Nikodym derivative of $\tilde{\varphi}$ with respect to Υ , i.e. $\tilde{\varphi} = \Upsilon(k_{\varphi})$.

3.2 Proposition

- (1) The set $\{k_{\varphi} | \varphi \text{ normal, semifinite}\}$ is equal to the set of positive selfadjoint operators k affiliated with M_1 for which $\bigotimes k = \lambda k$ $(\lambda = \exp(-\frac{2\pi}{T_0})).$
- (2) Let $k_{\varphi} = \int_{\mu}^{\infty} de_{\mu}^{\varphi}$ be the spectral decomposition of k_{φ} , then for any a > 0:

$$\varphi(1) = \tau \left(\int_{\lambda q}^{a} \mu de_{\mu}^{\varphi} \right)$$
$$\frac{\lambda \varphi(i)}{(1-\lambda)q} \leq \tau \left(\left(e_{q}^{\varphi} \right)^{\perp} \right) \leq \frac{\varphi(1)}{(1-\lambda)q}$$

and

in particular k_{ϕ} is $\tau\text{-measurable}$ iff ϕ is bounded.

We could now continue as in §1 and construct new L^p -spaces consisting of the τ -measurable operators affiliated with M_1 which satisfies:

ſ	0) k =		λ ^p k			p	< ~>
1	Θ	k		k			p	= 00

However it is not hard to prove that these spaces are isomorphic to the spaces $L^{p}(M)$ obtained from the general construction. We will instead use proposition 3.2 to prove the following slight strengthening of a result due to Connes and Takesaki (cf. [3, Chap.II, corollary 4.10]). 3.3 Theorem

- Let M be a σ -finite factor of type III λ , $\lambda \epsilon$ 0,1
- (1) For any two normal, faithful states φ, ψ on M, there exists a unitary $u \in M$, such that $\lambda \psi \leq u \ \psi \ u^* \leq \lambda^{-1} \psi$.
- (2) For any two unbounded n.f.s. weights φ , ψ on M, there exists a unitary u M, such that $\lambda \psi \leq u \varphi u^* \leq \lambda^{-1} \psi$.

 $\texttt{fThe method of [3] gives } \lambda^2 \neq u \quad \forall u^* \leq \lambda^2 \psi \text{ in the above inequalities).}$

3.4 Remark

It is easy to prove, that Theorem 3.3 is not valid for $\lambda = 1$. A. Connes and E. Størmer [2] have recently proved, that any two normal states φ , ψ on a \mathfrak{S} -finite type III₁-factor are almost equivalent in the sense, that there exists a sequence of unitaries $(u_n)_n \in \mathbb{N}$ in M, so that $\| \psi - u_n \varphi u_n^* \| \rightarrow 0$ for $n \rightarrow \infty$.

References

- [1] <u>A. Connes</u>, Une classification des facteurs de type III. Ann. Sc. de l'Ecole Normale Supérieure, 4 ser. t. 6, fasc. 2 (1973) 133-252.
- [2] <u>A. Connes & E. Størmer</u>, Homogeneity of the state space of factors of type III. J. funct. analysis 28 (1978) **1**87-196.
- [3] <u>A. Connes & M. Takesaki</u>, The flow of weights on a factor of type III. Tohoku Math. J. 29 (1977) 473-475.
- [4]J. Dixmier, Formes linéaires sur un anneau d'opérateurs.Bull. Soc. Math. France t. 81 (1953) 9-39.
- U. Haagerup, The standard form of von Neumann algebras.
 Math. Scand. 37 (1975) 271-283.
- [6] <u>U. Haagerup</u>, Operator Valued Weights in von Neumann algebras. To appear in J. funct. analysis.

- [7] <u>U. Haagerup</u>, On the dual weights for crossed products of von Neumann algebras II. Math. Scand. 43,119-140 (1978).
- [8] <u>R. Kunze</u>, L_p Fourier transform on locally compact unimodular groups. Trans. Amer. Math. Soc. 89 (1958) 519-540.
- [9] <u>E. Nelson</u>, Notes on non-commutative integration. Journal of funct. anal. 15 (1974) 103-116.
- [10] <u>G.K. Pedersen & M. Takesaki</u>, The Radon Nikodym Theorem for von Neumann Algebras. Acta Math. 130 (1973) 53-87.
- [11] <u>I. Segal</u>, A non commutative extension of abstract integration. Ann. of Math. 57 (1953) 401-457.
- [12] <u>M. Takesaki</u>, Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math. 131, (1973) 249-308.

Uffe Haagerup

Matematisk Institut, Odense Universiteit Niels Bohrs Allé, 5000 Odense, Denmark.