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Abstract: To any von Neumann algebra M, we associate Banach | 

spaces LP), 1<p<~, which generalize the classical Banach 

spaces LP(o,u) of functions on a measure space (Q,u). 

© We show that LYM)=M, Ll@y=M,, and that L®(M) is iso- | 
morphic to the Hilbert space of M in its standard form. | 

When M is semifinete, the LF (M) -spaces are isometric | 

isomorphic to the spaces LPM, 1) introduced by Dixmier, | | 

Segal and Kunze in 1953-1958. The LP (M)-spaces are con- 

structed as certain spaces of unbounded operators affiliated 

with the crossed product R(M,c®) of M with the modular | 

automorphism group associated with a fixed weight ¢ on M. | 

| The construction turns out to be independent (up to unitary 

equivalence) of the choice of eo. | oo | | 

RESUME A toute algébre de Von Neumann M nous associons des es- - 

paces de Banach LP) , 1¢p§ o0) , qui généralisent les espaces de 

Banach classiques LPS, uw ) de fonctions sur un espace mesuré (SL, pw ). 

~~ Nous montrons que LY (M) | & uM, La) 2 My, et que 12M) est isomor- 

~ phe a 1'espace de Hilbert de la représentation standard. Si M est semi- 

finie les espaces LP (1) sont isométriquement isomorphes aux espaces . 

| LP, > introduits par Dixmier, Segal et Kunze en 1953-1958. Les espaces : 

| LP (m) sont construits comme espaces d'opérateurs non bornés affiliés aux | 

| produits croisés rM,e?) de M avec 1'automorphisme modulaire associé 

a un poids fixe @ sur M . La construction s'avére indépendante (a une équi- | 

valence unitaire prés) du choix de ? . : | | 
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Introduction | - oC ER | 

This note contains an outline of a forthcoming paper. EE 

In [4], [11] and [8] J. Dizmier, I. Segal and R. Kunze have com- 
structed the IP-spaces IP(M,7) associated with a semifinite 
von Neumann algebra M, which generalize the classical Banach 

spaces LP(N,u). The IP-spaces we construct in this note will 
consist of operators affiliated not with M itself but with a | 

bigger algebra, namely the crossed product M,= R(M, of ) of M 

with a modular automorphism group. M, hes a trace T satisfying 

| Too? = e Sy where of is the dual action. 1P (M) is defined 

as the set of T-measurable operators h affilisted with M, | 
satisfying oo ? | | 8 oo So 

~~ L%h=n pee oo 
equipped with a suitable norm. Since the triple (H,,T , 6") is » 
independent (up to unitary equivalence) of the choice of @, the 
IP-gpaces are independent of @. | IRE oo 
We have L°(M)= M and LY(M) 2 My. 12M) is a Hilbert space, 
end the representation of L(M) on 12(M) defined by left oo | 
multiplication is standard. If M is semifinite the IP-apeces 

constructed in this way are isometric- and orderisomorphic to 

IP (M7) for any n.f.s. trace 75 on M. | oo | 
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§ 1 Construction of the IP-spaces Co | 

Let M be a von Neumann algebra. We will identify | M with its 

natural injection in the crossed product N= R(H, o®) where @o 

is a fixed weight on M. By construction M_ is generated by M 

and a one parameter group of unitaries A(t) such that for =xeM, | 

efx) = ABNEY Co EA | | 
Iet T be the operator valued weight, T: Me —p M, , given by 

| | T(x) = [est as ’ xe MF \ | oo 

B - RT RE 
where 0 = 0% is the dual action on Mj (cf [6],[7]1). The weight 
dT on Mj is 27 times the dual weight to ¢,+ Hence there 

exists a trace T on M_ , such that ¢ oT =T(h*) where h is 
the positive selfadjoint operator affiliated with Mj determined 

by hit = A(t) (cf [12], proof of lemma 8.2). The trace T satis- 

| | TeOg4 = e T, seR g 

1.1 Definition oo Lo | 
For any normal semifinite weight ¢ on M we put @= @oT7 , 

end we let hy be the Radon-Nikodym derivative of § with oo 
respect to the trace T on M , i.e, ¢=T (hy). DE 

)..2 Theorem oo | | : 

1) The set ing | @ normal, semifinite} is equal to the set of 

positive selfadjoint operators h affiliated with M, » which . | 
3.3 | | C- A : 

| satisfies . eh =e" seR | | | 

2) If ( A ded is the spectrel decomposition of hy, then . 
o 

Cored) = qn), avo. | 

~ In particular he is T-measurable iff @ is bounded | 

© (et[9) p.m). Er Ee 
1.3 Theorem IE FE CL | Cs 
The map @ ~» he y PE M has a unigue extension to a linear map 

of My onto the set of T-measurable operators h affiliated 

with M, , satisfying | SE So Lo | | 

CC ah = ed - | Co ; : 
| oo | Oh = © h. oo | 

(Note that the set of 7 -measurable operators on Mj is an 

algebra with respect to strong sum and strong preduct, of [1i]), | 
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1.4 Definition | | | 

1) We let IY(M) denote the set of T -measurable operators h 
: : - A 

| affiliated with M, , for which 6h =e 5h , seR. 
11) We define a linear functional tr on IL:(M) by tr(h,) =0(1). 

1.5 Proposition oo | oo | B : oo | 

The map ¢ -» hg of MN, onto Lm) is an isometry with respect 
to the norm Whil; = tr(lh|) on (mM). | | 

~~ 1.6 Remarks | | oo | 

a) The trace T is infinite on any non venishing operator in It (Mm), 

b) If M is a factor of type III, , M, is a IL ~ factor. In this 

case any normal trace on M, is proportional to T. Hence tr 

is not in general the restriction of a trace on M,. | 

| 1.7 Definition EE. | oo : 

We put LP(M) = {n, T -measurable aff. with M_| 8h = exp(-2)h } 

| Cand LPM) = {n, v -measurable aff. with M_| eh =h } | | 

1.8 Remarks oo IE oo oo | - 

a) If p + q then IP(M)NI(M) = {0}. | 
b) If p <eo then any non vanishing 1P- operator is unbounded. 

¢) I'(M) consists only of bounded operators. Hence oo 

; oo | . 2 | Ce | L°°(M) = {nen | ogh =h,seR} =x. 5 

1.9 Proposition | oo | — | E 

Let pelle] and let & be a closed, densely defined operator 

affiliated with M_ , and let a = ula] be its polar decomposition. 

The following conditions are equivalent: = ) | 
(1) a € LP(M) a So | 

(2) wel (H) and lal? ertm). | 

1.10 Definition | | | oo | B | 

On IP(M) we define | I by oo | | 
| A | 

Co lalg=lan oo oo 
“For p= 1l,% 1 1 is a norm (ef. prop. 1.5). It will be proved 

later, that | lly is also a norm for 1l<p<goo., | 
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1.11 lemma | BE a | 

Lot h,k € T*(M),. The function x-H'k * € L'(M) is analytic in 
the open strip {xeC|Re x€10,11} . | 

1,12 Proposition 1 oo | 

Let p,q el, , 3+%=1, and let a eI’) and be LI(W), 

then ab, ba € L}(M) and tr(ab) = tr(va). oo 

1.13 Corollary | | oo So 

~~ (1) For any h e Lt (m) and any unitary wel (M): | | 

oo tr(un®*) = tr(h) N 

(2) Por any =xeLf(M): tr(x*x) = tr(xx*) B | 

1.14 Theorem | | B | oo SEER 

Let p,q €[1, 2] , 2 + x = 1, and let a € IF(M) and be 1(M), 

“then | ll abl, < Nall, iol, (Holders inequality) hs | 

1.15 Remarks a | | oo | | | oo 

The proof of Theorem 1.14 is based on lemma 1.11 and the three | 

line theorem for analytic functions (compare with [9]p. 113). 

Dixmiers proof of Holders inequality in [4] can not be applied, 

because in aur case the spectral projections of an IP-operator | 

is not in IP. | oo | : 

1.16 Proposition | EE | | 

(1) Tet pq €[1,0e] ’ 5 + g = 1, For any a € IPM). | | 

a all, = sup{ltr(ad)l | ve1d(m), bly <1} oo 

(2) For a,beIP(M) Hasoll Sola, + loll, (Minkowskis inequality) 

Hence | I, is a norm. E oo EE : EE 

1.17 Proposition oo Lo | | | 

(1) For any 1p € [1,02] the norm topology on IP(M) is equal 

to the topology of convergence in measure (cf 97 ». i06). 

(2) Por any pel1,o0d IP(1M) is comlete in the p-norm. oo 

(3) L%(M) is a Hilbert space with immer product (ald) = tr(b*a). 
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1.18 Lemma (cf. [4] lemma 5 p.30) | Co 

Let pel[2,00l . For a,beIP(M) DE So | | 

CC JasoP ee of? € Plage i?) I Ip + lle - dl, <2 (hap + Moll) 

The proof of lemma 1.18 is based on lemma 1.1% and the three line | 

| theorem. a | oo oo oo | 

1.19 Theorem | | 

Let .p e[l,mo] and put gq = 525 . An operator a€ L(M) defines 

‘a functional @, on PM) by a(x) = tr (ex). The map a=», | 

is an isometric isomorphism of LY(mM) onto the dual Banach space 

of IP(M). IE | oo | 

Proof: Same as [4] proof of theorem 7, = | | oo 

1.20 Proposition Cre 

Let piaell, =] , 2 + F =1 and let aeli{M). Then a 

| | 220 &> tr(ab)z0 VY velP(y), eee 

i.e. the partial ordering of (mM), is ‘the dual of the ordering 
of IP(M) _. (sa =selfadjoint).. ee 

For aeM = 1M) and x e L2(M) we put oo : | a oo 

: e(a)x = xa , a. 

© 1.2) Theorem oo EE oo oo Con 

(1) A (resp. Qe ) is a normal, faithful representation (resp. 

~ enti-representation) of M on the Hilbert .space LM). BE 

| (2) The von Neumann algebras A(M) and ¢ (HM) are commutants of 

each other, and | | | | | 

QU) = IAM SREP 
where J is the conjugate linear isometry x->x¥ in 12M). | 

© (3) The quadruple (A(M), L2(¥), J, L2(M),) is a Stendard form 
| in the senge of [57]. I oo 

— 180 — |



§2 The semifinite case = SENATE ERT. 

Iet M be a semifinite von Neumann algebra on a Hilbert space H, | 

and let T be a n.f.s. trace on M. Identifying L(R ,H) with 

HSL? (R) we have: oo | | oo Ce 

R(M, 0) = M®UR) | | 

where U(R) is the von Neumann algebra associated with the left 

regular representation of the ‘group R. Let F denote the Fourier- 

Plencherél operator 2(R) = (RR) ~~ BE 

| oo [mist | (F£)(s) = [ e £(t) dt oo 
Ae 

then UR) = FL(R)F | oo oo 

where I™(R) acts as multiplication operators on L%(R). Hence @ ° 
n aE | 

n R(M,¢™) = Me FL(R)F. 

For any borel function f(s) on R we let mn(f) denote the closed, 
densely defined multiplication operator g-»fg on 1°(R). oo 

2.1 Theoren | EE 

Jet pell,ee[ . If aeIP(M,%.) then a @ F'n(exp(£))F € IP (M) 

and the map a a ©F m(exp(Z))F is an isometry of | IP(M,T,) 

onto LP(M). Lele Co | 

§3 Applications to von Neumann algebras with a periodic weight. a 

Iet M be a von Neumann algebra with & periodic NSF-weigt Ps + 
| So | | qo | 

end let T, be a period for @, , i.e. Op=1. Put @=R/prz 
and let t -»t be the quotient map R -»6. Let x be the action 

«: GC => aut(M) defined by k(t) = od « We will identify M with 

its injection in the crossed product M, = R(M,x). Mo is genera- 

ted by M and a group of unitaries A(g), ge G, such that oo | 

al) =a@xaE) xem. 
Let S denote the operator valued weight My —-» M, given by | 

| o | 

| _ n,_y pt | 8(x) = > ©" (x)  xeM 
Ne =0 : . 

here ©" 1 8aZ on [71) vhere © 7, neg, is the dual action of GZ on M;. (cf. . | 
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Repeating the arguments frcm the start of §1 we get that M, | 

has a (unique) n.f.s. trace 7 such that @o8 =T(k+) where k is 
the positive selfadjolnt operator affiliated with M, determined 

by ki = A(}) , teR . The trace T satisfies: | 

Te® = AT where \ =exp(- £0. oo 
: . ’ Q 

3.1 Definition | | | 
‘For any normal gemifinite weight ¢ on HM, ve put g =@e3, end 

we let k, be the Radon-Nikodym derivetive of ¢ with respect to 

T 3 ieee @=T(ke). oo oo | 

3.2 Propositicn oo RE - 

(1) The set {io @ normal, semifinite | is equal to the set of 

| positive gelfadjoint operators 'k affiliated with My for 

| which ek=2k ~~ (A=ex-ZEH. 
; ¢ ame: SU | 

(2) Tet ky = J mae be ‘the spectral decomposition of Kg , 

then for any a >0: | a Cae 

and oo Aa | | 
| EB x oi) av) 20) | 

| a=2%a = 7 ( (eg =a So 
in particular ko is T-measurable iff @ is bounded. | 

© We could now continue as in §1 and construct new 1P-spaces . 

"consisting of the 7 -measurable operators affiliated with My 

which satisfies: EE + Co | 
ek = Ak p <eo | 

However it is not hard to prove ~ that these spaces are isomorphic 

to the spaces IP (M) obtained from the general construction. 

We will instead use proposition 3.2 to prove the following 

slight strengtliening of a result due to Connes and Takesaki | 

| (ef. [3 , Chap.II, corollary 4.10] ). oo 
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3.3 Theorem | 

Let M be a g*-finite factor of type III A AE Joi . | 

(1) For any two normal, faithful states © R V on M , there exists 

a unitary ué&M , such that Ay Su P u's 3! Wy . | 

(2) For any two unbounded n.f.s. weights YP he on M , there exists 

a unitary u M , such that ApS ‘¢ u sS\ w oo oo 

| Ve NL x NZ NS | 
€The method of [3] gives Aygu ¥ u $ A Y in the above inequalities). 

| | 

3.4 Remark | oo | | 

lt is easy to prove, that Theorem 3.3 is not valid for A=1. | 

A. Connes and E. Stérmer [ 2 Jhaverecently proved, that any two , 

normal states \p R $y on a § -finite type IIL, -factor are almost 

equivalent in the sense, that there exists a sequence of unitaries 

5 , Cr n ¥ Ss 
wl eIN in M, so that lly np ul | =o for n -H0Q. | 
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