L $^{\mathrm{p}}$-SPACES ASSOCIATED WITH AN ARBITRARY VON NEUMANN ALGEBRA

by

UFFE HAAGERUP

Odense Universitet, Denmark.

Abstract: To any von Neumann algebra M, we associate Banach spaces $L^{p}(M), 1 \leqq p \leqq \infty$, which generalize the classical Banach spaces $L^{p}(\Omega, \mu)$ of functions on a measure space (Ω, μ). We show that $L^{\infty}(M) \cong M, L^{1}(M) \cong M_{*}$, and that $L^{2}(M)$ is isomorphic to the Hilbert space of M in its standard form. When M is semifinete, the $L^{F}(M)$-spaces are isometric isomorphic to the spaces $L^{\mathrm{P}}(\mathrm{M}, \tau)$ introduced by Dixmier, Segal and Kunze in 1953-1958. The $L^{p}(M)-s p a c e s$ are constructed as certain spaces of unbounded operators affiliated with the crossed product $R\left(M, \sigma^{\varphi}\right)$ of M with the modular automorphism group associated with a fixed weight φ on M. The construction turns out to be independent (up to unitary equivalence) of the choice of φ.

RESUMÉ A toute algèbre de Von Neumann M nous associons des espaces de Banach $L^{p}(M), 1 \leqslant p \leqq \infty$, qui généralisent les espaces de Banach classiques $L^{p}(\Omega, \mu)$ de fonctions sur un espace mesuré (Ω, μ). Nous montrons que $L^{\boldsymbol{\infty}}(M) \underset{\sim}{\sim} M, L^{1}(M) \stackrel{N}{\cong} M_{H}$, et que $L^{2}(M)$ est isomorphe à l'espace de Hilbert de la représentation standard. Si M est semifinie les espaces $L^{p}(M)$ sont isométriquement isomorphes aux espaces $L^{p}(M, \mathcal{Z})$ introduits par Dixmier, Segal et Kunze en 1953-1958. Les espaces $L^{p}(M)$ sont construits comme espaces d'opérateurs non bornệs affiliés aux produits croisés $R\left(M, \sigma^{\varphi}\right)$ de M avec 1^{\prime} automorphisme modulaire associé à un poids fixe φ sur M. La construction s'avère indépendante (à une équivalence unitaire près) du choix de φ

Introduction

This note contains an outline of a forthcoming paper.
In [4], [11] and [8] J. Dixmier, I. Sejal and R. Kunze have constructed the I^{p}-spaces $I^{p}(M, T)$ associated with a semifinite von Neumann algebra M, which generalize the classical Banach spaces $L^{p}(\Omega, \mu)$. The I^{p}-spaces we construct in this note will consist of operators affillated not with M itself but with a bigger algebra, namely the crossed product $M_{0}=R\left(M, \sigma^{\circ}\right)$ of M with a modular automorphism group. Mo has a trace T satisfying $T \cdot \theta_{\mathrm{B}}^{\varphi}=e^{-s} \tau$ where $\theta_{\mathrm{B}}^{\phi}$ is the dual action. $I^{p}(M)$ is defined as the set of τ-measurable operators h affiliated with M_{0} satisfying

$$
\begin{cases}\theta_{B}^{p} h=\exp \left(-\frac{8}{p}\right) h & p<\infty \\ \theta_{B}^{\varphi} h=h & p=\infty\end{cases}
$$

equipped with a suitable norm. Since the triple ($M_{0}, \tau, 0^{\circ}$) is independent (up to unitary equivalence) of the choice of φ, the J^{p}-spaces are independent of 9 .
We have $L^{\infty}(M)=M$ and $L^{1}(M) \approx M_{k} \cdot L^{2}(M)$ is a Hilbert space, end the representation of $I^{\infty}(M)$ on $L^{2}(M)$ defined by left nultiplication is standard. If M is semifinite the I^{p} ospeces constructed in this way are isometric- and orderisomorphic to $I^{p}\left(M, \tau_{0}\right)$ for any n.f.s. trace τ_{0} on M.

$\S 1$ Construction of the L^{p}-spaces

Let M be a vol Newman algebra. We will identify M with its natural injection in the crossed product $M_{0}=R\left(K, \sigma^{\%}\right)$ where φ_{0} is a fixed weight on M. By construction M_{0} is generated by M and a one parameter group of unitaries $\lambda(t)$ such that for $x \in M$, $\sigma_{t}^{\varphi_{0}}(x)=\lambda(t) x \lambda(t)^{*}$.
Let T be the operator valued weight, $T: M_{0}^{+} \rightarrow \hat{M}_{+}^{+}$, given by

$$
T(x)=\int_{\hat{R}} \theta_{s}(x) \text { dis }, x \in M_{0}^{+}
$$

where $\theta_{s}=\theta_{s}^{\varphi_{0}}$ is the dual action on $M_{0}(c i[6],[7])$. The weight $\varphi_{0} \circ T$ on M_{0} is 2π times the dual weight to φ_{0}. Hence there exists a trace τ on M_{0}, such that $\varphi_{0} \circ T=\tau(h \cdot)$ where h is the positive selfadjoint operator affiliated with M_{0} determined by $h^{\text {it }}=\lambda(t)$ (cf [12], proof of lemma 8.2). The trace T gatisflies

$$
\tau \bullet \theta_{\mathrm{s}}=e^{-\mathrm{B}} \tau, \mathrm{~s} \in \hat{\mathbb{R}}
$$

2.1 Definition

For any normal semifinite weight φ on M we put $\tilde{\varphi}=\varphi \circ T$, and we let h_{φ} be the Radon-Nikodym derivative of $\tilde{\varphi}$ with respect to the trace τ on M_{0}, ice. $\tilde{\varphi}=\tau\left(h_{\varphi} \cdot\right)$.

1.2 Theorem

1) The set $\left\{h_{q} \mid \varphi\right.$ normal, semifinite $\}$ is equal to the set of positive selfadjoint operators h affiliated with M_{0}, which satisfies

$$
\theta_{s} h=e^{-\theta_{h}} \quad g \in \hat{R}
$$

2) If $\int_{0}^{\infty} \lambda d e_{\lambda}^{\rho}$ is the spectral decomposition of h_{φ} then

$$
T\left(\left(e_{\lambda}^{\varphi}\right)^{\perp}\right)=\frac{1}{\lambda} \varphi(1), \quad \lambda>0 .
$$

In particular h_{φ} is τ-measurable iff φ is bounded (cf [9] p. 111).

1.3 Theorem

The map $\varphi \rightarrow h_{\varphi}, \varphi \in \mathbb{M}_{*}^{+}$has a unique extension to a linear map of M_{*} onto the set of τ-measurable operators h affiliated with M_{0}, satisfying

$$
\theta_{s} h=e^{-s_{h}} .
$$

(Note that the set of T-measurable operators on M_{0} is an algebra with respect to strong sum and strong product, of [19]).

1.4 Definition

i) We let $I^{1}(M)$ denote the set of τ-measurable operators h affiliated with M_{0}, for which $\theta_{s} h=e^{-\theta_{h}}, \theta \in \hat{R}$.
ii) We define a linear functional tr on $L^{1}(M)$ by $\operatorname{tr}\left(h_{\varphi}\right)=\varphi(1)$.
1.5 Proposition

The map $\varphi \rightarrow h_{\varphi}$ of M_{*} onto $L^{l}(M)$ is an isometry with respect to the norm $\|h\|_{1}=\operatorname{tr}(|h|)$ on $L^{1}(M)$.
1.6 Remarks
a) The trace τ is infinite on any non vanishing operator in $L^{l}\left(M_{4}\right.$.
b) If M is a factor of type $I I I_{1}, M_{0}$ is a I_{∞} - factor. In this case any normal trace on M_{0} is proportional to τ. Hence $t r$ is not in general the restriction of a trace on M_{0}.

1.7 Definition

We put $L^{p}(M)=\left\{h, \tau\right.$-measurable aft. with $\left.M_{0} \left\lvert\, \Theta_{s} h=\exp \left(-\frac{8}{p}\right) h\right.\right\}$
and $L^{\infty}(M)=\left\{h, \tau\right.$-measurable aft. with $\left.M_{0} \mid \theta_{s}^{s}=h\right\}$
1.8 Remarks
a) If $p \neq q$ then $I^{p}(M) \cap I^{q}(M)=\{0\}$.
b) If $p<\infty$ then any non vanishing I^{p} - operator is unbounded.
c) $L^{\infty}(M)$ consists only of bounded operators. Hence

$$
L^{\infty}(M)=\left\{h \in M_{0} \mid \theta_{S} h=h, s \in \hat{R}\right\}=M .
$$

1.2 Proposition

Let $p \in[1, \infty[$ and let a be a closed, densely defined operator affiliated with M_{0}, and let $a=u|a|$ be its polar decomposition. The following conditions are equivalent:
(1) $a \in L^{p}(M)$
(2) $u \in L^{\infty}(M)$ and $|a|^{p} \in L^{I}(M)$.
1.10 Definition

On $I^{p}(M)$ we define $\left\|\|_{p}\right.$ by

$$
\begin{aligned}
& \|a\|_{p}=\operatorname{tr}\left(|a|^{p}\right)^{\frac{1}{p}} \quad p<\infty \\
& \|a\|_{\infty}=\|a\|
\end{aligned}
$$

For $p=1, \infty \quad\| \|_{p}$ is a norm (cf. prop. 1.5). It will be proved later, that $\left\|\|_{p}\right.$ is also a norm for $1<p<\infty$.
1.11 Lemma

Let $h, k \in L^{I}(M)+$. The function $\alpha \rightarrow h^{\alpha} k^{l-\alpha} \in L^{l}(M)$ is analytic in the open strip $\{\alpha \in \mathbb{C} \mid \operatorname{Re} \alpha \in] 0,1[\}$.
1.12 Proposition

Let $p, q \in[1, \infty], \frac{1}{p}+\frac{1}{q}=1$, and let $a \in I^{p}(M)$ and $b \in L^{q}(M)$, then $a b, b a \in L^{l}(M)$ and $\operatorname{tr}(a b)=\operatorname{tr}(b a)$.
1.13 Corollary
(I) For any $h \in I^{\perp}(M)$ and any unitary $u \in I^{\infty}(M)$:

$$
\operatorname{tr}\left(u h u^{*}\right)=\operatorname{tr}(h)
$$

(2) For any $x \in I^{2}(M): \quad \operatorname{tr}\left(x^{*} x\right)=\operatorname{tr}\left(x x^{*}\right)$

1.14 Theorem

Let $p, q \in[1, \infty], \frac{1}{p}+\frac{1}{q}=1$, and let $a \in L^{p}(M)$ and $b \in L^{q}(M)$, then $\quad\|a b\|_{1} \leqslant\|a\|_{p}\|b\|_{q} \quad$ (Họlders inequality)

1.15 Remarks

The proof of Theorem 1.14 is based on lemma 1.11 and the three line theorem for analytic functions (compare with [9]p. 113). Dixmiers proof of Holders inequality in [4] can not be applied, because in our case the spectral projections of an I^{p}-operator is not in I^{p}.

1.16 Proposition

(1) Let $p, q \in[1, \infty], \frac{1}{p}+\frac{1}{q}=1$. For any $a \in L^{p}(M)$

$$
\|a\|_{p}=\sup \left\{|\operatorname{tr}(a b)| \quad b \in I^{q}(M),\|b\|_{q} \leq 1\right\}
$$

(2) For $a, b \in L^{p}(M) \quad\|a+b\|_{p} \leqslant\|a\|_{p}+\|b\|_{p}$. (Minkowskis inequality) Hence $\left\|\|_{p}\right.$ is a norm.
1.17 Proposition
(1) For any $p \in[1, \infty]$ the norm topology on $I^{p}(M)$ is equal to the topology of convergence in measure (cf [9] p. ion).
(2) For any $p \in[1, \infty] \quad j_{0} p(M)$ is complete in the p-norm.
(3) $I^{2}(M)$ is a Hilbert space with inner product $(a \mid b)=\operatorname{tr}\left(b^{*} a\right)$.
1.18 Lemma (cf. [4] lemma 5 p.30)

Let $p \in\left[2, \infty\left[\right.\right.$. For $a, b \in I^{p}(M)$

$$
\|a+b\|_{p}^{p}+\|a-b\|_{p}^{p} \leq 2^{p-1}\left(\|a\|_{p}^{p}+\|b\|_{p}^{p}\right)
$$

The proof of lemma 1.18 is based on lemma 1.1 and the three line theorem.

1.19 Theorem

Let $p \in\left[1, \infty\left[\right.\right.$ and put $q=\frac{p}{\bar{p}-1}$. An operator $a \in L^{q}(M)$ defines a functional φ_{a} on $L^{p}(M)$ by $\varphi_{a}(x)=\operatorname{tr}(a x)$. The map $a \rightarrow \varphi_{a}$ is an isometric isomorphism of $I^{q}(M)$ onto the dual Banach space of $I^{p}(M)$.

Proof: Same as [4] proof of theorem 7."

1.20 Proposition

Let $p, q \in[1, \infty], \frac{1}{p}+\frac{1}{q}=1$ and let $a \in I^{q}(M)$. Then

$$
a \geq 0 \Leftrightarrow t r(a b) \geq 0 \quad \forall b \in I^{p}(M)_{+}
$$

i.e. the partial ordering of $L^{q}(M)_{8 a}$ is the dual of the ordering of $\mathrm{I}^{\mathrm{p}}(\mathrm{M})_{\mathrm{sa}} \quad(\mathrm{sa}=$ selfadjoint $)$.

For $a \in M=L^{\infty}(M)$ and $x \in L^{2}(M)$ we put

$$
\begin{aligned}
& \lambda(a) x=a x \\
& \rho(a .) x=x a .
\end{aligned}
$$

1.21 Theorem
(1) λ (resp. ρ) is a normal, faithful representation (resp. enti-representation) of M on the Hilbert space $L^{2}(M)$.
(2) The von Neumann algebras $\lambda(M)$ and $\rho(M)$ are commutants of each other, and

$$
\zeta(M)=J \lambda(M) J
$$

where J is the conjugate linear isometry $x \rightarrow x^{*}$ in $L^{2}(M)$.
(3) The quadruple $\left(\lambda(M), L^{2}(M), J, L^{2}(M)_{+}\right)$is a standard form in the sense of [5].

§2 The semifinite case

Let M be a semifinite vo Neumann algebra on a Hilbert space H, and let τ_{0} be a n.f.s. trace on M. Identifying $L^{2}(\mathbb{R}, H)$ with $H \oplus L^{2}(\mathbb{R})$ we have:

$$
R\left(M, \sigma^{\tau_{0}}\right)=M \otimes U(\mathbb{R})
$$

where $U(\mathbb{R})$ is the vol Neumann algebra associated with the left regular representation of the group \mathbb{R}. Let F denote the FourierPlancherél operator $\mathrm{L}^{2}(\mathbb{R}) \rightarrow \mathrm{I}^{2}(\hat{\mathbb{R}})$
then

$$
\begin{aligned}
(F f)(s) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i s t} f(t) d t \\
U(\mathbb{R}) & =F^{*} L^{\infty}(\hat{\mathbb{R}}) F
\end{aligned}
$$

where $L^{\infty}(\hat{R})$ acts as multiplication operators on $L^{2}(\hat{R})$. Hence $R\left(M, \sigma^{T_{0}}\right)=M \otimes F^{*} I^{\infty}(\hat{R}) F$.
For any bored function $f(s)$ on \hat{R} we let $m(f)$ denote the closed, densely defined multiplication operator $g \rightarrow f g$ on $L^{2}(\hat{\mathbb{R}})$.

2. 1 Theorem

Let $p \in\left[1, \infty\left[\right.\right.$. If $a \in I^{p}\left(M, \tau_{0}\right)$ then $a F^{*} m\left(\exp \left(\frac{8}{p}\right)\right) F \in I^{p}(M)$ and the map $\quad a \rightarrow a \cap F^{*} m\left(\exp \left(\frac{8}{\mathrm{p}}\right)\right) \mathrm{F}$ is an isometry of $\mathrm{I}^{p}\left(\mathrm{M}, \mathrm{T}_{0}\right)$ onto $L^{p}(M)$.
§3 Applications to vo Neumann algebras with a periodic weight.

Let M be a van Newman algebra with a periodic NSF-weigt φ_{0}, and let T_{0} be a period for φ_{0}, i.e. $\sigma_{T_{0}}^{\varphi_{0}}=1$. Put $G=\mathbb{R} / T_{0} Z$ and let $t \rightarrow t$ be the quotient map $\mathbb{R} \rightarrow{ }^{\prime} G$. Let α be the action $\alpha: G \rightarrow \operatorname{aut}(M)$ defined by $\alpha(\dot{t})=0_{t}^{\varphi_{0}}$. We will identify M with. its injection in the crossed product $M_{1}=R(M, \alpha) . M_{1}$ is generated by M and a group of unitaries $\lambda(g), g \in G$, such that

$$
\sigma_{t}^{Q_{0}}(x)=\lambda(\dot{t}) x \lambda(\dot{t}) \quad x \in M .
$$

Let S denote the operator valued weight $M_{1}^{+} \rightarrow \hat{M}_{+}$given by

$$
S(x)=\sum_{n=-\infty}^{\infty} \theta^{n}(x) \quad x \in \mathbb{M}_{1}^{+}
$$

where $\theta^{n}, n \in \mathbb{Z}$, is the dual action of $\hat{G} \simeq \mathbb{Z}$ on M_{1}. (c\&. [7]).

Repeating the arguments from the start of $§ 1$ we get that M_{1} has a (unique) n.f.s. trace τ such that $\varphi_{0} \circ S=\tau(k \cdot)$ where k the positive selfadjoint operator affiliated with M_{l} determined by $k^{i t}=\lambda(i), t \in R$. The trace \boldsymbol{T} satisfies:

$$
T \circ \theta=\lambda T \text { where } \lambda=\exp \left(-\frac{2 \pi}{T_{0}}\right) .
$$

3.1 Definition

For any normal semifinite weight φ on M, we put $\tilde{\varphi}=\varphi \circ S$, end we let k_{φ} be the Radon-Nikodym derivative of $\tilde{\varphi}$ with respect to τ, ie. $\tilde{\varphi}=\tau\left(k_{\varphi}\right)$.

3.2 Proposition

(1) The set $\left\{k_{\varphi} \mid \varphi\right.$ normal, semifinite $\}$ is equal to the set or positive selfadjoint operators k affiliated with M_{1} for which

$$
\theta k=\lambda k
$$

$$
\left(\lambda=\exp \left(\because \frac{2 \pi}{T_{0}}\right)\right)
$$

(2) Let $k_{\varphi}=\int_{0}^{\infty} \mu d e_{\mu}^{\varphi}$
then for any $a>0$:
be the spectral decomposition of k_{φ},
and

$$
\phi(1)=\tau\left(\int_{\lambda a}^{a} \mu d e_{\mu}^{\varphi}\right)
$$

$$
\frac{\lambda \varphi(1)}{(1-\lambda) a} \leq \tau\left(\left(e_{a}^{\varphi}\right)^{\dagger}\right) \leq \frac{\varphi(1)}{(1-\lambda) a}
$$

in particular k_{φ} is τ-measurable ff φ is bounded.
We could now continue as in $\S 1$ and construct new I^{p}-spaces consisting of the τ-measurable operators affiliated with M_{1} which satisfies:

$$
\begin{cases}\theta k=\lambda^{\frac{1}{p}} k & p<\infty \\ \theta k=k & p=\infty\end{cases}
$$

However it is not hard to prove that these spaces are isomorphic to the spaces $I^{p}(M)$ obtained from the general construction. We will instead use proposition 3.2 to prove the following slight strengthening of a result due to Connes and Takesaki (cf. [3 , Chap. II, corollary 4.10]).

Let M be a σ-finite factor of type III $\lambda, \lambda \in] 0,1[$.
(1) For any two normal, faithful states φ, Ψ on M, there exists a unitary $u \in M$, such that $\lambda \psi \leqq u \varphi u^{*} \leqq \lambda^{-1} \Psi$.
(2) For any two unbounded n.f.s. weights φ, Ψ on M, there exists a unitary $u \quad M$, such that $\lambda \psi \leqq u \varphi^{*} \leqq \lambda^{-1} \psi$.
t the method of $[3]$ gives $\lambda^{2} \psi \leqq u \quad \varphi u^{*} \leqq \lambda^{-2} \psi$ in the above inequalities).
3.4 Remark

It is easy to prove, that Theorem 3.3 is not valid for $\lambda=1$. A. Cones and E. Stbrmer [2] haverecently proved, that any two normal states φ, Ψ on a σ-finite type III $_{1}$-factor are almost equivalent in the sense, that there exists a sequence of unitaries $\left(u_{n}\right)_{n} \in \mathbb{N}$ in M, so that $\left\|\psi-u_{n} \varphi u_{n}^{*}\right\| \rightarrow 0$ for $n \rightarrow \infty$.

References

[1] A. Connes, Une classification does facteurs de type III. Ann. Sc. de l'Ecole Normale Supérieure, 4 ser. t. 6, fasc. 2 (1973) 133-252.
[2] A. Connes \& E. St申rmer , Homogeneity of the state space of factors of type III. J. funct. analysis 28 (1978) 187-196.
[3] A. Cones \& M. Takesaki , The flow of weights on a factor of type III. Tohoku Math. J. 29 (1977) 473-475.
[4] J. Dixmier , Formes linéaires sur un anneau d'opérateurs. Bull. Soc. Math. France t. 81 (1953) 9-39.
[5] U. Haagerup , The standard form of won Neumann algebras. Math. Stand. 37 (1975) 271-283.
[6] U. Haagerup , Operator Valued Weights in vo Neumann algebras. To appear in J. funct. analysis. U. Haagerup , On the dual weights for crossed products of von Neumann algebras II. Math. Scand. 43,119-140 (1978).
[8] R. Kunze , L_{p} Fourier transform on locally compact unimodular groups. Trans. Amer. Math. Soc. 89 (1958) 519-540.
[9] E. Nelson , Notes on non-commutative integration. Journal of funct. anal. 15 (1974) 103-116.
G.K. Pedersen \& M. Takesaki , The Radon Nikodym Theorem for von Neumann Algebras. Acta Math. 130 (1973) 53-87.
[11] I. Segal , A non commutative extension of abstract integration. Ann. of Math. 57 (1953) 401-457.
[12] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math. 131, (1973) 249-308.

