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Abstract:.To any von Neumann algebra M, we associate Banach
spaces LP(M), lgpge, which generaliie the classical Banach
spaces LP(Q,u) of functions on a measure space (Q,u).

We show that L°(M)2M, L1(M)=M,, and that LZ(M) is iso-
morphic to the Hilbert space of M in its standard form.
When M is semifinete, the LP(M)-spaces are isometric
isomorphic to the spaces Lp(M,T) introduced by Dixmier,
Segal and Kunze in 1953-1958. The Lp(M)—spaces are con-
structed as certain spaces of unbounded operators affiliated
with the crossed product R(M,c®) of M with the modular
automorphism group associated with a fixed weight ¢ on M.
The construction turns out to be independent (up to unitary
equivalence) of the choice of o.

RESUME A toute algébre de Von Neumann M nous associons des es-
paces de Banach P , lgpg %0 , qui généralisent les espaces de
Banach classiques Lp(_Q_,/L ) de fonctions sur un espace mesuré (Sl,/p ).
Nous montrons que ¥ () g M, Ll(M) & My, et que L2(M) est isomor-
phe a l'espace de Hilbert de la représentation standard. Si M est semi-
finie les espaces tP(M) sont isométriquement isomorphes aux espaces

LP(M, t) introduits par Dixmier, Segal et Kunze en 1953-1958. Les espaces
LP(M) sont construits comme espaces d'opérateurs non bornés affiliés aux
produits croisés R(M,s‘w) de M avec l'automorphisme modulaire associé

2 un poids fixe @ sur M . La construction s'avére indépendante (2 une équi-

valence unitaire prés) du choix de ? .
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Introduction

This note coutains an outline of a forthcoming paper;

In [4], [44] and [8] J. Dizmier, I. Sezal and R. Kunze have con-
structed the Lp-spaces I:p(M,T) associated with a semifinite
von Neumann algebra M, which generalize the classical Bonach
spaces LP (,m). The IP-spaces we construct in this note will
consist of operators affiliated not with M itself but with a
bigger algebra, namely the crossed product M = R(M, cg) of M
with a modular automorphism group. Mo has a trace T satisfying

'ree" 84 where e'p is the dual action., IP(M) is defined
ag the set of ’T—mee.surable operators h affilisted with H
satisfying ¢

©p h = exp(~- —)h p<oo

e“’ h=nh p =60

equipped with a suitable norm. Since the triple (M T,06 ) is
independent (up to unitary equivalence) of the choice of tp , tke
Irp-apa.ces are independent of ?.

We have L°(M)= M and it (M) 2 My 12 (M) is a Hilbert space,
end the representation of L 7(M) on I2(M) defined by left
multiplication is standard. If - M is semifinite the Lp-ape.ces
constructed in this way are isometric~ end orderisomorphic to
1P(M,1;) for any n.f.s. trace 7 on M.
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§ 1 Construction of the 1P-spaces

Let M be a von Neumann algebra. We will identify M with ite
natural in:lection in the orossed product M R(H, tr%) vhere @,
is & fixed weight on M. By construction M is generated by M
and a one parameter group of unitaries ?\(t) such that for =xeM,
ofo(x) = AN . N

Tet T be the operator valued weight, T: M: —> M _, given by

(x) = Les(x) ds , xc—M’;
R

vhere O.= e¢° is the dual action on M, (ef [61,[71). The weight

cp o on M is 27 +times the dual weight to CP . Hence there
exists a trace T on M/, such that ¢ oT -'r(h ) where h is
the positive selfad joint operator affiliated with IV' determined
by it = A(t) (cf [12], proof of lemma 8.2). The trace T eatis-
fies ) s

TeBg =€ T, aeR
1.1l Definition .
For any normel semifinite weight ¢ on M we put Q= @oT ,
end we let hy be the Radon-Nikodym derivative of §  with
respect to the trace T on M, i.e. q)='7'(h?~).

1.2 Theorem ’

1) The set {hql ¢ normal, semifinite} is equal to the set of
positive selfad joint operators h affiliated with Ho , which
satisfies o, h=e®n oe a

2) 1t f ).dep is the spectrel decomposition of h? then
T((ef)') = L) , o,

In particular h
(cf [9]) p. 111).

1.3 Theorem

The map ¢ ~» h? ’ ?EM: has a unigue extension to a linear map
of My onto the set of T-measurable operators h affiliated
with M , eatisfying

¢ is '!'-measurabie iff @ is bounded

_ .=-8
e$h~.e h .

(Note that the set of 7 -measurable operators on M  is &n
algebra with respect to strong sum and strong preduct, cf [11]),
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1.4 Definition
i) We let L¥(M) denote the set of T -measurable operators h

effiliated with M, , for which 6,h = ¢™h , seR .
1i) Ve define a linear functional tr on I}(M) by tr(h ) =0(1).

1.5 Proposition
The map ¢ —» hg of M, onto 1t(M) 1ie an isometry with respect

to the norm Whl; = tr(lh|) on ).

1.6 _Remarks

a) The trace T 4is infinite on any non vanishing operator in I.l(m)‘_.

b) If M is a factor of type i, , Mo is a II - factor. In this
‘case any normal trace on Mo is proportional to T . Hence +r
is not in generel the restriction of & trace on Mo.

1.7 Definition
We put LP(M) = { h, T -measurable aff. with Mol e.h
and LP(M) = {h, v -measurable aff, with Mo\ egh

exp(-$)h }
n}

%.8 Remarks

a) If p & q then IP(M)NII(M) = {0} .

b) If p <ee then any non vanishing LP- operator is unbounded.
¢) L (M) consists only of bounded operators. Hence

r°M) ={nen |6h =n , seR} =n.

1.9 Proposition _
et pe[l,o[ and let & be & closed, densely defined operator

affiliated with M , and let a = ula] be its polar decomposition.
The following conditions are equivalent:

(1) a € IP(M)

(2) w e T(1) and lalP ¢ TH(m).

1.10 Definition
On IP(M) we define I l\

Nelt, tr( |atlp)P p 0o
llall,o= lall
For p = 1,80 I "p is a norm (cf. prop. 1.5). It will be proved

later, that || "p is also a norm for 1l <pgoo,
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1.11 Jemma
1 &, -« 1
Let h,k € L"(M),. The function x—~>h'k ~ € L7(M) is analytic in

the open strip {«édﬁlRe «€lo, l[}

1.12 Proposition
let p,q €[1,e0] =1, and let a € IP(M) and b € 19(M),

then ab, ba € Ll(M) and tr(ab) = tr(ba).

1,1

Q

1.13 Corollary ‘
(1) For any h e Ll(M) and any unitary ueL“(M):

tr(un®) = tr(h)
(2) For any xeLz(M): tr(x*x) = tr(xx*)

1.14 Theorem

Let Prqe[l’”.] ’ % + % =1, and let a € IP(M) and be I,q-(M)'
then lTably < Nall bl q (Holders inequality)

1.15 Remarks
The proof of Theorem 1.14 is based on lemma 1.11 and the three

line theorem for analytic functions (compare with [9]p. 113).
Dixmiers proof of HOlders inequality in [ 47 can not be applied,
because in aur case the spectral projections of an I.p-operator
is not in IP. '

1.16 Proposition
(1) Tet p,q €l1,02) ,

+ & =1, For any a € LP(M)

-1~

q
| el = sup{ltr(ad)l | ve1i(m, bl <1}
(2) For a,beIP(M) Ila+bllp S.‘l!aup + ﬂbﬂp. (Minkowskis inequality)
Hence [t Hp is a norm.

1.17 Proposition
(1) For any p € [1,02] the norm topology on IP(M) is equal

to the topology of convergence in measure (cf (9] p. 106).
(2) For any pel[1l,e) IP(H) is comlete in the p-norm.
(3) LZ(M) is a Hilbert space with inner product (al|b) = tr(v*a).
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1.18 Iemna (cf. [4] lemma 5 p.730)
Let pel[2,00[ . For a,belP(u)
le + b} + la - ofF < 227 (nal® + MbiB)

The proof of lemma 1.18 is based on lemma 1.1% and the three line
theorem. : '

1.19 Theorem

Iet . pell,o] and put q = i—)—g-l- . An operator a€LY(M) defines
a functional ¢, on P(M) by 9o(x) = tr(ax). The map a-»¢,
is an isometric isomorphism of L%(M) onto the dual Banach space
of IP(M).

Proof: Same as [4] proof of theorem 7, =

1.20 Proposition

Let p-q€[1.°°J ’ :1:

b
a0 &> tr(ab)20 VbeLP(M)+

+ % =1 and let ael%{M). Then

i.e. the partial ordering of Lq(M)Ba is the dual of the ordering
of Lp(M)sa‘ (sa = selfadjoint).. ' ‘

For aeM = LM and xeLz(M) we put

Aa)x
e(a)x

n

ax

L1}

xa ,

1.2) Theoren

(1) A (resp. § ) is a normal, faithful representation (resp.
anti-representation) of M on the Hilbert .space LZ(M). '

(2) The von Neumenn algebras A(M) and g(M) are commutants of
each other, and
?(M) = JA(M)J

vhere J 1is the conjugate linear isometry x->x® in I:.Z(M).

(3) The quadruple (A(M), L2(M), J, I?(M),) is a Stendard form
in the senge of [5].
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§2 The semifinite case

Iet M be a semifinite von Neumann algebra on a Hilbert ‘spaée H,
and let T, be a n.f.s. trace on M. Identifying I2(R ,H)  with
HGLZ(R) we have: ‘

R(M, o) = M®U(R)

where U(R) is the von Neumann algebra associated with the left
regular representation of the groug\ R. Let F denote the Fourier-
Plancherél operator Lz(ﬂ) —> Lz(R)

[+
(F£)(s8) = -r—z_'._;'- f =18 24y at

then UR) = FIL(R)F
where - L"(lﬁ) acts as multiplication operators on L?(ﬁ). Hence
R(M,c™) = Me FL(R)F.

a

]

A
For any borel function f(s) on R we let m(f) denote the closed,
densely defined multiplication operator g-»fg on LZ(R )e

2.1 Theoren
et pell,ee[ . If aELP(M,'ro) then a @ F*m(exp(g))Febp(M)

and the map a— a@F*m(exp(%))F is an isometry of IP(M,T,)
onto LP(M).

§3 Applications to von Neumann algebras with a periodic weight.

Let M be a von Neumann algebra with & periodic NSF-weigt ¢° y

o
and let T, be a period for @, , i.e. Or’=1. Put G= Riv,2

and let t >t be the quotient map MR »6. Let « be the action
®: G —» aut(M) defined by o((%) = G'z" . We will identify M with.
its injection in the crossed product M, = R(M,x). Ml‘ is genera-
ted by M and a group of unitaries A(g), ge G, such that

0';P°(x) = A(3)xA(E) xem.

A
Let S denote the operator valued weight MI - M+ given by
()

s(x) = z o™(x) xeMI
Rr =0

vhere ©", ne, is the dvel action of GxZ on M. (ef. [7]),
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Repeating the arguments from the start of §1 we get that

has & (unique) n.f.s. trace 7 such that @oS =7T(k+) where k is
the positive selfedjolnt operator affiliated with Ml determined

by kit = }\("t;) , t¢R . The trace T patisfies:

Te® = AT vwhere A =exp(- -?‘rﬂ .

3.1 Definition
For any normsl semifinite weight ¢ on M, we put f{ =@9o3, end

ve let Xk, be the Radon-Nikodym derivetive of 71')' with respect to
‘T, i.e. $=T(k?‘)o

3,2 Propositicn

(1) The set {kqlq? normal, semifinite} is equal to the set of
positive selfadjoint operators Tk affiliated with Ml for
vhich ek = Ak (A = expi- -2%)).

(-}

(2) Let kqo = L /4de/f be the speciral decomposition of k,‘, ’

then for eny a»0:

Q
g(1) = 'r(f,ude,'f)
and Py}
aeli) | L ?(1)
G-na = ((e2Y) < Tna

in particular k, is T-measurable iff ¢ is bounded.

?
We could now continue as in §1 and construct new Lp-spaces
" consisting of the T -measurable operators affiliated with M

1
vhich satisfies: +
ek = Ak p <eo
ek = k p =00
However it is not hard to prove that these spaces are isomorphic
to the spaces 1P(M) obtained from the general construction.

We will instead use proposition 3.2 to prove the following
slight strengthening of a result due to Connes and Takesaki
(cf. [3, Chap.IT,corollary 4.10]).

- 182 —



3.3 Theorem

Let M be a g*-finite factor of type III A ,Ae]o,l[ .

(1) For any two normal, faithful states s on M , there exists
a unitary ué&M , such that )\\( §u ‘f u*é )-‘ \‘) .
(2) For any two unbounded n.f.s. weights s on M , there exists

a unitary u M , such that Ayéu \f u“'é ,\-|‘+’ .

2 ~2
£The method of (3] gives A‘}su \f u*é b g‘} in the above inequalities).
*

3.4 Remark

1t is easy to prove, that Theorem 3.3 is not valid for A=1.
A. Connes and E. Scérmer]:ZJhaverecently proved, that any two
normal states Lf , &l./ on a 6 -finite type III, -factor are almost

1

equivalent in the sense, that there exists a sequence of unitaries

(un)nélN in M, so that"\l}- un\r u: u—>0 for n -H0Q.
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