Konrad Waldorf.

Classical Gauge Theory and Matter Fields.

References:

G. Naber: Topology, Geometry, and Gauge Fields.

D. Bleecker: Gauge Theory and Variational Principles.

Notation: M is a spacetime (oriented Lorentz manifold).

Definition. A Yang-Mills theory over M consists of a Lie group G (gauge group), Ad-invariant bilinear form $\kappa: g \otimes g \to \mathbf{R}$ on the Lie algebra g of G, principal G-bundle P over M, fields are connections $\omega \in \Omega^1(P,g)$, action functional is $S_{\text{YM}}(\omega) = 2^{-1} \int_M \|F_\omega\|_{\kappa}^2$. Yang-Mills equation: $D^{\omega} * F_{\omega} = 0$ and $D^{\omega} F_{\omega} = 0$.

Definition: A gauge transformation is a bundle automorphism $g: P \to P$. Remark: We can identify gauge transformations with G-equivariant map $\tilde{g}: P \to G$. We have $r_{\tilde{q}} = g$. Equivariance means $\tilde{g}(p\gamma) = \gamma^{-1}\tilde{g}(p)\gamma$. Remark: If P is a principal G-bundle, $\rho: G \to \operatorname{GL}(V)$, then we have a bijection between $\Omega_{\rho}^{k}(P, V)$ and $\Omega^k(M, P \times_{\rho} V)$. We have $\psi \in \Omega^k_{\rho}(P, V)$ if $r^*_{\gamma} \psi = \rho(\gamma^{-1})(\psi)$.

Theorem: $S_{\rm YM}$ is gauge-invariant: $S_{\rm YM}(\omega) = S_{\rm YM}(g^*\omega)$.

Definition: A classical electromagnetic field theory is a Yang-Mills theory with G = U(1). If we remove a line from 3-dimensional space, then we observe Aharonov-Bohm effect. If we remove a point, then we observe magnetic monopoles.

Definition: If G is a gauge group, then a matter type for G is a quadruple $T = (V, h, \rho, f)$ such that V is a finite-dimensional real vector space (internal state space), $h: V \otimes V \to \mathbf{R}$ is a real bilinear form on V, $\rho: G \to \operatorname{GL}(V)$ is an isometric representation of $G: h(\rho(g)v, \rho(g)w) = h(v, w)$ (transformation behavior), $f: V \to \mathbf{R}$ is a smooth ρ -invariant function: $f(\rho(g)v) = f(v)$ (self-interaction potential).

Definition: Let (P,G) be a Yang-Mills theory over M, T a matter type for G. A field for P of type Tis a section $\phi: M \to P \times_{\rho} V$. The action functional is $S_T(\omega, \phi) = 2^{-1} \int_M \|D^{\omega}\phi\|_h^2 + *(f(\phi))$. Remark: We have two options: (a) Keep ω fixed, consider $S_{\omega}(\phi) = S_T(\omega, \phi)$. (b) Consider $S(\omega, \phi) =$

 $S_{\rm YM}(\omega) + S_T(\omega, \phi)$. Notice that (ω, ϕ) extremizes S iff (1) ϕ extremizes S_{ω} (Euler-Lagrange); (2) $\delta^{\omega} F_{\omega} =$ $J^{\omega}(\phi)$ (inhomegeneous field equation). Here $\delta^{\omega} = *D^{\omega}*$.

Example 1: $G = \{e\}, P = M$. A scalar field is a field of matter type $(\mathbf{R}, h, \mathrm{id}, f)$ with $f(x) = -m^2 x^2$. $S(\phi) = \int_M ||d\phi|| + m^2 \phi^2$. Euler-Lagrange equation in this case is Klein-Gordon equation $(\Delta^2 + m^2)\phi = 0$.

Example 2: π^- -meson: charge $n \in \mathbf{Z}$, no spin. Yang-Mills theory (P, U(1)). Matter type $(\mathbf{C}, h, \rho_n, f)$. Here ρ_n is the *n*th power representation of U(1) on **C**, $f(z) = -m^2 |z|^2$ and $h(z_1, z_2)$ is left as an exercise. Euler-Lagrange equation is $(\Delta^{\omega} + m^2)\phi = 0$. Here $\Delta^{\omega} = \delta^{\omega}D^{\omega}$.